Edward Fraś*, Marcin Górny**, Hugo F. López***

SOLIDIFICATION CONDITIONS OF GRAY AND WHITE CAST IRON.
PART I – THEORETICAL BACKGROUND

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Moulding material ability to absorb heat</td>
<td>(a = \sqrt{\frac{k_m c_m}{m}})</td>
<td>J/(cm²·C·s²)</td>
</tr>
<tr>
<td>(A, A_1)</td>
<td>Parameters</td>
<td>Eqs. (17), (25)</td>
<td>s¹/²/m</td>
</tr>
<tr>
<td>(b)</td>
<td>Nucleation coefficient of eutectic cells</td>
<td>Eq. (51)</td>
<td>°C</td>
</tr>
<tr>
<td>(B, B_1)</td>
<td>Temperature parameters</td>
<td>Eqs. (20), (29)</td>
<td>–</td>
</tr>
<tr>
<td>(c)</td>
<td>Specific heat of metal</td>
<td>–</td>
<td>J/(cm³·°C)</td>
</tr>
<tr>
<td>(c_{ef})</td>
<td>Effective specific heat of metal</td>
<td>Eq. (21)</td>
<td>J/(cm³·°C)</td>
</tr>
<tr>
<td>(c_m)</td>
<td>Specific heat of moulding material</td>
<td>–</td>
<td>J/(cm³·°C)</td>
</tr>
<tr>
<td>(C_e)</td>
<td>Carbon content in graphite eutectic</td>
<td>Eq. (72)</td>
<td>wt. %</td>
</tr>
<tr>
<td>(C_γ)</td>
<td>Carbon content in austenite</td>
<td>Eq. (73)</td>
<td>wt. %</td>
</tr>
<tr>
<td>(CT)</td>
<td>Chilling tendency</td>
<td>Eqs. (61), (62)</td>
<td>s¹/²·°C¹/³</td>
</tr>
<tr>
<td>(d_{cr})</td>
<td>Critical thickness of pins</td>
<td>Eq. (63)</td>
<td>cm</td>
</tr>
<tr>
<td>(dV_n/dt)</td>
<td>Volumetric solidification rate of an eutectic cell at maximum undercooling</td>
<td>Eq. (38)</td>
<td>cm³/s</td>
</tr>
<tr>
<td>(f_c)</td>
<td>Real volume fraction of cementite eutectic</td>
<td>Eqs. (6), (10)</td>
<td>–</td>
</tr>
<tr>
<td>(f_{c*})</td>
<td>Extended volume fraction of cementite eutectic</td>
<td>Eq. (8)</td>
<td>–</td>
</tr>
</tbody>
</table>

* M.Sc., **Ph.D., Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta 23, 30-059 Kraków, Poland; edfras@agh.edu.pl; ** Author is an award holder of the NATO Science Fellowship Programme, mgorny@agh.edu.pl
*** Prof., Department of Materials Engineering, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201, USA; blepez@uwm.edu
Real volume fraction of graphite eutectic

