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1.	 Introduction

The timing of transactions (i.e., the quantity purchased in a period of time) is 
often a key economic variable; as such, it should be modeled or forecasted. The 
microstructure of financial markets is investigated using transaction-by-transaction 
data. The timing of these transactions can be very important in order to under-
stand market participant behavior from the point of view of economic theory. 

In recent years, there have been a lot of contributions dealing with the finan-
cial market microstructure. These contributions have focused both on theoretical 
models and empirical findings. Nowadays, most exchanges (NYSE, NASDAQ, Paris 
Bourse, Frankfurter Boerse) and even smaller exchanges like Vienna and Warsaw 
compile databases of tick-by-tick data which, depending on the exchange, give 
information on the trade process (time of the trade, price, volume) and the bid-
ask quote process (time of quotes, bid and ask quotes, depths) or the state of the 
order book. Researchers can now work in new empirical and theoretical areas. 
However, in order to use high-frequency data, new econometric tools are necessary. 

High-frequency data about investor activity typically arrives at irregular time 
intervals. Classic standard econometric techniques were good for the treatment 
of fixed time intervals. Typically, researchers aggregated market data to some 
fixed time intervals. The most-frequently used data in the case of consumption 
was monthly or yearly data. However, stock market transactions are very often 
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conducted within a fraction of a second. It is plausible that, in the case of a short-
time interval, one can observe many intervals with no new information, so the 
data becomes heteroskedastic. On the other hand, we cannot analyze the micro-
structure properties of the data in the case of a long interval. The consequence of 
multiple transactions is the averaging of the timing and characteristics of particular 
transactions, meaning that the researcher can lose certain valuable information.

The problems of market microstructure are complex, because the rate of ar-
rival of transactions may exhibit calendar or seasonal effects (dependent on the day, 
week, or year), which implies problems with the determination of an appropriate 
length-of-time interval. The frequency may depend not only on a news release but 
also sometimes on an unobservable factor that is to some extent deterministic 
but also partly stochastic. In this case, one says that there is a stochastic process 
underlying trading activity. The breaking point in research into the microstructure 
of financial markets was provided by Engle and Russel (1997) and (1998).

In our contribution, we try to compare the microstructure of selected stocks 
comprised from the DAX30 and WIG20 using models of the ACD type under the 
assumption of generalized gamma and Burr distributions of durations. 

The remaining part of our paper is scheduled as follows: Section 2 contains 
a short overview of existing models in the literature and the methods used in 
studies of microstructure. In Section 3, the methodology is presented; and in 
Section 4, the results of our computations are shown and discussed in detail. 
Finally, Section 5 presents the conclusions of the paper.

In the next section, we conduct a brief literature review on the topic.

2.	 Literature overview

Early contributors on market microstructure (for example Hafner, 1996; Ed-
delbutel and McCurdy, 1998; and Guillaume et al., 1997) concentrated on high-
frequency data modeled by the so-called “fixed interval” econometric models. 
These models include the stochastic volatility- and GARCH-type models. The 
common feature of this kind of modeling is that the data is regularly sampled at 
a very high frequency. However, one main drawback of these models is that they 
do not take into account the irregular spacing of data. The contributors tried to 
conduct an alternative to regular sampling, using time transformation techniques. 
The aim was to transform irregularly spaced data into fixed-interval data.

Engle and Russel (1997) and (1998) treated arrival times as random vari-
ables that follow a stochastic point process. Arrival time depends on (financial) 
random variables such as volume, bid ask spread, or price. The authors derived 



79

The logarithmic ACD model: The microstructure...

a new model for dependent-point processes. The set of parameters typical of 
the stochastic process consisted of past events in order to reflect the transaction 
process. The most-important application of the model was to the measurement 
and forecasting of the intensity of transaction arrivals. The contributors param-
eterized the conditional intensity as a function of the time between past events. 
In addition, they allowed some natural extensions; e.g., taking into account the 
characteristics of past transactions. Also, outside influence cannot be excluded. 
The authors, assuming the dependence of the conditional intensity on past dura-
tions, called their model the Autoregressive Conditional Duration (ACD) model. 
The ACD model is the counterpart of the GARCH model.

