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Abstract

The progressive mechanization and automation of industrial equipment is the driving force of progress, not only in the field of 
production but also in the measuring and control equipment. In mold production, the automation of processes such as forming 
molds and cores along with their assembly has led to increases in serial production, reductions in defects, and the shortening 
of molding times, among others. Thanks to automation in mold and core departments and the use of all sorts of manipulators, 
mold production in foundries has gained momentum.
Unfortunately, in addition to the mentioned advantages, there are also new challenges as to the quality and properties of the 
molding and core sands used in highly automated foundries.This article presents recent research on molding sand elasticity. 
The topic was introduced as an attempt to answer the new needs of highly mechanized foundries. 
The article discusses a new method of measuring the resistance of molding materials to undergoing mechanical deformation 
(molding sand elasticity), with an additional analysis of the bending strengths of the tested samples. Precise measurements, 
test sample preparation, and interpretation of the received results are presented in the article.
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1. NEW CHALLENGES

Cores and molds are subjected to a variety of mechanical 
and thermal factors at each stage of their production and 
use. There are various technological operations that involve 
many possible sources of damage to the molds and cores. 
Operations such as the removal of cores from core boxes, 
removal of patterns from molds, core and mold assembly, 
applying weights to molds, etc.  can generate cracks in cores 
and molds that may later lead to defects in the castings  
(Figs. 1 and 2). This is true especially in highly mechanized 
foundries, where such operations are often performed by 
manipulators. The reason for this is the high brittleness of 
the cores and molds. Hence, modern technology is looking 
for molding mixtures with relatively high flexibility/elastici-
ty. This mainly applies to core sands prepared with the addi-
tion of synthetic resins [1–4].

Both foundry molds and cores are subjected to many 
destructive factors during their execution and assembly. In 
order to not damage the cores and molds, the used molding 
sand must not be too brittle to be damaged; however, at the 
same time, it must retain its shape and stiffness.

When cured, the synthetic resins used in the preparation 
of molding and core sands can be classified into polymer 
groups. The polymeric materials sustain different propor-
tions of both elastic deformation and elastic and plastic 
(permanent) deformation during handling. The shares of 
the deformations depend on many parameters; for example, 
strain rate, temperature, deformation range, and the type of 
bond formed in the polymer material [5–8].

Fig. 1. Mechanized core and mold assembly [1]
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2. RESEARCH METHODOLOGY

The presented research was carried out on the new 
LRu-DMA measuring device from MULTISERW-Morek 
Company (Fig. 3). The research was carried out in the 
Department of Molding Materials, Mold Technology 
and Cast Non-Ferrous Metals at the Faculty of Foundry 
Engineering at AGH University of Science and Technology 
in Krakow [9, 10].

The presented device performs measurements in two 
modes:

•	 DMA  –  thermal deformation (hot distortion parameter),
•	 DE – measurement of elasticity (registration of deflec-

tion arrows with force registers).

Thanks to its modern and compact design as well as its 
use of new measuring systems, the device provides accu-
rate results. The included software enables the export 
of results to popular office systems (Excel) and archives 
them in an independent database regardless of the device 
status.

2.1. Molding sand mechanical deformation – elasticity

In the study of polymer materials [7–12], elasticity is de-
fined as a property  that allows to make reversible shape 
changes under the influence of external forces. It should 
also be noted that, as a rule, we are not dealing with ma-
terials showing only one kind of deformation. In foundry 
molds, both spring and plastic deformation can occur in 
various shares. They may depend on different parame-
ters; e.g., temperature or deformation speed.

The DE-module, dedicated to mechanical deformation 
measurement, is used for estimating molding sand elastic-
ity. It gathers information about the development of force 
over time with the simultaneous registration of the bend 
extend. This information is necessary for estimating the 
maximum bending force and maximum bending radius. 

The elasticity measurement is based on the analysis of 
the deflection pattern of a standard longitudinal fitting 
during bending. The tooling (Fig. 4) allows us to per-
form measurements of the indentation force over time 
while recording its displacement. This allows the user to 
determine the bending strength (Rg

u) and deflection ar- 
rows [13]. The details concerning the elasticity measure-
ment are described in earlier works [14].

