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Abstract

The paper presents a model of diffusion in a single phase with chemical potential gradient as the driving force of the process. 
Fick’s laws are strictly empirical and the assumption that the concentration gradients are the driving forces of diffusion is far from 
precise. Instead, the gradient of chemical potential μi of component i is the real driving force. The matter of governing equations 
of models that incorporate this approach will be raised and discussed in this article. One of more important features is the ability 
to acquire results where diffusion against the concentration gradient may occur. The presented model uses the Finite Difference 
Method (FDM) and employs the CALPHAD method to obtain chemical potentials. The calculations of chemical potential are carried 
out for instant conditions – temperature and composition – in the entire task domain by Thermo-Calc via a TQ-Interface. Then the 
heterogeneity of chemical potentials is translated into mass transfer for each individual element. Calculations of two modelling 
tasks for one-dimension diffusion field were carried out. First: isothermal conditions with linear initial composition distribution 
and second: constant temperature gradient with uniform chemical composition in the specimen. Results for two binary solid 
solutions: Fe-C and Fe-Si, in the FCC phase for the given tasks will be presented. Modelling allows us to estimate the time needed 
to reach a desired state in a particular equilibrium or quasi-equilibrium state. It also shows the path of the composition change 
during the process. This can be used to determine whether the system at some point is getting close to the formation of another 
phase due to significant deviation from its initial conditions.
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1. INTRODUCTION

Diffusion is one of the phenomena – alongside electrical con-
duction with Ohm’s law, fluid movement with Poiseuille’s 
law, heat flow with Fourier’s law – that follows the general 
relation of transport that is measured by flux [1, 2]:
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Although Fick’s first law corresponds to Equation (1) it is 
purely empirical [3, 4] and has limitations in terms of its use. 
From the fundamental point of view, the assumption that the 
concentration gradients are the driving forces of diffusion in 
a multicomponent system is not correct. Instead, the gradient 
of chemical potential μi of component i determines the net 
flow of that element [5]:
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Because determining chemical potential was perhaps not 
the most convenient way of dealing with the diffusion prob-
lem, it was better to express flux entirely in terms of concen-
tration. Since 0 lni i iRT cµ = −µ + , rewriting Equation (2) for 
uniform temperature gives:
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and employing the Nernst–Einstein relation [4]:

i iD B RT= (4)

gives Fick’s first law:
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Analysing the path of the random walk of the particle 
allows to calculate mean square displacement and with it, 
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using the Einstein–Smoluchowski Equation [6] – diffusion 
coefficient [7]:

2 2x Dt= (6)

Fick’s first law, however, applies to diffusion events where 
the rate of transport is steady state; that is the rate of flux is 
constant [8]. For that reason, the phenomenological relation 
given by Equation (2) was used in the model.

2. FDM MASS TRANSPORT EQUATIONS

Below is the derivation of general formula for mass transport 
for three-dimension calculations. Its special case for one-di-
mension is incorporated into the model presented in this 
paper. 

According to the divergence theorem [9], for any closed 
space with volume V and external surface S total mass of an 
element mi can be calculated by integration over volume of 
this body:

x y zi i
V

m m d d d= ∫∫∫ (7)

and the rate of change of that mass by integrating over its 
surface:

i
i
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where the operator “ ∙ ” stands for scalar product. Inputting 
Equation (2) we get:
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Numerical approximation of Equation (9) can be obtained 
by replacing differentials with finite differences. In differ-
ential calculations, using control volumes method, for finite 
cuboidal control volume with dimensions Δx, Δy and Δz, this 
equation converts to (element’s index has been dropped):
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where index 0 refers to values of concentration, chemical 
potential or mobility for the considered cell whereas indexes 
x, y, z along with signs ± determines values of those quantities 
for neighbouring cells along given axis and in specified direc-
tion. Figure 1 presents the mutual location of the origin cell 
and its neighbours.

