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Abstract

The complex metallurgical interrelationships in the production of ductile cast iron can lead to enormous differences in graphite 
formation and local microstructure by small variations during production. Artificial intelligence algorithms were used to describe 
graphite formation, which is influenced by a variety of metallurgical parameters. Moreover, complex physical relationships in 
the formation of graphite morphology are also controlled by boundary conditions of processing, the effect of which can hardly 
be assessed in everyday foundry operations. The influence of relevant input parameters can be predetermined using artificial 
intelligence based on conditions and patterns that occur simultaneously. By predicting the local graphite formation, measures to 
stabilise production were defined and thereby the accuracy of structure simulations improved. In course of this work, the most 
important dominating variables, from initial charging to final casting, were compiled and analysed with the help of statistical 
regression methods to predict the nodularity of graphite spheres. We compared the accuracy of the prediction by using Linear 
Regression, Gaussian Process Regression, Regression Trees, Boosted Trees, Support Vector Machines, Shallow Neural Networks 
and Deep Neural Networks. As input parameters we used 45 characteristics of the production process consisting of the basic 
information including the composition of the charge, the overheating time, the type of melting vessel, the type of the inoculant, the 
fading, and the solidification time. Additionally, the data of several thermal analysis, oxygen activity measurements and the final 
chemical analysis were included.
Initial programme designs using machine learning algorithms based on neural networks achieved encouraging results. To improve 
the degree of accuracy, this algorithm was subsequently adapted and refined for the nodularity of graphite.
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1. INTRODUCTION

In recent years microstructure modelling with commercial 
software packages has become state of the art. The correct 
knowledge of the mechanical properties of a given casting is 
important to improve its functionalities and reduce weight, 
for example in the instance of design improvement using 
topology optimisation methods [1, 2]. However, in the case 
of ferritic-perlitic nodular cast iron grades, local microstruc-
tural properties could not be satisfactorily calculated. For the 
case of hardness, the trend across the wall thickness between 
the measured values and the simulation was detrimental to 
each other [3].

Graphite formation is strongly responsible for the resulting 
properties of an iron casting [4–6].

The theoretical background for the description of nucle-
ation and graphite formation in iron-carbon alloys is well 
documented. In collective works by Bauer [4], Herfurth [7] 
and Stefanescu [8], the most important hypotheses on the 
formation of graphite morphologies are elucidated.

The use of machine learning and deep learning methods 
for regression, or clustering in material science is very com-
mon due to the high accuracy of the results using artificial 
neural networks [9–11]. They can be very efficiently used in 
the case of very complex problems or if there is no algorith-
mic solution available [12]. The state of the art on artificial 
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neural networks and deep learning methods are reviewed, 
e.g., in reference [13] and [14].

Recently, papers have been published which use the results 
of thermal analysis to predict the microstructures in ductile 
cast iron using artificial intelligence [15]. In work by Liliac, 
Yamamoto and Ogi, graphite nucleation and graphite mor-
phology were modelled by means of neural networks [16]. 
However, input parameters for their prepared neural network 
were limited to the duration of superheating, supercooling 
based on stable thermal analysis, and magnesium and sul-
phur content. Overall, publications provide information on 
the most simplistic input parameters, possible methods and 
algorithms, which are, however, extended and adapted to the 
industrial environment in the present work. The complex 
physical relationships in the formation of graphite morphol-
ogy are determined by parameters whose degree of influence 
is hardly detectable in everyday foundry work [8, 17, 18].  
By means of artificial intelligence, the influence and their 
strength of various input parameters can be assessed on the 
basis of simultaneously occurring conditions and patterns [19].  
By this means it will be possible to realistically simulate and 
model structural properties [20, 21], based on more pre-
cise interpretation of graphite formation. Improved knowl-
edge on the influences and interactions of different process 
parameters on the microstructure formation should lead to 
an improvement in quality in the production of nodular cast 
iron and thus reduce development costs [22, 23] as well as 
to a deeper understanding of graphite formation in cast iron. 

In the course of this work, the most important influencing 
factors, from melting to casting and their boundary condi-
tions are analysed with the help of regression methods for 
graphite nodularity. Alongside the data from thermal analy-
sis, as novel input parameter oxygen activity measurements, 
temperature measurements and expanded chemical analyses 
are used as input variables for the machine learning models. 
Additionally, a preceding thermal modelling with commercial 
simulation software used in the foundry industry was taken 
as input parameter for the prepared prediction model. A large 
matrix of experiments was compiled and evaluated for this 
purpose. A model for the prediction of nucleation in sphe-
roidal graphite cast iron has been created using regression 
methods, with a particular focus on the nodularity of graphite.