This model for the durations between two successive market events (such 
as the buying or selling of a security) takes into account a clustering effect in 
the durations. In the model, short (long) durations tend to be followed by short 
(long) durations. This effect resembles that which is found in the volatility of many 
financial time series. The contributors applied the model to the modeling of the 
foreign exchange market and the IBM stock. In a subsequent paper, Engle (2000) 
linked the ACD-duration model with a GARCH model for returns. This combina-
tion allowed the modeling of irregularly timed data. The following extensions or 
counterparts were developed by a number of contributors. 

Ghysels and Jasiak (1998) suggested the stochastic volatility duration (SVD) 
model. Gramming and Maurer (2000) derived an ACD model based on the Burr 
distribution (an alternative to the Weibull distribution). Jasiak (1998) extended 
ACD to the fractionally integrated ACD model. This model enables the modelling 
of long-range dependence in the durations. 

Bauwens and Veredas (2004) defined a class of models for the analysis of 
durations, known as stochastic conditional duration (SCD) models. These models 
are based on the assumption that the durations are generated by a dynamic sto-
chastic latent variable. The model yields a wide range of shapes hazard functions. 
The estimation of the parameters is conducted by quasi-maximum likelihood 
and by using the Kalman filter. The model is applied to trade, price, and volume 
durations of stocks traded at the NYSE. The authors also investigate the relation 
between price durations, spread, trade intensity, and trading volume.

The most-recent research tries to reflect the new realities on financial mar-
kets implied by the introduction of new technology and high-frequency trading, 
especially after the crisis of 2008. 

Based on order-level data from 2008, Hasbrouck and Saar (2013) found that 
some traders on the NASDAQ could respond to events such as changes in the 
limit order book in 2–3 milliseconds. Ye et al. (2013) proved that trading could 
be conducted at even faster speeds. They suggested that high-frequency traders’ 
need for speed depends on the particular strategies that they follow.
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According to Jones (2012), Brogaard et al. (2012), and Carrion (2013), most 
market participants and researchers are convinced that HFT market trading en-
hances market quality by reducing spreads and raising informational efficiency. 
Some contributions (e.g., Kirilenko et al., 2011; Easley et al., 2011; 2012a, and 
Madhavan, 2013) express concerns that HFT market trading can induce market 
instability. However, Brogaard et al. (2011), O’Hara (2011), and O’Hara et al. 
(2013) stress that the bulk of liquidity provision in many markets is provided by 
high-frequency traders.

Angel et al. (2011) stress that, when retail orders do go to the NYSE, they often 
benefit from liquidity provided by DMMs (designated marker makers) and SLPs 
(strategic liquidity providers), many of which are actually high-frequency trading 
firms. Another observation is that the trading costs of retail traders have been fall-
ing over the past 30 years. In addition, this decline has sped up in recent years. 
Using data from the Toronto Stock Exchange, Malinova and Park (2013) show 
empirically that retail trading costs have fallen because of the presence of HFTs. 
Hendershott et al. (2011) provide evidence that algorithmic trading particularly 
improved market quality with respect to improved liquidity and the enhanced 
informativeness of quotes. Boehmer et al. (2015) supported this prediction on 
the basis of data from 39 markets.

HFTs are looking for the fastest way to trade. Technological innovations are 
key factors in making a decision to trade or not. For exchanges and markets, pro-
vision of these innovations is a key factor in their competitiveness (and survival). 
The profitability of the new fast technology of trading is discussed in Brogaard et 
al. (2014), Cespa and Vives (2013), Pagnotta and Philippon (2011), and Biais et al. 
(2015). According to Laughlin et al. (2014), the speeding up of communication 
to about three milliseconds between Chicago and New York markets increased 
costs significantly. Haldane (2011) stresses the role of the speed of high-frequency 
trading in these words: “Adverse selection today has taken on a different shape. 
In a high speed, co-located world, being informed means seeing and acting on 
market prices sooner than competitors. Today, it pays to be faster than the aver-
age bear, not smarter. To be uninformed is to be slow”. 