Austenite volume fraction

Surface area of the casting

Mass fraction of austenite

Heat conductivity of the mould material

Size of substrates for nucleation of graphite

Mean size of sites (substrates) for nucleation of graphite

Latent heat of austenite

Latent heat of graphite eutectic

Casting modulus

Critical casting modulus

Wedge size coefficient

Volumetric density of graphite eutectic cells

Volumetric density of cementite eutectic grain

Density of substrates for nucleation of eutectic cells

Cooling coefficient

Accumulated heat flux in casting

Heat flux extracted from casting into mould casting

Heat flux generated during solidification

Metal cooling rate

Graphite eutectic cell radius

Cementite eutectic cell radius

Graphite eutectic cell radius at maximum undercooling

Critical thickness of plates

Time

Time at the onset of austenite solidification

Time at the maximum undercooling

Time at the onset of graphite eutectic solidification

Temperature

Temperature of the formation of cementite eutectic

Initial temperature of metal in mould cavity

Liquidus temperature at the onset of austenite solidification

Liquidus temperature of austenite when melt composition is equal to the maximum content of carbon in austenite
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_m</td>
<td>Temperature at maximum undercooling of graphite eutectic</td>
<td>°C</td>
</tr>
<tr>
<td>T_{mol}</td>
<td>Metastable equilibrium temperature for the cementite eutectic crystallization</td>
<td>°C</td>
</tr>
<tr>
<td>T_s</td>
<td>Stable equilibrium temperature of the graphite eutectic crystallization</td>
<td>°C</td>
</tr>
<tr>
<td>T_w</td>
<td>Formation temperature only of cementite eutectic</td>
<td>°C</td>
</tr>
<tr>
<td>u_c</td>
<td>Growth rate of cementite eutectic</td>
<td>cm/s</td>
</tr>
<tr>
<td>u_g</td>
<td>Growth rate of graphite eutectic</td>
<td>cm/s</td>
</tr>
<tr>
<td>V</td>
<td>Volume of eutectic cells</td>
<td>cm³</td>
</tr>
<tr>
<td>V_m</td>
<td>Volume of a graphite eutectic cell at maximum undercooling</td>
<td>cm³</td>
</tr>
<tr>
<td>w</td>
<td>Wedge value</td>
<td>cm</td>
</tr>
<tr>
<td>α_d</td>
<td>Thermal diffusivity of mould material</td>
<td>cm²/s</td>
</tr>
<tr>
<td>β</td>
<td>Wedge angle</td>
<td>°</td>
</tr>
<tr>
<td>ϕ</td>
<td>Heat coefficient of metal</td>
<td>J/(cm³·°C)</td>
</tr>
<tr>
<td>μ_c</td>
<td>Growth coefficient of cementite eutectic</td>
<td>cm/(s·°C²)</td>
</tr>
<tr>
<td>μ_g</td>
<td>Growth coefficient of graphite eutectic</td>
<td>cm/(s·°C²)</td>
</tr>
<tr>
<td>ρ_m</td>
<td>Density of melt</td>
<td>g/cm³</td>
</tr>
<tr>
<td>ρ_r</td>
<td>Density of austenite</td>
<td>g/cm³</td>
</tr>
<tr>
<td>σ</td>
<td>Interfacial energy between the nucleus and melt</td>
<td>J/cm²</td>
</tr>
<tr>
<td>θ</td>
<td>Wetting angle between substrate and nuclei of graphite</td>
<td>°</td>
</tr>
<tr>
<td>ΔH</td>
<td>Enthalpy of solidification</td>
<td>J/cm³</td>
</tr>
<tr>
<td>ΔT_c</td>
<td>Undercooling degree of cementite eutectic</td>
<td>°C</td>
</tr>
<tr>
<td>ΔT_g</td>
<td>Undercooling degree of graphite eutectic</td>
<td>°C</td>
</tr>
<tr>
<td>ΔT_{sc}</td>
<td>Temperature range between T_s and T_e</td>
<td>°C</td>
</tr>
<tr>
<td>ΔT_m</td>
<td>Maximum undercooling of graphite eutectic</td>
<td>°C</td>
</tr>
<tr>
<td>ω</td>
<td>Frequency</td>
<td>1/s</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The transition from gray to white cast iron arises from the nucleation and growth competition between the stable graphite (gray) and metastable cementite (white) eutectics. In the literature [1–6] the transition from graphite to cementite eutectic during solidification is also related to the so called chill of cast iron. Chill testing of cast iron is commonly measured using the ASTM Designation A 367-55T (see Fig. 1b and Fig. 7).

By these means it is possible to identify three regions in a chill specimen (see Fig. 1b):

1) gray (graphite eutectic),
2) mottled (mixed structure of graphite),
3) cementite eutectic) and white (cementite eutectic).

The regions containing motled or white structures are also known as the chill for castings. In general, the greater is the susceptibility for the transition from gray to white cast iron during solidification, the greater is the chill developed in cast iron.

It is well known [1–6] that the chilling tendency (CT) of cast iron determines their subsequent performance in diverse applications. In particular, cast irons possessing a high CT tend to develop zones of white or mottled iron. Considering that these regions can be extremely hard, their machinability can be severely impaired. Alternatively, if white iron is the desired structure a relatively small CT will favour the formation of gray iron. This in turn leads to low hardness and poor wear properties in the as-cast components. Hence, considerable efforts have been made in correlating the inoculation practice, iron composition, pouring temperature, etc. with the CT of cast iron [1–6].

Thus far, the mechanisms responsible for the chilling tendency of cast iron have not been clearly disclosed, with only a few attempts aimed at elucidating these mechanisms.

Fig. 1. Structural transitions in cast iron: a) temperature as a function of growth rate for graphite u_g and cementite u_c eutectics; b) structure of cast iron in wedge shaped castings; c) fraction of graphite f_g and cementite f_c eutectics; d) schematic representation of the cooling curves for the solidification of gray ($T_g \leq T \leq T_w$), mottled ($T_w \leq T \leq T_m$), and white ($T \leq T_w$) cast iron.
In addition, various numerical models have been proposed [9–11] to predict whether a given casting or part of it will solidify according to the stable or metastable Fe-C system. However, their application is tedium due to extensive numerical calculations. Accordingly, in this work a simple analytical model is proposed to explain the mechanism responsible for the chilling tendency of cast iron containing pro-eutectic austenite. The proposed model does not take into account the segregation of alloying elements and in consequence the development of so called inverse chill.