The aim of the paper is to obtain a better understanding 
of graphite nodularity and its influencing factors including 
industrial boundary conditions in the production of nodular 
cast iron.

2. METHODS

2.1. Experimental methods

A suitable test specimen was constructed and designed for 
casting. The test specimen has different wall thicknesses and 
thus different solidification times (Fig. 1). The casting system 
is designed according to Nielsen [24] to achieve a very uniform 
laminar filling. The mould is vertically split and consists of two 
coldbox cores (Fig. 2). The cores are produced by means of 
a core shooter (Röpperwerk 5 l), which ensures a productive 
and at the same time dimensional accurate sand core moulds.

 Experimental casts were made with different parameters 
according to Table 1, which originate from the industrial environ- 
ment and serve as input parameters for the prediction algo-
rithms, resulting in an experimental matrix including 416 var- 
iations. In total we made 26 experimental batches at the test 
foundry of the Austrian Foundry Research Institute over 
a time period of one year. 16 batches with an identical basic 
composition out of raw-iron, pure-iron, scrap and alloying 
elements and variations in the melting vessel, the overheating 
time, and the inoculant, which effect 256 combinations. Each 
charge results in 16 variations, as a test specimen is poured off 
after 2, 4, 6 and 8 minutes and specimens are taken from each 
test specimen at a solidification rate of 50, 90, 180, and 360 s.  
The other 10 batches (160 combinations) differ from the pre-
vious 16 batches by additionally varying the combination of 
raw iron, pure iron, scrap and alloy elements. For each varia-
tion there is only one casting, but 160 variations only differ in 
the basic composition of the charge. 

Fig. 1.  Stepped test specimen

Fig. 2. Vertically split mould for the casts made from coldbox cores

Parameter Variation

1 Charge Raw  
iron [%]

Pure iron 
[%] Scrap [%]

Alloy  
elements 

[%]
2 Melting vessel Crucible Lined ladle – –

3 Overheating time 2 min 10 min – –

4 Inoculant VP216 SMW 605 Super-
seed 75 Amerinoc

5 Fading 2 min 4 min 6 min 8 min

6 Solidification 50 s 90 s 180 s 360 s

Table 1  
Variation of the experimental parameters
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Figure 3 shows a schematic diagram of the sample prepa-
ration process. Each test began with the melting of the basic 
charge. After an initial metastable thermal analysis, the melt 
was corrected to obtain a targeted silicon content of 2.30% 
and a carbon content of 3.65% in the castings. This was fol-
lowed by a measurement of the oxygen activity in the melt by 
using a celox sonde and a stable thermal analysis was made. 
Then the melt was superheated to 1500°C for 2 min or 10 min  
respectively. After the magnesium treatment according to 
the bell dipping process, with 1.2% MgFeSi master alloy 
(Elmag: 48% Si and 6% Mg), the melt was tapped into the 
ladle with ladle inoculation. The inoculants listed in Table 1  
were always used with 0.4% addition. This was followed by 
a further measurement of oxygen activity. 2 min after the melt 
treatment, a stable thermal analysis was performed, and the 
first test specimen was cast. After 4 min, 6 min and 8 min, fur-
ther thermal analyses were performed and at each timestep 
a test specimen was cast. Finally, the castings were knocked 
out and samples were taken and prepared for metallographic 
investigations and chemical analysis.

In order to evaluate the effects of the individual changes, 
the following measurements were conducted:

• thermal analysis (Appromace data systems GmbH, OCC);
• oxygen activity measurement in the melt (Heraeus Celox 

Foundry [8]);
• temperature measurement (TMH, type-K);
• chemical analysis of the charge and the final castings 

(Inductively coupled plasma atomic emission spectrosco-
py (ICP-AES), carbon and sulphur analysis by combustion 
(LECO)).

10 micrographs were taken of each sample, and the micro-
structures were evaluated by using the software Amguss 
V1.1.60 [25, 26, 27]. The focus of this paper is on nodularity. 
We analysed the nodularity according to EN ISO 945-4 [28, 29]  
with a minimum particle size of 10 µm. It was calculated cor-
responding to Formula (1) [28, 29]. The roundness of a par-
ticle was calculated according to Formula (2) [28, 29], which 
determines whether the particle is assigned to class V or IV. 
Particles with a roundness between 0.6 and 0.8 are assigned 

to class V and particles with a roundness between 0.8 and 1 
are assigned to class VI. 

( ) VVI

all

Area Area
Nodularity

Area
( . . ). −− +

=
∑ ∑

∑
0 6 0 80 8 1 (1)

AreaRoundness
max lengthof the graphite particle

   
  .     