Hasbrouck and Saar (2009) underline that technology allows orders to be 
submitted (and cancelled) instantaneously. The optimum strategies use this op-
tion in order to apply complex trading strategies.

One of the most-important questions is whether one can actually link “buy” 
and “sell” trades with upcoming information (Easley et al., 2012a, 2012b, 2013). 
In their opinion, the active side of the trade is oriented more to the spread than 
the actual content of the released information.

O’Hara (2015) stresses that a fundamental change in how traders trade and 
how markets operate can be observed in recent years. In her opinion, the high-



81

The logarithmic ACD model: The microstructure...

frequency algorithms operate across the market and use the power of technology 
to forecast price movements of securities. The forecasts take into account the 
behavior of correlated assets. Thus, the starting point of empirical analyses should 
be to assess the predictive power of market variables, both within and across 
markets. The main focus in the future should be oriented towards understanding 
the changing nature of the market, including understanding the changing nature 
of market data.

More complete surveys of HFT topics may be found in reviews by Biais and 
Wooley (2011), Angel et al. (2011), Jones (2012), and Goldstein et al. (2014).

3.	 Methodology

We shall consider the dynamic parametrization of the conditional mean func-
tion (Engle and Russell, 1998):

	
ψ ψ θ θi i i iE x: [ | ; ]= ( ) = F  

where Fi denotes the information set up to observation ti–1 (beginning of i-th 
duration xi between two events occurred at times ti–1 and ti–1) and θ is the vector 
of parameters. 

It is assumed that standardized durations: 

	
ε
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are independent and identically distributed random variables with E[εi] = 1. Varia-
tion in autoregressive conditional duration models arise from different choices 
of functional form for the conditional mean function and choices of distribution 
of standardized durations.

The most basic specification assumes linear parametrization of the conditional 
mean function (Engle and Russell, 1998):
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1α β . The first three constraints 

ensure that conditional durations are positive, whereas the last inequality ensures 
the existence of an unconditional mean of duration. Bauwens and Giot (2000) 
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propose two extensions of the linear ACD model. Models called logarithmic ACD 
are of the forms:
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We refer to the different specifications as LACD1 and LACD2 respectively. 
There are no sign restrictions on parameters to ensure the positivity of condi-
tional duration.

For each cited specification, researchers have to choose a distribution for 
standardized durations. In their seminal paper, Engle and Russel (1998) study 
exponential and Weibull distributions (it is worth mentioning that the former is 
used in quasi maximum likelihood estimation). 

In this paper, we try to fit generalized gamma and Burr distributions. The 
density of the generalized gamma distribution (Lunde, 2000) is given as:
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 and κ, γ > 0. The generalized gamma distribution includes 

the Weibull distribution for κ = γ = 1 and the exponential distribution if κ = 1. 
Gramming and Maurer (2000) examine the Burr distribution, whose density 

is as follows: 
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We get the Weibull distribution if σ → 0 and exponential distribution if, addition-
ally, κ = 1.
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A concept that is often used in duration analysis is the hazard function. As-
suming that duration X is a continuous random variable, the hazard function is 
defined as (see, for example, Bauwens and Giot, 2001):

	 h x
P x X x dx X x

dxdx
( ) =

≤ < + ≥[ ]
→

lim
|

0

In the formula above, the numerator is the probability that the event occurs in 
the interval [x, x + dx), given that it has not occurred before, while the denomina-
tor is the width of the interval. The fraction represents the rate of event occurrence 
per second. Taking the limit as dx goes to 0 we obtain an instantaneous rate of 
occurrence. This leads to an alternative definition of hazard function of the form:

	
h x

f x

S x

dS x
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( ) =

( )
( ) =

− ( )

Where f(x) and S(x) are the density and survival functions of random vari-
able X, respectively. It can be shown that the hazard functions of an exponential 
distribution is flat, while the hazard function of Weibull can be either flat or mono-
tone (increasing and decreasing), depending on the values of the parameters. In 
the case of Burr and the generalized gamma, the hazard function can take many 
different shapes (including non-monotone cases), depending on parameter values.