The growth rates for graphite eutectic u_g and cementite eutectic u_c can be related to the degrees of undercooling through Eqs. (1) and (2) according to theoretical treatments on eutectic growth [12–14]:

$$u_g = \mu_g \Delta T_g^2$$ \hspace{1cm} (1)

$$u_c = \mu_c \Delta T_c^2$$ \hspace{1cm} (2)

where:

$$\Delta T_g = T_s - T$$ \hspace{1cm} (3)

$$\Delta T_c = T_{mst} - T$$ \hspace{1cm} (4)

in Eqs. (1) through (4) ΔT_g is the undercooling for graphite eutectic and ΔT_c is the undercooling for cementite eutectic, and μ_g and μ_c are their respective growth coefficients, T_s, T_{mst} are the stable and metastable equilibrium temperatures of the graphite and cementite eutectics, respectively.

It is widely accepted [8, 13, 15] that the nucleation of cementite eutectic is rather difficult requiring a certain degree of undercooling to temperatures $T_c < T_{mst}$ (see Fig. 1). Below T_c both graphite and cementite eutectic grow simultaneously interfering with each other in giving rise to the final structure. From the works of Kolmogorov [16] and Kasuya [17], which take into account the impingement of eutectic cells, the real volume fractions of graphite f_g and cementite f_c eutectics can be described by:

$$f_g = \frac{f_{ge}}{f_{ge} + f_{ce}} \left[1 - \exp \left[-\left(f_{ge} + f_{ce}\right)\right]\right]$$ \hspace{1cm} (5)

$$f_c = \frac{f_{ce}}{f_{ge} + f_{ce}} \left[1 - \exp \left[-\left(f_{ge} + f_{ce}\right)\right]\right]$$ \hspace{1cm} (6)

where: f_{ge}, f_{ce} are the extended volume fractions of graphite and cementite eutectics, which in turn can be given by:
\[f_{ge} = \frac{4}{3} \pi N_g R_g^3 = \frac{4}{3} \pi N_g \left(u_g t \right)^3 = \frac{4}{3} \pi N_g \left[\mu_g \left(T_g - T \right)^2 t \right]^3 \] (7)

\[f_{ce} = \frac{4}{3} \pi N_c R_c^3 = \frac{4}{3} \pi N_c \left(u_c t \right)^3 = \frac{4}{3} \pi N_c \left[\mu_c \left(T_{mst} - T \right)^2 t \right]^3 \] (8)

Equations (7) and (8) assume spherical geometry, where \(R_g, R_c \) are the mean radii of either graphite or cementite cells and \(N_g, N_c \) are the numbers of graphite and cementite eutectic cells per volume or cell densities, and \(t \) is the time. Equations (5) and (6) are only valid for \(f_{ge}/f_{ce} = \text{constant} \). After solidification, \(f_g + f_c = 1 \), this in turn indicates that the exponential components in equations (5) and (6) tend to zero. Thus, equations (5) and (6) can be rewritten as:

\[f_g = \frac{f_{ge}}{f_{ge} + f_{ce}} \] (9)

\[f_c = \frac{f_{ce}}{f_{ge} + f_{ce}} \] (10)

In order to estimate the fractions of graphite and cementite eutectics, it is assumed as a first approximation that isothermal conditions prevail for the eutectic transformation (see Fig. 1d), and that the nucleation of eutectic cells is instantaneous, with a constant density ratio \(N_c/N_g = \text{const.} \)

Considering the above conditions, Eqs. (7)+(10) can then be solved using the data from Table 1, and by approximating \(T_{mst} \) to \(T_c \) in Eq. (8). The calculated fractions, \(f_g \) and \(f_c \) are schematically shown in Figure 1c. In particular, Figure 1a shows that as the solidification temperature falls below a critical value, \(T_{cr} \) the growth rate of cementite eutectic \(u_c \) increasingly exceeds the one corresponding to graphite eutectic \(u_g \). Moreover, in the temperature range \(\Delta T_{sc} = T_c - T_e \) (where \(T_c \) is the formation temperature for cementite eutectic), graphite eutectic is the only growing structure (gray cast iron). Between \(T_e \) and \(T_{cr} \) (Fig. 1a) both graphite and cementite eutectics are simultaneously developing. However, under these conditions the growth rate of graphite eutectic is dominant. Below \(T_{cr} \), both structures can be still formed, but the growth rate of cementite eutectic is exceedingly large becoming the dominant structure. Below \(T_{w} \) (see Fig. 1a) cementite eutectic is the only constituent formed (\(f_c = 1 \) for white cast iron, Fig. 1c), while between \(T_e \) and \(T_{w} \) mottled cast iron is obtained. Accordingly, \(T_e \) can be considered as the transition temperature for the solidification of cementite eutectic from graphite eutectic, or the chill formation temperature. This temperature\(^1\) is influenced by the cast iron chemistry, and it can be determined from the equation given in Table 1.