×
=
π× 2

4
(2)

 The mean value of the nodularity was calculated from 
10 micrographs each. In this way, the 4160 × 46 matrix was 
reduced again to a 416 × 46 matrix. This matrix was the basis 
for all correlation calculations (45 input parameters, 1 label).

2.2. Modelling methods

Results were evaluated and collected in a Python data-frame. 
Rarely, measured values are missing from the tests due to 
broken thermocouples (1.9%) or due to measurement prob-
lems during oxygen activity measurement with the Celox 
probes (7.7%). DataWig [30], a software package written 
in Python, was used to generate the missing measurements. 
This tool allows imputation of the missing measurements 
through a combination of deep learning feature extractors [31]  
with automatic hyperparameter tuning [30, 32]. Missing 
readings for oxygen activity, maximum temperature, and up-
per and lower eutectic temperature were calculated.

Different statistical methods for regression (Linear Regres- 
sion (LR) [33], Gaussian Process Regression (GPR) [34], Re- 
gression Trees (RT) [35], Boosted Trees (BT) [36], Support Vector 
Machines (SVM) [37], Shallow Neural Networks (SNN) [38] and  
Deep Neural Networks (DNN) [39, 40]) were applied to the 
prepared dataset. Software Matlab® [41] and the deep learn-
ing framework Keras [42] written in Python were used for 
data analysis. Keras is the high-level Application Programming 
Interface (API) of TensorFlow 2 [43].

Different statistical methods were compared based on the 
coefficient of determination (R2), if there is a linear correlation 
between true and predicted values, and the Root Mean Square 
Error (RMSE) calculated from the application to a separate test 
data set [44].

Fig. 3. Schematic representation of the sample preparation process
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The basis for the correlations is formed by a 416 × 46 data 
matrix. For evaluating the regression methods, we split the 
dataset in data for training (60%), validation (20%) and 
testing (20%) not random, but always all samples of a single 
casting together. The dataset for training and validation is 
extended to a 10,000 × 46 matrix by a bootstrap based sam-
ple augmentation by resampling [45–48]. 45 apparently 

relevant input parameters, listed in Table 2 except nodularity, 
were used to predict nodularity by statistical methods. The 
prepared model and analysis are valid for the input and output 
parameters in the range of the minimal (min.) and maximal 
(max.) values according to Table 2. Additionally, means (x̅),  
and coefficients of variation (cv) of the used dataset are  
listed.

Table 2  
Minimal and maximal values of the gathered dataset

Parameter Label min. max. x̅ cv

Different melting vessel [1] 
(0 = graphite crucible; 1–15 lined ladles with 
different degree of wear and tear) 

melting-vessel
 

0
 

15
  

4.21
 

1.316
 

Time the melt was superheated [min] overheat-
ing-time 2 10 3.56 0.890

Fading time of the inoculation [min] fading 0 8 4.13 0.651
(0 = late stream inoculation) – – – – –
Solidification time [s] solidification 50 360 170.66 0.703
Scrap content in the charge [%] scrap 0 58.18 26.38 0.869
Raw-iron content in the charge [%] raw-iron 15 82 54.94 0.468
Coal content in the charge [%] C-charge 0 1.3 0.25 1.920
Ferro-silicon content in the charge (FeSi 75) [%] Si-charge 0 0.8 0.34 1.176
Inoculant 
(1 = VP216, 2 = SMW605, 3 = Superseed 75, 4 = Amerinoc)