4.	 Empirical results

We consider tick-by-tick transactions of DAX30 and WIG20 companies. The 
first dataset contains the prices of 25 companies from 2013.03.22 to 2013.05.17 
(37 trading days). The second dataset contains observations from 2013.09.02 to 
2013.10.18 (35 trading days) for 12 actively traded Polish companies. To com-
pute price durations, one needs to set up a price threshold. Taking into account 
the large number of time series, it is not possible to choose one universal price 
threshold. In addition, the tick sizes of companies are very different (based on 
upper and lower price bands). To avoid incomparable either short or long dura-
tion series we set a price threshold based on the tick size of each company. For 
most DAX30 companies we set the price threshold as 0.1 euro (which equals a 
20 tick size) and different values for Polish companies (this is the result of huge 
differences in the number of trades and scale of prices). We remove overnight 
durations and durations corresponding to events recorded outside regular open-
ing hours (9:00 to 17:30 for German and 9:30 to 16:50 for Polish companies).

In Table 1 we present the main descriptive statistics of plain-price durations 
along with the result of Ljung-Box test with 15 lags.
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Table 1

Descriptive statistics of raw-price durations (number of observations (N), mean, standard 
deviation, minimum, quantiles, maximum, and Ljung-Box test statistic)

DAX30

 Statistic Min 0.25q Median 0.75q Max

N 1626 2772 3071 3570 5802

Mean 198.72 320.89 372.62 410.55 695.58

S.D. 267.2 440.4 537.16 613.92 955.03

Min 1 1 1 1 1

0.25q 36 63 69 83 147

Median 106.5 175.5 196 216.5 381.5

0.75q 252 394 474.25 518 873.75

Max 2778 5194 6332 8514 22975

LB(15) 326.31 672.72 776.62 1111.87 2565.88

WIG20

 Statistic Min 0.25q Median 0.75q Max

N 1544 1975.75 2316 3382 4470

Mean 218.75 291.68 418.28 491.43 623.31

S.D. 426.03 627.67 894.34 1116.63 1513.92

min 1 1 1 1 1

0.25q 16 17.5 23 35.625 57

Median 65 80 102.5 133.75 226

0.75q 229 280.38 364.63 440.31 674.25

Max 6537 9434.75 12068.5 16952.5 21037

LB(15) 72.23 193.86 293.73 613.96 1507.94

The computation results confirm the stylized facts observed in the duration 
data. There is an overdispersion and autocorrelation in all series under study. On 
average, Polish companies exhibit weaker serial correlation yet the highest over-
dispersion. In both cases, the series of price durations exhibit a diurnal pattern 
(which may be different for each day of the week). In a way similar to Bauwens 
and Giot (2000), we take into account the time of day and the day of the week. 
We use cubic splines with nodes set every 60 minutes with two additional nodes: 
10 minutes after the market opens and 10 minutes before the end of the session. 
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The table 2 presents the descriptive statistics of diurnally adjusted price durations 
(plain durations divided by seasonal component).

Table 2

Descriptive statistics of adjusted price durations (number of observations, mean, standard 
deviation, minimum, quantiles, maximum, and Ljung-Box test statistic)

DAX30

Statistic Min 0.25q Median 0.75q Max

N 1626 2772 3071 3749,25 5802

Mean 1.017 1.027 1.036 1.042 1.064

S.D. 1.096 1.186 1.214 1.248 1.634

min 0.001 0.001 0.002 0.002 0.003

0.25q 0.194 0.241 0.258 0.272 0.299

Median 0.521 0.622 0.636 0.653 0.7

0.75q 1.193 1.347 1.364 1.375 1.422

Max 8.817 11.74 13.689 15.131 25.356

LB(15) 257.79 410.408 458.694 667.238 3730.499

WIG20

Statistic Min 0.25q Median 0.75q Max

N 1544 1975.75 2316 3382 4470

Mean 1.01 1.022 1.034 1.042 1.08

S.D. 1.745 1.928 2.005 2.121 2.42

min 0.001 0.001 0.001 0.002 0.003

0.25q 0.051 0.065 0.087 0.11 0.14

Median 0.253 0.306 0.35 0.408 0.459

0.75q 0.983 1.104 1.152 1.215 1.292

Max 19.666 28.698 32.101 36.076 70.971

LB(15) 107.421 112.962 357.678 511.005 1224.436

With this procedure, the mean of adjusted durations is close to 1. It can be 
seen that seasonal adjustment reduces overdispersion and autocorrelation.