\(^1\) Influence of cooling rate on temperature \(T_c \) can be neglected; change cooling rate from 1.8 to 45.0°C/s gives changes only \(T_e = 2^\circ C \).
The changes associated with heat extraction as they relate to the relative energies of solid and liquid phases can be described in two ways:

1) a reduction in the enthalpy of the liquid or solid due to cooling given by $\Delta H = \int c dT$, where c is the heat capacity of the liquid or solid,

2) a release of the heat of solidification through the enthalpy contribution ΔH, also known as the latent heat L_s; the heat transfer process can then be described by the heat balance equation

$$q_m = q_s - q_a \quad (11)$$
During the solidification process, the heat transfer events can be rather complex and analytical solutions are not always available, so numerical methods have to be employed. Nevertheless, in sand castings, it can be assumed as the first approximation that heat transfer is mainly determined by the properties of the sand mold [29]. Figure 2 shows the ideal temperature profile expected for sand mold-metal systems. Accordingly, the heat flux density going into the mold can be given by [29]

\[q_m = \frac{T k_m}{\sqrt{\pi} \alpha_d t} \]

(12)

Taking into account the thermal diffusivity (\(\alpha_d = k_m / c_m \)) and the surface area (\(F_c \)) of the casting, Eq. (12) can be rearranged as

\[q_m = \frac{a F_c T}{\sqrt{\pi} t} \]

(13)

where \(a = \sqrt{k_m c_m} \).

Moreover, it is assumed that the temperature distribution along the metal is uniform (Fig. 2). Hence, the accumulated heat flux in the metal can be given by

\[q_a = \frac{c V_e dT}{dt} \]

(14)

The heat flux \(q_s \) generated during solidification depends on the specific solidification mechanisms and in general it can be described by

\[q_s = L_e N_g V_c \frac{dV}{dt} \]

(15)

where \(dV/dt \) is the volumetric solidification rate of eutectic cells (cm\(^3\)/s).

During the analysis of cooling and solidification of cast iron, three stages can be identified (Fig. 3).

In the first stage, the excess heat of molten metal is dissipated and the temperature falls from the initial temperature \(T_i \) to the liquidus temperature \(T_l \) in the \(0 \leq t \leq t_l \) time interval.
The second stage is characterized by the solidification of the pre-eutectic austenite in the $T_l \leq T \leq T_s$ temperature range and in the $t_l \leq t \leq t_s$ time interval, where t_s is the time at the onset of graphite eutectic solidification.

Finally, the third stage can be attributed to the early stages of solidification of graphite eutectic, which are found to occur between the temperature T_s and the minimum temperature T_m in the $t_s \leq t \leq t_m$ time interval.

First Stage

During this stage there is no heat generation due to solidification ($q_s = 0$). Accordingly, substitution of equations (13) and (14) into (11), followed by integration for the initial conditions $t = 0$ at $T = T_i$ yields

$$t = \left(AM \ln \frac{T_i}{T} \right)^2$$

(16)

where:

$$A = \frac{c \sqrt{\pi}}{2a}$$

(17)

$$M = \frac{V_c}{T_c}$$

(18)

When T equals T_i (temperature at the onset of austenite crystallization), the time $t = t_l$ elapsed during the first cooling stage is given by

$$t_l = (ABM)^2$$

(19)

where

$$B = \ln \frac{T_i}{T_l}$$

(20)
Second Stage

The second stage includes the cooling and solidification of pre-eutectic austenite from the liquidus temperature T_l to the beginning of eutectic solidification T_s. It is assumed that the heat generated during the solidification of pre-eutectic phases is uniformly released and the so-called effective specific heat can be used [30].

$$c_{ef} = c + \frac{L_f}{T_l - T_s} \quad (21)$$

At this stage, the temperature of the casting can be estimated from Eqs. (13) and (14) by using c_{ef} instead of c in equation (14)) and then integrating with the limiting conditions $T = T_l$, at $t = t_l$.