inoculant 1
 

4
 

2.33
 

0.481
 

Liquidus temperature of the untreated melt [°C] TLiq_TA1 1149.3 1183.7 1169.48 0.006
Upper eutectic temperature of the untreated melt [°C] TEup_TA1 1121.0 1166.9 1150.79 0.006
Lower eutectic temperature of the untreated melt [°C] TElow_TA1 1121.0 1166.8 1146.47 0.006
Oxygen activity of the untreated melt [ppb] O2_EMK1 541.5 5341.3 2006.79 0.498
Superheating temperature [°C] T-overheating 1373 1565.1 1474.33 0.025
Casting temperature [°C] Tcast 1152.0 1354.1 1259.29 0.045
Liquidus temperature of the final treated melt [°C] TLiq_TA2 1138.74 1163.7 1151.85 0.004
Upper eutectic temperature of the final treated melt [°C] TEup_TA2 1137.1 1160.8 1154.89 0.003
Lower eutectic temperature of the final treated melt [°C] TElow_TA2 1135.2 1157.6 1148.86 0.004
Temperature at final measurement of oxygen activity [°C] T_EMK2 1355 1445 1414.31 0.014
Oxygen activity of the final treated melt [ppb] O2_EMK2 20.7 197.5 108.49 0.364
Aluminium content [%] Al 8.0E-3 0.019 0.00123 2.846
Wolfram content [%] W 1.1E-3 0.017 0.0092 0.401
Cobalt content [%] Co 1E-3 0.006 0.00238 0.639
Niobe content [%] Nb 1E-3 0.012 0.00155 1.548
Bor content [%] B 2.0E-4 0.0072 0.00274 0.850
Arsen content [%] As 1E-3 0.004 0.00113 0.477
Tin content [%] Sn 1E-3 0.01 0.00154 1.234
Zinc content [%] Zn 1E-3 0.002 0.00102 1.422
Nitrogen content [%] N 3.0E-3 0.012 0.00521 0.507
Cerium content [%] Ce 1E-3 0.025 0.00377 1.281
Lantan content [%] La 1E-3 0.002 0.00125 0.347
Selenium content [%] Se 3.0E-3 0.008 0.00324 0.298
Tellurium content [%] Te 1E-3 0.007 0.00428 2.255
Phosphorus content [%] P 1.6E-2 0.05 0.0409 0.022
Sulphur content [%] S 4.0E-3 0.015 0.00937 0.340
Copper content [%] Cu 2.6E-2 0.59 0.445 0.045
Chrome content [%] Cr 1E-2 0.021 0.0132 0.231
Nickel content [%] Ni 4.0E-3 0.048 1.31 0.008
Molybdenum content [%] Mo 2E-3 0.007 0.00309 0.392
Titan content [%] Ti 6.0E-3 0.012 0.0109 0.150
Vanadium content [%] V 2E-3 0.004 0.00302 0.150
Carbon content [%] C 3.46 3.74 3.61 0.016
Silicon content [%] Si 2.09 2.57 2.31 0.051
Manganese content [%] Mn 4.94E-2 0.15 0.0789 0.369
Magnesium content [%] Mg 1.5E-2 0.039 0.0266 0.185
Nodularity of graphite spheres [%] Nodularity 12.5 93.9 62.42 1.316
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The algorithm is supposed to learn and improve itself with 
each new test due to the increasing amount of data. In addi-
tion, a user-friendly interface was being developed for practi-
cal use and equipped with the necessary functions. In Figure 4  
the procedure to predict the nodularity and the sphere densi-
ty based on deep neural networks is visualised.

3. RESULTS AND DISCUSSION

By using Linear Regression (LR) only a low accuracy was 
achieved for nodularity. This simple model obtained a R2 for 
predicting the nodularity of 0.69 and a Root Mean Square Error 
(RMSE) of 14.3. Using a rational quadratic Gaussian Process 
Regression (GPR) the model improved to a R2 of 0.84 and 
a RMSE of 9.8. Conducting modelling of Regression Trees (RT) 
and Boosted Trees (BT) the accuracy could not be improved 
in comparison to the Gaussion Process Regression despite the 
complexity of these models being higher. Promising methods 

for this kind of regression are Support Vector Machines (SVM). 
A model with a R2 of 0.8 and a RMSE of 10.0 was obtained for 
SVM. Finally artificial neural networks were applied to the prob-
lem. With a Shallow Neural Network (SNN), using a Sigmoid 
activation function, one hidden layer and 10 nodes the ac-
curacy was improved to predict the nodularity. The R2 for 
this machine learning algorithm was 0.95 and its RMSE 5.9. 
Additionally a Deep Neural Network (DNN) consisting of 5 hid-
den layers, 40 nodes at each layer with a ReLU-activation func-
tion was used. The ReLU-function improves the learning per-
formance of a Deep Neural Network in contrast to the Sigmoid 
function, which limits the outputs of the node to the value of 
one regardless of the size of the input [20]. This DNN achieved 
the highest accuracy. The RMSE for predicting the nodularity 
is 2.2 and the R2 is 0.99. In Figure 5 the results of the tested 
regression methods are compared. The accuracy (R2) is plotted 
against the model complexity according to [49]. The size of the 
circles is proportional to the RMSE for nodularity.

Fig. 5. Comparison of different regression methods to determine nodularity. The accuracy in the form of the R2 is plotted against the complexity [49] 
of the model. The size of the circles is proportional to the Root Mean Square Error (RMSE)

Fig. 4. Graphical user interface to operate the software for prediction of nodularity based on artificial neural networks

https://journals.agh.edu.pl/jcme
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In Figure 6a the density distribution of the errors (true nod-
ularity minus calculated nodularity) by the DNN is visualised 
as histogram. Additionally, the area between the 10% percen-
tile and the 90% percentile are highlighted by a lighter grey 
background. In the diagram on the right in Figure 6b the pre-
dicted values are plotted over the true values for nodularity. 