For cubic grid with edge Δx Equation (10) can be simplified as:
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With the assumption that mobility B is constant, after rear-
ranging we get:
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By shortening the expression we get the following form of 
the difference equation for the change of mass of an element 
in time:
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In the presented model we track the mass of each ele-
ment in every cell therefore concentration c is a known val-
ue. Mobility B is assumed to be constant for each element. 
It was calculated using Equation (4) using diffusion coeffi-
cients given later. Δx and Δτ are respectively space and time 
grid steps. The problem of employing Equation (13) rests 
on the ability to determine the values of chemical potential 
for each element for the given conditions – composition and  
temperature.

Fig. 1. Mutual location of origin cell 0 and its neighbouring cells x±, 
y±, z±
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3. CALPHAD CALCULATIONS

The CALPHAD method, taking its name from CALculations of 
PHAse Diagrams, gives way to determining the state of a system 
by the means of calculating it. In other words, it is compu-
tational thermodynamics, as in the title of reference [10].  
The method allows, among the others, to calculate which 
phases will be stable and what composition they will have in 
the equilibrium state, what will be values of thermodynamic 
quantities for a system or a phase. One of the values that can 
be calculated in this way is chemical potential, in this case us-
ing Thermo-Calc Software – a program basing on CALPHAD 
method. Detailed information about the topic can be found 
in [10–13].

Since the presented model needs up-to-date values of µi, 
for every calculation timestep, it is not possible to make one-
time calculations using Thermo-Calc and incorporate the 
result into the model’s algorithm. There is a need for the con-
stant exchange of data between routines using Equation (13) 
in the model and the Thermo-Calc program: new, updated 
masses of elements in the cell are sent – new values of chem-
ical potentials are being received. Thermo-Calc offers three 
Software Development Kits that allows such communication, 
with the TQ-Interface used in the present work. A  broad 
description of acquiring data needed by modelling module 
can be found in a previous work by the authors [14].

Calculations of the chemical potentials used by the model 
were made using a Thermo-Calc 2019a with TQInterface and 
thermodynamic database TCFE7.

4. CALCULATION DESCRIPTION

A simulation of one-dimension diffusion field for two bina-
ry systems: Fe-C and Fe-Si, was carried out. For each system, 
two separate calculation tasks were performed:

1) isothermal conditions with linear composition distribution,
2) constant temperature gradient with uniform chemical com-

position in the specimen.

Due to the significant difference in the values of mobility of 
carbon and silicon, the total modelled length of the specimen 
was chosen individually for each system. In both cases the 
number of grid cells was equal to 100. Temperature and con-
centration were chosen to put the system within the range of 
single (FCC) phase in phase diagrams.

Diffusion coefficients, used to determine values of mobility, 
were calculated with the use of the Arrhenius Equation:

0 exp QD D
RT
− =  

 
(14)

The following values of D0 and Q were used:

•	 for DFe: D0 = 4.085 cm2 · s–1, Q = 311.1 kJ · mol–1[15],
•	 for DC:	 D0 = 0.234 cm2 · s–1, Q = 147.81 kJ · mol–1 [15],
•	 for DSi: D0 = 0.07 cm2 · s–1, Q = 243.0 kJ · mol–1 [16].

For each system temperature of task (1) was used in the 
Equation (14), which is also mean temperature of task (2).

4.1. Fe-C system

Table 1 contains values of the parameters used in the calcula-
tions. A total length of 50 mm was modelled.

Figures 2–4 present the results of the simulation for 
task (1). The composition curves, for τ > 0, in Figure 2 are 
not symmetrical with respect to the point in the middle of 
the plot (25 mm, 0.75 wt.% C). The curves close to τ = 0, e.g. 
curve b do not overlap line a. Though small, there is non-zero 
difference of carbon concentration between a and b across 
whole distance.