This yields

$$t = \left(A_t M \ln \frac{T_l}{T} + \sqrt{T_l} \right)^2 \quad (22)$$

From this expression, the temperature of the metal in the second stage can be described by

$$T = T_l \exp \left(\frac{\sqrt{T_l} - \sqrt{T}}{A_t M} \right) \quad (23)$$

Differentiation of the above equation yields an expression for the cooling rate of cast iron

$$\frac{dT}{dt} = -\frac{T_l}{2A_t M \sqrt{T}} \exp \left(-\frac{\sqrt{T_l} - \sqrt{T}}{A_t M} \right) \quad (24)$$

where

$$A_t = \frac{c_{ef} \sqrt{\pi}}{2a} \quad (25)$$

From Eq. (22) after taking into account Eq. (19), the time ($t = t_s, T = T_s$) at the end of the second stage can be found as

$$t_s = \left(\frac{M \sqrt{\pi}}{2a} \phi \right)^2 \quad (26)$$
The cooling rate at the end of the second stage (or the beginning of third stage) can be established from Eq. (24) for the time \(t = t_s \). Hence, taking into account Eqs. (19) and (26) the cooling rate can be given by\(^2\)

\[
\frac{dT}{dt} = Q = \frac{2 T_s a^2}{\pi \phi c_{ef} M^2}
\]

(27)

where

\[
\phi = c_B + c_{ef} B_1
\]

(28)

and

\[
B_1 = \ln \frac{T_i}{T_s}
\]

(29)

Third Stage

During this stage, the portion of the cooling curve (Fig. 2) where the transformation to graphite eutectic occurs can be described in terms of the degree of undercooling \(\Delta T_g \) as

\[
T = T_s - \Delta T_g
\]

(30)

Although, the degree of undercooling is not explicitly known in the \(t_s \geq t \geq t_m \) time range, it can be described by\(^2\):

\[
\Delta T_g = T_s - T = \Delta T_m \sin[\omega(t - t_s)] \quad \text{for} \quad 0 \leq [\omega(t - t_s)] \leq \pi/2
\]

(31)

where \(\Delta T_m = T_s - T_m \) (see Fig. 3) is the maximum degree of undercooling, and the frequency \(\omega \) is given by

\[
\omega = \frac{\pi}{2(t_m - t_s)}
\]

(32)

Therefore, the cooling rate in the third stage can be found by substitution of Eq. (31) into Eq. (30) followed by differentiation with time. This yields\(^2\)

\[
\frac{dT}{dt} = \Delta T_m \omega \cos[\omega(t - t_s)]
\]

(33)

\(^2\) It is assumed that cooling rate has a positive sign.
It can be assumed that at the onset of eutectic solidification \((t = t_s)\), the cooling rate in stages two and three is the same. Hence, equating Eqs. (27) and (33) yields

\[
\frac{dT}{dt} = \omega \Delta T_m
\]

(34)

which after taking into account Eq. (32) can be rewritten as

\[
\frac{dT}{dt} = \frac{\pi \Delta T_m}{2(t_m - t_s)}
\]

(35)

Moreover, using Eqs. (26), (27) and (35), the time for maximum undercooling can be determined from

\[
\pi \frac{\Delta T_m}{T_m} = \frac{\pi \phi M^2 \left(\phi T_s + \pi c_e \Delta T_m\right)}{4T_s a^2}
\]

(36)

In addition, at the time \(t_m\), the cooling curve exhibits a minimum, which in turn means that the heat accumulation flux \(q_a\) is zero. Considering that the transformed volume of graphite eutectic is \(V_c (1 - f)\), and Eqs. (13), (15), as well as the condition \(q_a = 0\) at \(t = t_m\), Eq. (11) becomes

\[
\frac{a T F_c}{\sqrt{\pi t_m}} = L_c N_m V_c \left(1 - f_g\right) \frac{dV_m}{dt}
\]

(37)

also, assuming that in the early stages of growth the eutectic cells are spherical, the volumetric rate of solidification can be described by

\[
\frac{dV_m}{dt} = 4\pi R_m^2 \frac{dR_m}{dt}
\]

(38)

where \(R_m\) is the radius of eutectic cells at the maximum degree of undercooling \(\Delta T_m\).

Furthermore, the growth rate of eutectic cells is in general described by Eq. (1) as

\[
u_g = \frac{dR_g}{dt} = \mu_g \Delta T_g^2
\]

(39)

and for \(\Delta T_g = \Delta T_m\)

\[
u_m = \frac{dR_m}{dt} = \mu_m \Delta T_m^2
\]

(40)
Substituting Eq. (31) into (39) followed by integration for the initial condition \(R = 0 \) for \(t = t_s \) yields

\[
R_g = \frac{\mu_s \Delta T_m^2}{4\omega} \left[2\omega (t - t_s) - \sin \left[2\omega (t - t_s) \right] \right]
\]

(41)

At the maximum degree of undercooling \((t = t_m)\) and taking into account that \(t_m - t_s = \pi/(2\omega) \) from Eq. (32), it is obtained

\[
R_g = R_m = \frac{\mu_s \pi \Delta T_m^2}{4\omega}
\]

(42)