Virtual tests and an investigation of the influence of a single 
parameter on nodularity were performed by the trained DNN. 
The range of input parameters for the DNN to predict graphite 
nodularity are shown for one of the castings in Figure 7. Each 
parameter was right in the range of min and max according to 
Table 2. Figure 7 shows the calculated influence of individual 
parameters on nodularity using the DNN respectively, while 

changing individual parameters separately within the accord-
ing parameter range (min. – max. in Table 2). The empty bars 
are values whose range is smaller than the RMSE (RMSE = 2.2)  
of the prepared DNN, and the shaded bars are between the 
single RMSE and the double RMSE. The cross shaded bars 
visualise the significant influence parameters, which are larg-
er than the double RMSE and are of interest for the investi-
gated case.

In the test sample in Figure 7 magnesium and oxygen activity 
have a high influence on the graphite nodularity according to the 
extended bars. The model also calculates a very strong depen-
dence of the nodularity, e.g., on the solidification time and also 
on overheating temperature as well as the casting temperature.  

Fig. 6. Accuracy of the Deep Neural Network to predict nodularity of graphite spheres: a) histogram to visualize the distribution of prediction 
errors; b) predicted values plotted against true nodularity

Fig. 7. Illustration of the influence of the different parameters on the nodularity calculated with the previously trained deep neural network for 
one casting. Note the input parameters are parameter of one specific test sample

a) b)
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Figure 8 shows the influence of fading time, solidification 
time, cast temperature, oxygen activity measurement and 
Mg-content on nodularity graphically for the given test sample.

As a first validation, the calculated dependence of nodularity 
on the solidification time can be seen of improved nodularity 
in real casting. Figure 9 shows metallographic micrographs 
after a solidification time of a) 50 s, b) 90 s, c) 180 and d) 360 s  

as a comparison to the calculated values in Figure 8b. The 
nodularity increases with the increasing solidification time. 
It is obvious that the nodularity in Figure 9a is lower (solidi-
fication time is 50 s), than in Figure 9d (solidification time is 
360 s). However, the models created are based on correlations 
alone and do not necessarily indicate physical or metallurgical 
causalities. 

Fig. 8. Correlation of: a) fading; b) solidification time; c) cast temperature; d) oxygen activity; e) magnesium content on nodularity

Fig. 9. Metallographic images with different solidification times and similar parameters tocalculated values in Figure 8b. Solidification time is: 
a) 50 s; b) 90 s; c) 180 s; d) 360 s

a) b) c)

d) e)

a) b)

c) d)
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4. CONCLUSION

In this work, a previously reported AI to describe nodulari-
ty was expanded to 45 relevant input parameters (listed in  
Table 2) and described by linear regression, Gaussian process 
regression, regression trees, boosted trees, support vector ma-
chines, shallow neural networks and deep neural networks. 
The highest accuracy was achieved by DNN with 5 hidden 
layers, 40 nodes at each layer with ReLU-activation functions.

According to the model based on DNN, for a particular sam-
ple graphite nodularity is strongly dependent on solidification 
time, overheating temperature as well as on the Mg content 
and thus also on oxygen activity, as these are interdependent. 
While these influencing factors are well known to the metallur-
gist [50], other industrial relevant parameters which determine 
the boundary conditions can be analysed using this model.

The uniqueness of this paper is that it describes regression 
methods to determine nodularity using 45 input parameters, 
which include information about the basic composition of 
the charge, overheating time, types of melting vessel, type 
of inoculant, fading and solidification time. Furthermore, 
the database is well documented by several measurements 
including thermal analysis, oxygen activity measurements 
and chemical analysis.

A limitation of the current research is that the investigations 
carried out so far have only been performed in the foundry of 
the Austrian Foundry Research Institute with batch weights 
between 50 and 120 kg. The limited range of tests only allows 
the nodularity to be predicted with high accuracy for cast-
ings in this foundry. In the near future, further test casts will 
be conducted with other foundries to obtain a higher range 
of parameters and to assess the influence of larger batches. 
Further regression analysis and hypothesis testing will be 
performed to study the individual parameters and to analyse 
the nodule count. 

REFERENCES

[1] Bendsoe M.P. & Sigmund O. (2003). Topology optimization: the-
ory, methods, and applications. Springer Science & Business Me-
dia, Heidelberg.

[2] Eschenauer H., Koski J. & Osyczka A. (Eds.) (2012). Multicriteria 
design optimization: procedures and applications. Springer Sci-
ence & Business Media, Heidelberg.

[3] Cziegler A. (2020). Optimization of Green Sand Thermophysical 
Properties for Simulation of Cast Iron Processes. International 
MAGMA User Meeting 2020. 6–8 October 2020.