The apparatus allows us to perform measurements of the 
indentation force over time while recording the indenter 
displacement. This allows the user to determine the bend-
ing strength of the sample as well as the deflection arrows. 

Fig. 2. Core fracture [2]

Fig. 3. LRu-DMA measuring device from MULTISERW-Morek Com-
pany

Fig. 4. LRu-DMA measuring device from MULTISERW-Morek Com-
pany – elasticity module
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The software provided by the manufacturer allows us to 
view the results in real time. In addition, it has the abili-
ty to display ready-made graphs showing the relationship 
between the applied force versus time as well as displace-
ment and displacement as a function of time (Fig. 5).

By analyzing the graphs obtained by means of the device, 
it can be seen that the point of maximum force is applied 
at the moment of fracture under the indentation, while the 
part of the graph after that point is crossed is connected 
with the indenter retrieving back to the starting point of the 
measurement.

The program records the most important data such as 
time of measurement, indenter movement speed, maximum 
and momentary displacement and indenter force, sample 
size, and name.

The force-measuring range is 0 to 900 N; in addition, it is 
possible to adjust the indenter’s movement speed from 0 to 
70 mm/min in increments of 1 mm. The built-in database 
allows us to determine the size of the fitting for each type of 
strength test (from Rg

1 to Rg
9), and it is possible to enter any 

dimension of the test piece.
There are two types of supports (20 mm and 38 mm), 

which can be mounted in two spacings – 10 and 15 cm. 

Thanks to this, the measurement capabilities of the device 
increase significantly.

The bending strength tests were carried out on standard 
longitudinal samples after 24 h of curing [13].

2.2. 	Molding sand thermal deformation 
– hot distortion parameter

The hot distortion parameter tests were carried out on 
numerous devices [13, 15–20]. In this research, a new ap-
proach to this measurement was used. The measurements 
of the thermal deformation of the molding sands were car-
ried out on rectangular samples measuring 114 × 25.4 ×  
6.3 mm [13].

One of the ends of the fitting is fixed in the jaws of the 
device (Fig. 6), while the tilt sensor rests on the opposite 
(free) end of the sample. In addition, a temperature sensor 
is provided parallel to the fitting to increase the accuracy of 
the temperature measurement [13].

The heating system of the device allows the heating tem-
perature to be adjusted independently for the upper and 
lower heating elements (which are 2 × 400 W ceramic heat-
ers, each with an independent built-in thermocouple).

Fig. 5. Elasticity curves: a) deformation L (brown curve) and applied force F (orange curve) as a function of time; b) applied force F as a function 
of deformation L (red curve), deflection arrow (blue curve)

Fig. 6. LRu-DMA measuring device from MULTISERW-Morek Company – hot distortion module

a)

b)
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The device also allows the heating power to be con-
trolled from 0 to 100% of maximum power (with incre-
ments of 1%). The heating temperature ranges from room 
temperature to 900°C and can be set at 1°C increments, 
while the maximum deformation can range up to 10 mm. 
In addition, metal overlays can be used to limit the heat 
emission field.

There is also the possibility of heating the upper and/or 
lower heating element to a set temperature (power %) and 
placing it over and/or under the fitting. This gives us the 
opportunity to analyze changes in molding sand deforma-
tion, both in the case of the sudden exposure of the mold-
ing mixture to high temperatures (contact with the liquid 
alloy) and slow heating (heat radiation from the surface of 
the liquid metal) [21].

3. OWN RESEARCH

The following article focuses on the deformation of molding 
samples under pressure of force. The influence of the type 
of binding agent on the elasticity as well as the morphology 
of the crack surface are also taken into account. Considering 
the differences that occur between the different molding 
technologies, the type of bond destruction can play a lead-
ing role in molding sand deformation (among other proper-
ties) [22–25].

The presented results are a continuation of the authors’ on- 
going research described in detail in previous works [26–30].

The research was carried out in the laboratory of the 
Department of Molding Materials, Mold Technology, and 
Cast Non-Ferrous Metals at the Faculty of Foundry Engi- 
neering at AGH.

Both organic and inorganic binders were chosen for the 
study. They can be characterized by different mechanisms 
of destruction [27, 28]. Organic bonded molding sands can 
be characterized by adhesive destruction, while inorganic 
molding sands feature cohesive destruction [31]. The mech-
anisms of the destruction of these molding sands were stud-
ied in detail in previous works [32, 33].