During the eutectic transformation the temperature does not exhibit significant changes and \(T = T_s \) in Eq. (37). Thus, Eqs. (36) to (38) and Eqs. (40), (42) can be used to arrive at the following expression for the casting modulus

\[
M^2 = \frac{8\omega^2 a^2 T_s^{3/2}}{\pi^4 N_g l \phi^{1/2} \mu_s^3 \Delta T_m^6 \left(1 - f_\gamma \right) \left(\pi c_{ef} \Delta T_m + \varphi T_s \right)^{1/2}}
\]

(43)

It can be assumed that the cooling rate at the end of the second stage is the same as the cooling rate at the beginning of the third stage. Accordingly, a comparison between Eqs. (27) and (34) yields

\[
\omega = \frac{2a^2 T_s}{\pi \varphi c_{ef} \Delta T_m M^2}
\]

(44)

Substituting Eq. (44) into (43) yields

\[
M = \frac{2^{5/6} a \pi}{\pi} \left[\frac{T_s^{7/2}}{N_g \left(1 - f_\gamma \right) \mu_s^3 \varphi^{5/2} \Delta T_m^{6/2} \left(\varphi T_s + \pi c_{ef} \Delta T_m \right)^{1/2}} \right]^{1/6}
\]

(45)

where

\[
\Delta T_m = T_s - T_m
\]

(46)

In the above expression, the \((\pi c_{ef} \Delta T_m)\) term in the denominator does not have a significant effect on the equation predictions and can be neglected. Thus, Eq. (45) becomes

\[
M = \frac{1}{\left[N_g \left(1 - f_\gamma \right) \mu_s^3 \Delta T_m^8 \right]}^{1/6}
\]

(47)
where \(p = \frac{2^{5/6} a T_s^{1/2}}{\pi \theta^{1/2} c_{ef}^{1/3} \mu_e^{1/6}} \) \((48) \)

Also, after taking into account Eq. (27)

\[p = MQ^{1/2} \frac{\mu_e^{1/3}}{\pi^{1/2} T_e^{1/6}} \] \((49) \)

3. **CHILLING TENDENCY AND CHILL OF CAST IRON**

During solidification nucleation of cells is heterogeneous in nature. A simple model for heterogeneous nucleation has already been proposed \[18\]. Because every nucleus of graphite give origin to one single graphite eutectic cell, the density of graphite eutectic cells, \(N_g \) can be described by \[19\]

\[N_g = N_s \exp \left(\frac{b}{\Delta T_m} \right) \] \((50) \)

where \(b = \frac{4 T_s \sigma \sin \theta}{L_e \langle l \rangle} \) \((51) \)

In Eq. (50), \(N_s \) is the density of substrates available for the nucleation of graphite, \(\sigma \) is the interfacial energy between the graphite nucleus and the melt, \(\theta \) is the wetting angle between substrate and graphite nucleus, \(L_e \) is the latent heat of graphite eutectic, \(\langle l \rangle \) is the mean nucleation site size.

Combining equations (47) and (50) leads to the expression

\[M = p \left[\frac{1}{N_s \left(1 - f_T \right) \mu_g^{3/4} \Delta T_m^{3/4}} \exp \left(\frac{b}{\Delta T_m} \right) \right]^{1/6} \] \((52) \)

or

\[\Delta T_m = T_s - T_m = \frac{b}{8 \text{ProductLog}[y]} \] \((53) \)

where

\[y = \frac{b M^{3/4} \left[N_s \left(1 - f_T \right) \mu_g^{3} \right]^{1/4}}{8 \rho^{3/4}} \] \((54) \)
The ProductLog\[y\] = x is the Lambert function\(^3\), also is called the omega function, which is used to solve equation of the type of \(y = xe^x\) (see Fig. 4). ProductLog\[y\] is non-elementary function which is known as the Lambert – function and also is called the omega function. Its exact values can be easily calculated using the instruction of the ProductLog\[y\] in the Mathematica\(^\text{TM}\) programme. In our analysis typical values of variable \(y\) are situated within ranges of 0.03–500, and in case if we cannot use Mathematica programme its value can be calculated by means of elementary mathematics with an accuracy higher than 99% using the following equations:

- for \(0.03 \leq y \leq 1\) range

\[
x = \frac{0.232541y}{-0.03066y^2 + 0.204476y + 0.235837}
\]

- for \(1 \leq y \leq 5\) range

\[
x = \log(0.0855561)y^{0.224539} + 3.03131y^{0.294488}
\]

- for \(5 \leq y \leq 20\) range

\[
x = \log(0.06014)y^{0.00796} + 3.29565y^{0.135821}
\]

- for \(20 \leq y \leq 50\) range

\[
x = \log(0.038806)y^{-0.04997} + 3.59672y^{0.110107}
\]

- for \(20 \leq y \leq 500\)

\[
x = \log(0.059427)y^{-0.34418} + 2.03579y^{0.144835}
\]