[4] Bauer W. (2017) Graphitmorphologie: Entstehung, Einflussgrößen, 
Kontrolle. Österr.eichisches Gießerei-Institut, Leoben.

[5] Benedetti M., Fontanari V. & Lusuardi D. (2019). Effect of graph-
ite morphology on the fatigue and fracture resistance of ferritic 
ductile cast iron. Engineering Fracture Mechanics, 206, 427–441.  
Doi: https://doi.org/10.1016/j.engfracmech.2018.12.019.

[6] Liu Y., Xing J., Li Y., Wang S. & Tao D. (2018). Tomographical study 
of the effect of graphite on properties of cast iron. Steel research 
international, 89(8), 1800086. Doi: https://doi.org/10.1002/
srin.201800086.

[7] Herfurth K. (2016). Wachstum der Graphitkristalle im Gusseisen 
unter besonderer Berücksichtigung der Grenzflächenspannung. 
Gießerei-Praxis, 6, 254–260. 

[8] Stefanescu D., Alonso G., Larrañaga P., De la Fuente E. & Suarez R. 
(2018). A comparative study of graphite growth in cast iron and in 
analogous systems. International Journal of Metalcasting, 12(4), 
722–752. Doi: https://doi.org/10.1007/s40962-017-0204-1.

[9] Thankachan T., Prakash K.S. & Jothi S. (2021). Artificial neu-
ral network modeling to evaluate and predict the mechanical 
strength of duplex stainless steel during casting. Sādhanā, 46(4), 
197. Doi: https://doi.org/10.1007/s12046-021-01742-w.

[10] Agrawal A. & Choudhary A. (2016). Perspective: Materials in-
formatics and big data: Realization of the “fourth paradigm” of 
science in materials science. APL Materials, 4(5), 053208. Doi: 
https://doi.org/10.1063/1.4946894.

[11] Bührig-Polaczek A., Rudack M., Salentin F.G., Sandt M., Hartmann 
D., Brait M., Koppensteiner E. & Schumacher P. (2021). Digitali-
sierung in der Gießereitechnik. Teil 1: Herausforderungen und 
Chancen. Gießerei, 6/21, 37–43.

[12] Çöl M., Ertunç H.M. & Yılmaz M. (2007). An artificial neural 
network model for toughness properties in microalloyed steel 
in consideration of industrial production conditions. Materi-
als & Design, 28(2), 488–495. Doi: https://doi.org/10.1016 
/j.matdes.2005.09.001.

[13] Bashar A. (2019). Survey on evolving deep learning neural net-
work architectures. Journal of Artificial Intelligence and Capsule 
Networks, 1(2), 73–82. Doi: https://doi.org/10.36548/jaicn. 
2019.2.003.

[14] LeCun Y., Bengio Y. & Hinton G. (2015). Deep learning. Nature, 
521(7553), 436–444. Doi: https://doi.org/10.1038/nature14539.

[15] Glavas Z., Lisjak D. & Unkic F. (2007). The application of artificial 
neural network in the prediction of the as-cast impact toughness 
of spheroidal graphite cast iron. Kovové Materiály, 45(1), 41–49.

[16] Liliac M.M., Yamamoto K. & Ogi K. (2001). A neural network pre-
diction for the graphite nucleation and morphology in modified 
cast irons. International Journal of Cast Metals Research, 14(3), 
157–164.

[17] Amini S. & Abbaschian R. (2013). Nucleation and growth kinetics 
of graphene layers from a molten phase. Carbon, 51, 110–123.  
Doi: https://doi.org/10.1016/j.carbon.2012.08.019.

[18] Stefanescu D.M., Alonso G., Larrañaga P., De la Fuente E. & Su-
arez R. (2016). On the crystallization of graphite from liquid 
iron-carbon-silicon melts. Acta Materialia, 107, 102–126. Doi: 
https://doi.org/10.1016/j.actamat.2016.01.047.

[19] Ghahremani nahr J., Nozari H. & Sadeghi M.E. (2021). Artificial 
intelligence and Machine Learning for Real-world problems  
(A survey). International Journal of Innovation in Engineering, 
1(3), 38–47. 

[20] Fragassa C., Babic M., Bergmann C.P. & Minak G. (2019). Predict-
ing the tensile behaviour of cast alloys by a pattern recognition 
analysis on experimental data. Metals, 9(5), 557. Doi: https://
doi.org/10.3390/met9050557.

[21] Perzyk M. & Kochański A.W. (2001). Prediction of ductile cast 
iron quality by artificial neural networks. Journal of Materials 
Processing Technology, 109(3), 305–307.