Table 1	  
Data used for simulation of Fe-C system

Quantity Value Unit

Δx 5E-4 [m]

DFe 7.04156E-17 [m2 · s–1]

DC 2.01838E-11 [m2 · s–1]

For task (1)

T 1000 [°C]

cC, min 0.5 [wt.%]

cC, max 1.0 [wt.%]

For task (2)

Tmin (x = 0 mm) 950 [°C]

Tmax (x = 50 mm) 1050 [°C]

cC   0.75 [wt.%]

Fig. 2. Initial concentration of carbon (a) and modelled distribution 
after: b) 5 days; c) 25 days; d) 50 days; e) 75 days; f) 100 days; Fe-C, 
task (1)
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Because on one edge cC with time increases and on the oth-
er – decreases the point, where a  crosses any composition 
curve for τ > 0, can be distinguished. Figure 3 shows the posi-
tion of this point of cross where the calculated concentration 
of carbon is equal to the initial. In early stages it is close to the 
end with cC = 1.0 wt.% and in time it asymptotically tends to 
the middle of the specimen. Figure 4 shows changes in car-
bon concentration on both edges, at x = 0, x = 50 mm as well 
as varying difference of those two, defined for element i as:

1 0 1

1 0

, , , 50 , , 50

, , 0 , , 0              

i t i t x i t x

i t x i t x

c c c

c c

τ= τ= = τ= =

τ= = τ= =

∆ = − +

− −
(15)

The difference has its maximum at τ ≈ 30 days and then 
slowly decreases as the system tends to equilibrium, where 
ΔcC, τ = ∞ = 0.

Figures 5–7 present the results for the modelling of task (2). 
Similarly to task (1), the curves in Figure 5 for τ > 0 are not 
symmetrical with respect to the point in the middle of the 
plot (25 mm, 0.75 wt.% C). It is noteworthy that task (2)  
presents a  situation where diffusion occurs with initial-
ly zero and shortly even against concentration gradient. 
A  similar uphill diffusion was observed by Darken in [17]  
for a  higher order system. Figure 6 shows the position of 
a point with equal to initial concentration of carbon. In the ear-
ly stages it is close to the end with T = 1050°C (x = 50 mm) 
and in time it asymptotically tends to the point close to the 
middle of the specimen. In case of task (2) however there 

is no certainty of final location of that point nor values of  
cC, x = 0 and cC, x = 50 for τ = ∞ as they depend on chosen tempera-
ture. Figure 7 confirms that carbon concentrations do not tend 
to a straight line symmetrical with respect to the middle point 
as the difference in carbon gain at x = 50 mm and carbon loss 
at x = 0 cells, within calculated 100 days, constantly increases.

4.2. Fe-Si system

Table 2 contains values of parameters used in calculations. 
A total length of 1 mm was modelled. The results are analog-
ical to the Fe-C system.

Fig. 5. Initial concentration of carbon (a) and modelled distribution 
after: b) 5 days; c) 25 days; d) 50 days; e) 75 days; f) 100 days; Fe-C, 
task (2)
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Fig. 6. Position of point with equal to initial concentrations of car-
bon; Fe-C, task (2)
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Fig. 7. Change of cC with respect to initial values for x = 0 (star),  
x = 50 mm (triangle) and difference of those two (circle); Fe-C, task (2)
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Fig. 3. Position of point with equal to initial concentration of carbon; 
Fe-C, task (1)
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Fig. 4. Change of cC with respect to initial values for x = 0 (star),  
x = 50 mm (triangle) and difference of those two (circle); Fe-C, task (1)
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Figures 8–10 present results of simulation for task  (1). 
Composition curves, for τ > 0, in Figure 8 are not symmet-
rical with respect to the point in the middle of the plot 
(0.5 mm, 0.80 wt.% Si). Figure 9 shows the position of the 
point with equal to initial concentrations of silicon. In the 
early stages it is close to the end with cSi  =  1.55 wt.% and 
in time it asymptotically tends to the middle of the speci-
men. Figure 10 shows varying differences in silicon loss at  
x = 1.0 mm and silicon gain at x = 0 cells calculated using 
Equation (15).