As author Stanisław Dobosz [32, 33] points out in his 
thesis, the destruction of inorganic molding sands runs 
through the binder. This means that the adhesion forc-
es between the binder and the grain surface are greater 
than the cohesion forces, which promotes breakage at the 
weakest place inside the binder layer (Fig. 7). 

All of the molding sands that were chosen for this research 
were prepared according to the resin/binder manufactur-
er instructions using standard compositions (Tab. 1). Four 
representative molding mixtures that are widely used in the 
foundry industry were chosen for the research [21].

The following resins/binders were used:

•	 sands manufactured in cold-box technology – GASHARZ 
6966 and AKTI-VATOR 7624 [34],

•	 self-hardening molding sands with furfuryl resin – XA-20 
resin and 100T hardener [34],

•	 alkyd molding sands – SL2002 resin and KL1 catalyzer [35],
•	 inorganic molding sands – 145 hydrated sodium silicate 

and Flodur3 [14, 21, 35].

Quartz sand was used in all of the conducted tests. 
According to Polish standard PN-85/H-11001, it classifies 
the tested sand as medium. In the studied matrix, the val-
ue of the main fraction is 84%, which determines the sand 
as homogeneous.

The samples prepared with the use of hydrated sodium 
silicate (ester technology), furfuryl resin, and alkyd resin 
were prepared according to the binder producers’ instruc-
tions using a laboratory mixer with a 4-kg capacity and 
compacted using an LUZ-1 laboratory vibration device. 
The molding sand used for the samples for cold-box tech-
nology was prepared in the same laboratory mixer but 
was not followed with compaction. The sand was placed in 
the MULTISERW-Morek Company Universal Core Shooter. 
The shooting parameters were set as follows: pressure 
– 0.5 MPa; time – 2 s; amount of amine – 2.47 ml/1 kg of 
molding sand.

The density of the samples oscillated from 1.48 g/cm3 to 
1.63 g/cm3. The sample population varied. For each graph 
a minimum of three samples that did not differ more than 
10% in terms of the obtained results, was taken into 
account.

Fig. 7. Cohesive and adhesive breakage [32]

Table 1	  
Tested molding sand composition [21]

Name Matrix Binder/resin, 
p.p.w.

Hardener,  
p.p.w.

cold-box  
technology

Quartz sand 
(100 p.p.w.)

0.80 0.80

furfuryl resin 
technology 1.10 0.50

alkyd resin 
technology 1.00 0.25

ester technology 3.00 0.30
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The obtained results are illustrated in Figures 8–10.
Test samples showed analogical behavior in the bend-

ing strength test (Fig. 8) as they did in the elasticity  
tests (Fig. 9).

The highest results were achieved for the molding 
sands prepared in the cold-box technology, reaching 
4.23 MPa. This was 69% more than for the molding 
sands with hydrated sodium silicate (which achieved 
the lowest value of 1.30 MPa). The molding sand with 
furfuryl resin reached a bending strength result of  
2.71 MPa, and the molding sand with the alkyd resin 
reached 3.68 MPa (which is, accordingly, 36% and 13% 
lower than the obtained maximum).

The results of the elasticity measurements give two 
types of information: the first being the maximum load 
(F [N]) that a sample can withstand, which is analogical 
to a sample’s bending strength (Rg

u [MPa]) and maximum 
deformation (DE [mm]), and the other is related to the 
deformation of different samples under a set force val-
ue (relating to the way the automated core assembly is 
realized). 

The obtained curves (Fig. 9) visualize a few stages of 
the elasticity test. First, we can observe a nearly linear 
propagation of the deformation with increasing force. 
Second, we can observe a bend in the curve, which is the 
moment of sample breakage. The short growth of the 
curve after the maximal strength that the sample can 
withstand is not taken into the analysis – it is correlated 
with the eversion of the indenter.