We estimate (by the maximum likelihood estimation method) models being 
combinations of the parametrization of conditional mean functions and distribu-
tions (with a total number of 12 different models, the models are restricted with 
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lag order of P = Q = 1)2. We select a model that best fits in several ways. First, 
we restrict our attention to models that “remove” autocorrelation (we apply the 
Ljung-Box test to residuals and their squares). Denoting by f xi i i( | )F  the se-
quence of one-step-ahead density forecasts, we calculate the probability integral 
transform PIT (Diebold et. al, 1998):

	
z f u dui

xi

= ( )
−∞
∫  

and apply the Anderson-Darling and Cramer von Mises GOF test. Finally, we choose 
a model associated with the smallest BIC and “significant” parameters (details 
of estimation results are available from the authors upon request). In Tables 3 
and 4, we present the estimation results and the testing for “best” autoregressive 
conditional duration models for all companies under study. 

Restriction P = Q = 1 in all specifications is sufficient to describe clustering 
in price duration series. It follows from the values of the Ljung-Box test statistics 
for residuals (with lowest p-values of 0.09 [Thyssen] and 0.14 [JSW]), and the 
results of this test applied to squared residuals (lowest p-values: 0.06 [Allianz] 
and 0.73 [KGHM]). In most cases, LACD1 models fit the best. The LACD1 model 
implies that the concave news impact curve (relationship between εi–1 and xi) 
is asymmetric and that the difference in the impact of innovations with εi < 1 
is larger than with εi > 1 (Hautsch, 2003). In one case (BASF), the outcome is 
the opposite. Sum α + β for linear parametrization (four cases) equals at least 
0.93 and confirms the clustering of durations (this implies a slowly decreasing 
autocorrelation function). For logarithmic parametrization, clustering increases 
with parameter β. Comparing results (using quartiles for parameters β), we can 
conclude that these values are a little higher for Polish companies.

Given the results of Anderson-Darling and Cramer von Mises testing, we 
conclude that the assumed distributions are correct, with a strong rejection of 
both exponential and Weibull distribution.

In about two-thirds of the cases, the Burr distribution fits better than the 
generalized gamma distribution.

Regarding the parameters of these distributions, in only two cases (Linde and 
Kernel) is the hazard function monotone (decreasing starting at ∞). In all of the 
remaining cases, the hazard function has an inverted-U shape. Analyzing param-
eters of generalized gamma distributions, we find one case that corresponds to 
a U-shaped hazard function (PGNiG), starting at ∞, and tending to ∞ as ε tends 
to ∞ (Bauwens and Giot, 2001). In all of the remaining cases, the hazard function 
has an inverted-U shape.

	 2 	We use R environment and package ACDm for all computations (https://cran.r-project.org/web/
packages/ACDm/index.html)
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5.	 Conclusions

To conclude, logarithmic ACD models are useful tools for describing transac-
tion processes on the Frankfurt and Warsaw Stock Exchanges. 

The conducted empirical analysis of raw price duration for selected compa-
nies listed on the DAX30 and WIG20 shows that, on average, Polish companies 
exhibit weaker serial correlation yet higher overdispersion than German com-
panies. Both statistics depend on quantiles. For higher quantiles they become 
larger. This dependence is weaker in the case of adjusted price durations with 
respect to overdispersion, and is more visible in autocorrelation. In addition, 
the dependence of autocorrelation on the quantiles of raw data is much more 
pronounced in Polish than in German price durations. 

The fitted ACD model for price durations for almost all companies listed on 
both stock markets under study is LACD1. While for most German companies on 
the DAX30, the Burr distribution fits better than generalized gamma distribution, 
the latter distribution fits well in the case of Polish blue chips. Analyzing series 
by hazard function, we note a similarity of hazard functions for companies from 
both markets, the functions in general displaying a U-shaped pattern.
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