[22] Swain S.K. (2008). Effect of Chemistry and Processing Variables 
on the Mechanical Properties of Thin Wall Ductile Iron Castings. 
National Institute of Technology: Rourkela [Doctoral dissertation].

[23] Lim K.Y.H., Zheng P. & Chen C.H. (2020). A state-of-the-art survey 
of Digital Twin: techniques, engineering product lifecycle man-
agement and business innovation perspectives. Journal of Intel-
ligent Manufacturing, 31(6), 1313–1337. Doi: https://doi.org/ 
10.1007/s10845-019-01512-w.

[24] Nielsen F. (1993). Gieß- und Anschnitttechnik Grundlagen und 
Anwendung einer Methode. Giesserei-Verlag GmbH, Dusseldorf.

[25] AMGuss. Professionelle Analyse der Mikrostruktur von Gus-
seisen. GFaI Gesellschaft zur Förderung angewandter Informa-
tik, 30 November 2021, Retrieved from https://www.gfai.de/
entwicklungen/bildverarbeitung/amguss [accessed 7.10.2021].

[26] GFaI. Gesellschaft zur Förderung Angewandter Informatik, Am 
Guss, Version 1.1.60.

[27] ISO/DIS 945-4:2016(E) working draft (2016). Microstructure 
of cast irons – Part 4: test method for determining nodularity in 
spheroidal graphite cast irons.

[28] Friess J., Sonntag U., Steller I. & Bührig-Polaczek A. (2020). From 
Individual Graphite Assignment to an Improved Digital Image 
Analysis of Ductile Iron. International Journal of Metalcasting, 
14(4), 1090–1104.

[29] Mampaey F., Habets D., Plessers J. & Seutens F. (2008). The use of 
oxygen activity measurement to determine optimal properties of 
ductile iron during production. Giessereiforschung, 60(1), 2–19.

https://journals.agh.edu.pl/jcme
https://doi.org/10.1016/j.engfracmech.2018.12.019
https://doi.org/10.1002/srin.201800086
https://doi.org/10.1002/srin.201800086
https://doi.org/10.1007/s40962-017-0204-1
https://doi.org/10.1007/s12046-021-01742-w
https://doi.org/10.1063/1.4946894
https://doi.org/10.1016/j.matdes.2005.09.001
https://doi.org/10.1016/j.matdes.2005.09.001
https://doi.org/10.36548/jaicn.2019.2.003
https://doi.org/10.36548/jaicn.2019.2.003
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.carbon.2012.08.019
https://doi.org/10.1016/j.actamat.2016.01.047
https://doi.org/10.3390/met9050557
https://doi.org/10.3390/met9050557
https://doi.org/10.1007/s10845-019-01512-w
https://doi.org/10.1007/s10845-019-01512-w
https://www.gfai.de/entwicklungen/bildverarbeitung/amguss.%5baccessed
https://www.gfai.de/entwicklungen/bildverarbeitung/amguss.%5baccessed


102 Artificial Intelligence Approaches to Determine Graphite Nodularity in Ductile Iron

  https://journals.agh.edu.pl/jcme

[30] Biessmann F., Rukat T., Schmidt P., Naidu P., Schelter S., Taptunov A., 
Lange D. & Salinas D. (2019). DataWig: Missing Value Imputation 
for Tables. Journal of Machine Learning Research, 20 (175), 1–6.

[31] Dara S. & Tumma P. (2018). Feature Extraction by Using Deep 
Learning: A Survey. In: 2018 Second International Conference on 
Electronics, Communication and Aerospace Technology (ICECA), 
29–31 March 2018, RVS Technical Campus, Coimbatore, India, 
1795–1801.

[32] Yogatama D. & Mann G. (2014). Efficient transfer learning meth-
od for automatic hyperparameter tuning. In: Artificial Intelli-
gence and Statistics. Proceedings of the Seventeenth Internation-
al Conference on Artificial Intelligence and Statistics, PMLR 33, 
1077–1085.

[33] Weisberg S. (2005). Applied linear regression, Vol. 528, John Wi-
ley & Sons, Hoboken.

[34] Schulz E., Speekenbrink M. & Krause A. (2018). A tutorial on 
Gaussian process regression: Modelling, exploring, and exploit-
ing functions. Journal of Mathematical Psychology, 85, 1–16. Doi: 
https://doi.org/10.1016/j.jmp.2018.03.001.

[35] Li Y. (2006). Predicting materials properties and behavior using 
classification and regression trees. Materials Science and Engi-
neering: A, 433(1–2), 261–268. 