As can be seen in Figure 9, the molding sand with 
hydrated sodium silicate as the binder achieved both the 
lowest deformation (0.21 mm) and load resistance (64 N). 
The molding sand bonded with the furfuryl resin obtained 
a value of 0.25 mm deformation and withstood 146 N of 
force. The molding sands bonded with the alkyd resin 
achieved the result of 0.36 mm in the bend under a force 

of 181 N. The highest obtained results both in deforma-
tion and load size were achieved in the molding sand pre-
pared in the cold-box technology; deformation reached 
0.55 mm under a force of 214 N just before the sample’s 
destruction. The resulting deformation was nearly 62% 
greater than the molding sands with the hydrated sodium 
silicate (under more than 70%-greater force).

Based on both elasticity and bending strength, it can 
be easily deduced that the greater the bending strength 
and overall strength resistance of the molding sand, the 
greater deformation the sand will undergo and with-
stand. However, this is only an analysis of the final out-
come after destruction of the samples. What has to be 
pointed out is the deformation of the samples made from 
different molding sands under the same force.

If, for example, the impact of a force of 50 N on the 
deformation of a chosen molding sand would be taken 
into account, it can be seen that the highest deformation 
under this pressure is 0.19 mm for molding sands with 
the hydrated sodium silicate. At the same time, the mold-
ing sands with organic-type binders reaches very similar 
results of 0.11 mm under the same force of 50 N, which is 
roughly half of what was obtained for the inorganic sand  
mixture [21].

The last stage of the research presented in this paper 
is the measurement of molding sand thermal deformation 
by determining the hot distortion parameter. Thanks to 
the latest alterations in the measuring equipment, it was 
possible to mount the sample and pre-heat the equipment 
without interfering with the sample. This increased the 
repeatability of the measurement. The lower (bottom) 
heating plate in the measuring device was pre-heat-
ed to 900°C and then placed below the sample. Both the 
time and temperature were measured on the sample  
level. 
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Fig. 8. Bending strength of tested molding sands

Fig. 9. Elasticity of tested molding sands
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The results are illustrated in Figure 10. 

The thermal deformation of the molding sand with the 
furfuryl resin has a typical pattern, with an intense defor-
mation of the sample (exceeding 4 mm) and its sudden 
destruction at a temperature of about 325°C – the defor-
mation was in the opposite direction to the heat source. 
The deformation of the molding sand with the alkyd 
resin exceeds approx. 1.5 mm, and the sample collapses 
at 266°C – the direction of the deformation was headed 
towards the heat source. The thermal deformation tests 
(hot distortion parameter) showed that the molding sands 
with the hydrated sodium silicate and those prepared in 
the cold-box technology are characterized by better heat 
stability than the molding sands with the furfuryl and 

alkyd resins. Both of the tested mixtures exhibit almost no 
thermal deformation at a temperature range of 0 – approx. 
160°C. After crossing the above-mentioned temperature, 
the samples are subjected to mild deformation until they 
are damaged. The molding sand prepared in the cold-box 
technology is characterized by the longer time needed 
for the sample’s destruction (about 55 seconds), while 
the sample made from the molding sand with the sodium 
silicate begins to degenerate after about 15 seconds. This 
can be advantageous in terms of the time of contact of the 
molding/core sand to elevated temperatures during and 
after the pouring process.

4. CONCLUSIONS

Our own research presented in the paper showed the 
following:

•	 There are various differences in the behavior of molding 
sands exposed to bending forces depending on the type 
of binder used.

•	 The presented research proves that the change of the 
used binder and technology influences the level of mold-
ing sand deformation at ambient temperatures.

•	 The conducted research shows that molding sands with 
inorganic binders that tend to have cohesive type of break-
age, achieve lower values in both deformation at ambient 
temperatures and bending strength when compared to 
organic binders with the adhesive type of breakage.

•	 Molding sands with hydrated sodium silicate and molding 
sands prepared in the cold-box technology are charac-
terized by better heat stability than molding sands with 
furfuryl and alkyd resins. The longer time needed for the 
sample destruction achieved for the molding sand pre-
pared in the cold-box technology can be advantageous in 
terms of the time of contact of the molding/core sand to 
elevated temperatures during the pouring process.

The presented article shows only a fragment of the 
broader research on this topic. The need for seeking new 
testing methods is clearly visible, and the parameter can 
prove to be a valuable asset in choosing the optimal mold-
ing sands for highly mechanized foundries.
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