\(^3\) See http://mathworld.wolfram.com/LambertW-function.html.
Equation (53) is graphically plotted in Figure 5. From this figure, it is apparent that the minimum temperature for the solidification of graphite eutectic T_m depends on M, and for values above M_{cr}, it falls in between T_s and T_c. Hence, the critical ΔT_m value can be given by $T_s - T_c = \Delta T_{sc}$. Since at temperatures below T_c, the solidification of cementite eutectic becomes dominant, the critical casting modulus M_{cr} under which it is possible to develop a chill can be obtained from Eq. (52) as

$$M_{cr} = p \times CT$$

where CT is the chilling tendency of cast iron

$$CT = \left[\frac{1}{N_s (1 - f_T) \mu_s^3 \Delta T_{sc}^{3/2}} \exp\left(\frac{b}{\Delta T_{sc}} \right) \right]^{1/6}$$

Similarly, from Eq. (47) the expression for the chilling tendency can be simplified as

$$CT = \left[\frac{1}{N_t (1 - f_T) \mu_s^3 \Delta T_{sc}^{3/2}} \right]^{1/6}$$

where N_t is the cell count at $T = T_c$.
Typical values for the chilling tendency range from $0.4 \, s^{1/2}/C^{1/3}$ (inoculated cast iron) to $1.5 \, s^{1/2}/C^{1/3}$ (non-inoculated cast iron). Figure 6 shows the influence of the chilling tendency of cast iron on the critical casting modulus. Notice that as the chilling tendency increases, M_{cr} also increases. In establishing the chilling tendency, it is common to implement a set of chilling tests on castings, which consist of cylindrical pins of various diameters d. Alternatively, plates with different wall thickness s are also employed.

For these geometries the casting modulus yield:

- for pins of diameter d and a length that easily exceeds d, $M = V_c / F_c = (\pi d^2 / 4) / (\pi d)$; hence, the critical pin diameter below which the chill is expected to form is given by

$$d_{cr} = 4M_{cr} \quad (63)$$

- for plates with wall thicknesses s and lengths and widths which easily exceed s, $M = V_c / F_c = (sF_c) / (2F_c)$, and the critical wall thickness below which the chill forms is given by

$$s_{cr} = 2M_{cr} \quad (64)$$

In the foundry practice an assessment of the chilling tendency of cast iron is based on the chill test methods established by the ASTM A367-55T standard. In this case, wedge geometries are employed (Fig. 7). As a first approximation, assuming that the wedge length is rather large, the critical casting modulus M_{cr} can be estimated by

$$M_{cr} = \frac{F_{ch}}{m} = \frac{1}{2} \frac{h}{2} \frac{w}{\cos(\beta/2)} \quad (65)$$

and the wedge value is given by

$$w = \frac{4M_{cr}}{\cos(\beta/2)} \quad (66)$$

In the above expressions, β is the wedge angle, F_{ch} is the half surface area chill triangle, h and m are chill height and length (Fig. 7). The wedge is not a planar body such as the plate.
Accordingly, the wedge thinner parts heat up from the thicker sections, and the wedge value for wedges of constant chilling tendency depend on their sizes (wedge number according to the ASTM A 367-55T standard). The influence of the wedge size on the wedge value can be found by combining Eqs. (60) and (66). Accordingly, the wedge width of the chill can be expressed as a function of the wedge size coefficient \(n \) as

\[
w = \frac{4np}{\cos \left(\frac{\beta}{2} \right)} \text{ CT} \tag{67}
\]

From the theoretical perspective, the role of the various factors involved on the chilling tendency can be disclosed based on Eq. (62) as:

- The graphite eutectic growth coefficient \(\mu_C \) depends on the cast iron chemistry. However, with the exception of silicon, little is known about the influence of other elements on \(\mu_C \). Reported values for \(\mu_C \) are given for Fe-C, Fe-C-0.1\% Si [8], and Fe-C-2\% Si [26] systems. In general, Si lowers the eutectic growth coefficient (see Fig. 8), and the \(\mu_C \) dependency on Si can be described by

\[
\mu_C = 10^{-6} \left(9.2 - 6.3 \text{ Si}^{0.25} \right) \text{ cm/(s \cdot ⁰C}^2 \right) \tag{68}
\]

so as Si content increases the chilling tendency of cast iron (see Eqs. (18), (19)) also increases.