[36] Ponomareva N., Radpour S., Hendry G., Haykal S., Colthurst T.,  
Mitrichev P.  & Grushetsky A. (2017). TF boosted trees: A scalable 
tensorflow based framework for gradient boosting. In: Joint Eu-
ropean Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer, Cham, 423–427.

[37] Ding S., Qi B. & Tan H. (2011). An overview on theory and algo-
rithm of support vector machines. Journal of University of Elec-
tronic Science and Technology of China, 40(1), 2–10. Doi: dx.chi-
nadoi.cn/10.3969/j.issn.1001-0548.2011.01.001.

[38] Bhadeshia H., Dimitriu R., Forsik S., Pak J. & Ryu J. (2009). Per-
formance of neural networks in materials science. Materials 
Science and Technology, 25(4), 504–510. Doi: https://doi.org/ 
10.1179/174328408X311053.

[39] Goodfellow I., Bengio Y. & Courville A. (2016). Deep learning. 
MIT Press.

[40] Schmidhuber J. (2015). Deep learning in neural networks: An 
overview. Neural networks, 61, 85–117. Doi: https://doi.org/ 
10.1016/j.neunet.2014.09.003.

[41] Kim P. (2017). Convolutional neural network. In MATLAB deep 
learning. Apress, Berkeley, CA, 121–147.

[42] Gulli A. & Pal S. (2017) Deep learning with Keras. Packt Publish-
ing Ltd, Birmingham.

[43] Dillon J.V., Langmore I., Tran D., Brevdo E., Vasudevan S., Moore D.,  
Patton B., Alemi A., Hoffman M. & Saurous R.A. (2017). Tensor-
Flow distributions. Retrieved from: https://arxiv.org/pdf/1711. 
10604.pdf [accessed 7.10.2021].

[44] Chicco D., Warrens M.J. & Jurman G. (2021). The coefficient of 
determination R-squared is more informative than SMAPE, 
MAE, MAPE, MSE and RMSE in regression analysis evaluation. 
PeerJ Computer Science, 7, e623. Doi: https://doi.org/10.7717/
peerj-cs.623.

[45] Singh K. & Xie M. (2008). Bootstrap: a statistical method. Rut-
gers, The State University of New Jersey, USA. Retrieved from: 
http://www.stat.rutgers.edu/home/mxie/RCPapers/boot-
strap. pdf, 1–14 [unpublished manuscript]

[46] Wang F., Sahana M., Pahlevanzadeh B., Pal S.C., Shit P.K., Piran M.J.,  
Janizadeh S., Bandh S.S. & Mosavi A. (2021). Applying different 
resampling strategies in machine learning models to predict 
head-cut gully erosion susceptibility. Alexandria Engineering 
Journal, 60(6), 5813–5829. Doi: https://doi.org/10.1016/j.aej. 
2021.04.026.

[47] Eck D.J. (2018). Bootstrapping for multivariate linear regres-
sion models. Statistics & Probability Letters, 134, 141–149. Doi: 
https://doi.org/10.1016/j.spl.2017.11.001.

[48] Su Y. & Mwanakatwe P.K. (2021). The comparison study of the 
model selection criteria on the Tobit regression model based 
on the bootstrap sample augmentation mechanisms. Journal of 
Statistical Computation and Simulation, 91(7), 1415–1440. Doi: 
https://doi.org/10.1080/00949655.2020.1856848.

[49] Lundberg S.M. & Lee S.-I. (2017). A unified approach to inter-
preting model predictions. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems,  
4768– 4777.

[50] Lacaze J. (2017). Trace elements and graphite shape degeneracy 
in nodular graphite cast irons. International Journal of Metalcast-
ing, 11(1), 44–51. Doi: https://doi.org/10.1007/s40962-016- 
0115-6.

https://journals.agh.edu.pl/jcme
https://doi.org/10.1016/j.jmp.2018.03.001
http://dx.chinadoi.cn/10.3969/j.issn.1001-0548.2011.01.001
http://dx.chinadoi.cn/10.3969/j.issn.1001-0548.2011.01.001
https://doi.org/10.1179/174328408X311053
https://doi.org/10.1179/174328408X311053
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/pdf/1711.10604.pdf
https://arxiv.org/pdf/1711.10604.pdf
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.7717/peerj-cs.623
http://www.stat.rutgers.edu/home/mxie/RCPapers/bootstrap
http://www.stat.rutgers.edu/home/mxie/RCPapers/bootstrap
https://doi.org/10.1016/j.aej.2021.04.026
https://doi.org/10.1016/j.aej.2021.04.026
https://doi.org/10.1016/j.spl.2017.11.001
https://doi.org/10.1080/00949655.2020.1856848
https://doi.org/10.1007/s40962-016-0115-6
https://doi.org/10.1007/s40962-016-0115-6

