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Abstract

The capabilities of different constitutive equations of approximating the tensile flow curves and correlating plastic behavior 
with the microstructure were investigated in austempered ductile iron ADI 1050. In a previous paper, the microstructure evo-
lution of ADI 1050 during austempering was investigated through quenching the ADI 1050 after 14 increasing austempering 
times to room temperature. The 14 samples were tensile tested and two classes of constitutive equations were examined in 
the present paper. The Hollomon-type constitutive equations approximated all of the tensile flow curves of ADI 1050 very well 
but failed in correlating the plastic behavior with microstructure evolution. Voce-type constitutive equations approximated the 
tensile flow curves only at high stresses very well but could correlate the plastic behavior with the microstructure evolution of 
ADI 1050 during austempering excellently. The reason of this success was rationalized in terms of the physical basis of Voce- 
-type equations, while Hollomon-type equations are empirical.
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1. INTRODUCTION

Solid state transformations are involved in most material 
industrial production, where a material’s microstructure 
is designed to provide the desired properties. The mini-
mal mechanical properties concerning the plastic behavior 
of metallic materials are yield strength (YS), ultimate ten-
sile strength (UTS), and elongation to rupture (A5) [1, 2]. 
However, an analysis of the tensile plastic behavior through 
appropriate constitutive equations could give more-precise 
information on the material’s microstructure. In fact, flow 
stress and the strain hardening rate (that is, flow stress in-
crease with straining) are sensitive to a material’s micro-
structure, so a plastic behavior analysis can be used to fol-
low solid state transformations like austempering in ductile 
irons (DIs) [3–15].

Austempered ductile irons (ADIs) are ductile irons pro-
duced through proper alloying and heat-treatments, and they 
present excellent mechanical properties due to an ausferrit-
ic microstructure consisting of BCC a ferrite Widmanstätten 
acicular laths and metastable FCC g with a high content 
of C (commonly indicated as gHC) [11]. The austemper-
ing process consists of austenitization at high tempera-
ture (800–920°C) followed by quenching and holding the 
material in a salt bath at lower temperatures (250–400°C) 
for austempering transformation g → a + gHC [8, 13], with 

a final quenching to room temperature. However, for lon-
ger austempering times, the high-carbon austenite decom-
poses into ferrite a and carbide Fe-C e’ [10, 11], causing the 
embrittlement of ADI. So, optimal ausferrite is produced 
after proper austempering times that define a time interval 
called the process window [14, 15].

Several constitutive equations have been proposed to 
describe the tensile flow curves at room temperature of 
metallic materials. These equations can be classified into 
two main categories: a) Hollomon-type equations, which 
are power law relationships between true flow stress s and 
true plastic strain ep (Hollomon [16], Swift [17], Ludwik [18], 
and Ludwigson [19]); and b) Voce-type equations, which 
are exponential decay relationships between s and ep (Voce 
[20], Sah [21]). Though all of these constitutive equations 
have been proposed as empirical equations, Hollomon-type 
equations have no specific physical bases, whilst Voce-type 
parameters can be related to microstructural features, since 
a wide body of research results have given physical mean-
ing to the differential forms of Voce-type equations [22–27] 
(which are also known as dislocation-density-related con-
stitutive equations) [26].

The present paper aims to compare the results from 
using different constitutive equations in analyzing the 
tensile plastic behavior of an ADI 1050 quenched to 
room temperature after 14 different austempering times.  
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The microstructure evolution of ADI 1050 was deeply 
investigated through optical microscopy (OM), the elec-
tron backscattered diffraction (EBSD) technique, and 
transmission electron microscopy (TEM); these results 
have been reported elsewhere [15]. When ADI 1050 was 
quenched before the austempering transformation ended, 
a significant fraction of hard and brittle martensite was 
also found in ausferrite, while carbides Fe-C e’ were found 
after quenching to room temperature after too-long aus-
tempering times [15]. The tensile plastic behavior of ADI 
1050 is expected to reflect the different microstructures 
obtained after quenching at different austempering times. 
The comparison concerned two aspects: a) the capability 
of the constitutive equations to approximate the tensile 
flow curves; and b) the capability of correlating the con-
stitutive equation parameters to the different microstruc-
tures in order to describe the austempering evolution of 
ADI 1050 reported in [15].

2. MATERIAL AND RESEARCH METHODOLOGY

ADI 1050 [2] with a nodular graphite volume fraction of 
10 ± 1 % was first austenitized then quenched and held 
in a salt bath at the austempering temperature and fi-
nally quenched to room temperature after 14 different 
increasing times (t1, t2, ..., t14). The austempering times 
were selected in order to stop the austempering trans-
formation before its end, to have proper ausferrite after 
the end of austempering, and to have carbides Fe-C e’ af-
ter longer austempering times. The actual values of the 
austempering times are not indicated and arbitrary units 
are reported, as the aim of the investigation concerns 
the capabilities of different constitutive equations to ap-
proximate the tensile flow curves from ADI 1050 with 
different microstructures and correlate the constitutive 
equation parameters with the microstructure. Detailed 
results concerning the microstructure evolution results 
are reported in [15]. The ADI 1050 microstructure after 
the proper austempering time is reported in Figure 1a.  
It comes into nodular graphite (black) with ausferrite con-
sisting of a (bright) and gHC (dark) lamellae.