- The temperature range \(\Delta T_{sc} = T_s - T_c \) also depends on the melt chemistry as (see Tab. 1)

\[
\Delta T_{sc} = 23.34 - 4.07 \text{ C} + 18.80 \text{ Si} + 36.29 \text{ P} \quad \text{⁰C} \tag{69}
\]

where C, Si, and P are the carbon, silicon and phosphorus contents in the cast iron in wt. \% From the above expression, it can be observed that silicon and phosphorus expand the \(\Delta T_{sc} \) range, while C has the opposite effect. Yet, the influence of carbon is relatively small as observed in Figure 9. In turn, this suggests that as Si and P contents increase, the \(\Delta T_{sc} \) range also increases, and from Eqs. (61), (62) the chilling tendency for cast iron decreases.
The effect of the volumetric fraction of austenite f_γ can be described by

$$f_\gamma = \frac{\rho_m g_\gamma}{\rho_\gamma + g_\gamma (\rho_m - \rho_\gamma)} \quad (70)$$

where:

$$g_\gamma = \frac{C_e - C}{C_e - C_\gamma} \quad (71)$$

$C_e = 4.26 - 0.30 \text{ Si} - 0.36 \text{ P} \quad (72)$$

$C_\gamma = 2.08 - 0.11 \text{ Si} - 0.35 \text{ P} \quad (73)$

- Nucleation effects. Depending on the graphite nucleation tendency, in cast iron at a given cooling rate (for example at a given wall thickness) various densities of graphite eutectic cells can be developed. The nucleation tendency for graphite cells is characterized by N_i and the b coefficient, where b is a function of the surface energy, wetting angle and substrate mean size, as shown in Eq. (51). These coefficients generally depend on the melt chemistry, but a detailed account of the influence of alloying elements on these coefficients is not available. Estimations made for the influence of silicon on the chilling tendency (Eqs. (61), (68)−(73)), assuming that b and N_i are constant are graphically illustrated in Figure 11. In general, notice from this figure that Si lowers the chilling tendency of cast iron in agreement with the foundry practice.

Other effects such as the mean graphite nucleation sites sizes $\langle l \rangle$ and total number of sites N_i (Eqs. (50) and (51)), continually change during the bath holding times leading
to mutual interactions. Among the potential interactions are chemical reactions (which also depend on furnace slag and atmosphere), coagulation, coalescence, flotation, etc. Consequently, \(I \) and \(N_r \), both tend to decrease with an increase in the bath holding times (Figs. 12a and 12c) [18]. In addition, increasing bath holding times lead to an increase in the \(b \) coefficient as shown in Figure 12b, and to an increase in the chilling tendency (Eq. (61) and Fig. 12d). Moreover, it is well known that the inoculation treatment increases the cell density \(N \) by up to one order of magnitude when compared with the base cast iron, thus decreasing the chilling tendency (Eq. (62)).

\[\text{Fig. 12. Influence of bath holding time on: a) mean substrate size; b) nucleation coefficient; b, c) mean substrate density (N); d) chilling tendency (C = 3.16%, Si = 2.08%, P = 0.091 %, Ti = 1250°C)} \]

From the aforementioned arguments, the chilling tendency CT and in consequence the wedge value of cast iron strongly depends on:
- chemical composition of the casting (through \(f_p \), \(\mu_e \), \(\Delta T_{sc} \), \(N_r \), and \(b \)),
- inoculation practice, first and foremost (through \(N_i \) and \(b \)),
- superheating temperature and holding time of bath (through \(N_i \) and \(b \)),
- furnace slag end atmosphere (through \(N_i \) and \(b \)).

A schematic representation of the influence of the technological factors, which affect the chilling tendency and chill of cast iron are given in Figure 13. It is worth mentioning that the theoretical predictions of this work are in good agreement with the available data published in the literature. In particular, it is well known that the chill of cast iron decreases...
with increasing eutectic cell density [20]. Also, the density of graphite eutectic cells \(N \) is strongly affected by the melt chemistry [20, 21], superheating bath temperature and time [2] and furnace slag and atmosphere [22]. In practice a drastic increase in the density of cells is usually attained by the use of inoculants. In this case, the resultant cell density depends on the type of inoculant [23–25], quantity [20, 22, 24], granulation [20], inoculation temperature [20], and bath holding times after inoculation [19, 20].

![Fig. 13. Schematic representation of the effect of various technological factors on the chilling tendency of cast iron](image)

4. CONCLUSIONS

In this work, a simple theoretical treatment is presented for the transition from gray to white cast irons. The proposed analysis is based on a heat balance during solidification. The analysis incorporates the nucleation of eutectic cells, as well as growth effects associated with the eutectic and pre-eutectic phases. From the proposed theory, an expression is derived to relate the chilling tendency of cast iron with the casting modulus. This in turn, enables the determination of minimum wall thickness for chilled castings, or wedge values in wedge shaped castings. Finally, the present work gives a description of the effects of various factors of technological importance on the chill and chilling tendency of cast iron.

This work was supported by Statutory Grant No. 11.11.170.250 and made in Department of Cast Iron AGH-UST, Cracow, Poland.
REFERENCES

34

Received
January 2005