It has a maximum at τ ≈ 15 days and then slowly decreases 
as the system tends to equilibrium, where ΔcSi, τ = ∞ = 0.

Difference in silicon loss at x = 50 mm and silicon gain at  
x = 0 cells; Fe-Si, task (1).

Figures 11–13 present results for modelling of task  (2). 
Similarly to task (1), the curves in Figure 11 for τ > 0 are not 
symmetrical with respect to the point in the middle of the 
plot (0.5 mm, 0.80 wt.% Si). Again, it is situation where uphill 
diffusion occurs. Figure 12 shows position of point with 
equal to initial concentrations of silicon. In the early stages it 
is close to the end with T = 1250°C (x = 1.0 mm) and in time 
it asymptotically tends to the point close to the middle of the 
specimen. Figure 13 confirms that silicon concentration do 
not tend to a  straight line symmetrical with respect to the 
middle point as the difference in silicon gain at x = 50 mm  
and carbon loss at x = 0 cells, within calculated 100 days, con-
stantly increases.

Fig. 8. Initial concentration of silicon (a) and modelled distribution 
after: b) 5 days; c) 25 days; d) 50 days; e) 75 days; f) 100 days; Fe-Si, 
task (1)
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Fig. 9. Position of point with equal to initial concentrations of silicon; 
Fe-Si, task (1)
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Fig. 10. Change of cSi with respect to initial values for x = 0 (star),  
x = 1 mm (triangle) and difference of those two (circle); Fe-Si, task (1)
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Fig. 11. Initial concentration of silicon (a) and modelled distribution 
after: b) 5 days; c) 25 days; d) 50 days; e) 75 days; f) 100 days; Fe-Si, 
task (2)
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Table 2	  
Data used for simulation of Fe-Si system

Quantity Value Unit

Δx 1E-5 [m]

DFe 3.80618E-15 [m2 · s–1]

DSi 1.69443E-14 [m2 · s–1]

For task (1)

T 1200 [°C]

cSi min 0.05 [wt.%]

cSi, max 1.55 [wt.%]

For task (2)

Tmin (x = 0 mm) 1150 [°C]

Tmax (x = 50 mm) 1250 [°C]

cSi   0.80 [wt.%]
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5. CONCLUSIONS

The conditions in which the presented model can be utilised, 
together with its major features, are summarised below:

•	 For task (1), the difference in chemical composition in 
a  uniform temperature field leads to the occurrence of 
chemical potential gradient and non-zero values of fluxes 
of elements in the system.

•	 For task (2), the chemical potential gradient is present, de-
spite the initial equality of chemical composition, because 
of the dependency of chemical potentials on temperature.

•	 The model uses a single set of equations to determine flux-
es for both sources of the difference in chemical potentials.

•	 For task (2), uphill diffusion (against chemical composition 
gradient) has been observed, which is not achievable with 
a model based on Fick’s laws.

The model can be used to evaluate the kinetics of changes 
to a concentration profile for a specimen exposed to non-uni-
form temperature field which give a view on the time needed 
to reach a pre-assumed state of interest.
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LIST OF VARIABLES USED IN THE TEXT

Fig. 12. Position of point with equal to initial concentration of sili-
con; Fe-Si, task (2)
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Fig. 13. Change of cSi with respect to initial values for x = 0 (star),  
x = 1 mm (triangle) and difference of those two (circle); Fe-Si, task (2)
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A x∂ ∂ – gradient of potential in general flux equation
µi – chemical potential of element i
τ – time variable

Bi – mobility of element i
ci – composition of element i

D0 – coefficient in Arrhenius Equation
Di – diffusion coefficient of element i
dir – direction in which neighbouring cell is located:  

x±, y±, z±
Jx – flux in x direction
L – coefficient in general flux equation

mi – mass of element i
p – number of directions taking into account in calcu-

lations: for model 1D: p = 2, 2D: p = 4, 3D: p = 6
Q – activation energy in Arrhenius Equation
R – gas constant
T – absolute temperature
t – time

x, y, z – space variables
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