Tensile tests were carried out complying to ASTM E8-8M 
at room temperature and strain rate 10−4 s−1 on samples 
with initial gauge diameter do = 12.5 mm and gauge length 
lo = 50 mm. True stress s vs. true strain e were considered, 
which are s = S·(1 + e) and e = ln(1 + e), with S and e the 
engineering stress and strain, respectively. For strain 
hardening analysis, only the plastic component of strain 
was considered through subtracting elastic strain ee = s/E 
(E is the experimental Young modulus) to overall strain 
e, which is ep = e – ee. Constitutive equations were fitted 
to the true plastic flow curves before the Considére’s cri-
terion, which is ds/dep = s if it occurred, as beyond this 
condition, the flow curves were not representative of the 
material’s behavior. In Figure 1b, selected tensile flow 
curves s vs. ep of the 14 ADI 1050 samples are reported.

The shapes of the flow curves changed significant-
ly during the austempering transformation. During the 
early stages of austempering, that is, the austempering 

time interval (t1–t4), when austempering was not ended 
and the volume fractions of martensite obtained with 
quenching to room temperature decreased [15], the ten-
sile flow curves had specific shapes with pronounced 
concavity. Beyond t4, the elastic-plastic transition was 
sharper and the flow curves increased slowly, showing 
a little concavity. Apparently, no significant change of 
plastic behavior took place between t6 and t14, even if car-
bides Fe-C e’ were observed at t14 [15]. Indeed, YS, UTS, and 
elongations to rupture vs. austempering time also did not 
show any trend that could relate the mechanical proper-
ties to the ADI 1050 microstructure’s evolution during  
austempering [15].

3. THEORETICAL BACKGROUND:  
CONSTITUTIVE EQUATIONS

3.1. Hollomon equation [16]

The Hollomon equation is defined as:

H p
nKs = ⋅e (1)

where:

KH
– strength coefficient, MPa; 

n – strain hardening exponent.

Hollomon parameters KH and n are found through plot-
ting the experimental s – ep data in a Log-Log plot. 

Fig. 1. ADI 1050: a) proper ausferritic microstructure with graph-
ite nodule (black), a (bright) and gHC (dark); b) selected tensile flow 
curves of samples after different austempering times

a)

b)
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Since a proper linear region is generally not found in 
the Log(s) – Log(ep) data, the strain range on which the 
Hollomon equation has to be fitted is arbitrary. In the pre-
sent work, the Hollomon equation was fitted to the tensile 
flow curves beyond strain ep,in = 0.002 until the strain to rup-
ture or the strain of Considére’s criterion.

3.2. Ludwigson equation [19]

Among all the other Hollomon-type constitutive equations, 
the Ludwigson one is considered here because of the suc-
cessful use in describing DI’s flow curves [10, 28, 29]. The 
equation is defined as:

( )expH p o L L p
nK K K ns = ⋅e ± ⋅ + ⋅e (2)

where:

KH – strength coefficient, MPa;
n – strain hardening exponent;

Ko
– 1 MPa (for dimensional consistency);

KL
– dimensionless parameter;

nL
– dimensionless parameter.

The exponential part (conventionally indicated as D) has 
been introduced to improve the usual significant bad fitting 
at small strains of the Hollomon part with the experimental 
s – ep data.

3.3. Voce equation [20]

The Voce equation is defined as:

( )0 exp p
v v

c

 e 
s = s + s −s ⋅ −  e 

(3)

where:

sV – saturation stress, MPa;
ec – characteristic transient strain;
so – back-extrapolated stress at ep = 0, MPa.

sV is achieved asymptotically with straining, ec defines the 
rate with which sV is approached, and so is the stress at ep = 0.  
sV can be defined as the theoretical strength achievable if no 
geometrical instabilities occurred during mechanical test-
ing (that is, necking in tensile testing). The differential form 
of Equation (3) is:

v
v

p c c c

d
d

ss s s
= − =Q −

e e e e (4)

where:

QV – back-extrapolated strain hardening rate at  
s = 0, MPa.

According to Equation (4), there is a linear relationship 
between (ds/dep) and s, since QV and (1/ec) are constant 
during straining [22–24]; so, a linear region in the plot  
(ds/dep) vs. s of the experimental data has to be found to 
work out parameters QV and (1/ec) (which usually occurs 
at high stresses). Finally, so is determined by fitting 
Equation (3) to the experimental tensile flow curves, with 
(1/ec) and sV found from the strain hardening analysis.

3.4. Kocks–Mecking–Estrin (KME) equation

When the material has a high density of precipitation and 
interfaces obstructing the dislocation motion [24, 26], the 
following equation should be used:

( ) p
E E

c

1
2

2 2 2
0 exp

 e 
s = s + s −s ⋅ −  e 

(5)

where:

sE
– saturation stress, MPa;

ec – characteristic transient strain;
so

– back-extrapolated stress at ep = 0 MPa.

Though this equation was first proposed by Sah [21] for 
describing high temperature flow curves, Kocks–Mecking 
and Estrin [22–27] later gave the basis for its physical 
interpretation; here onwards, Equation (5) is called the 
KME equation. Analogously to the Voce equation, sE is 
the saturation stress that is achieved asymptotically with 
straining, ec is the characteristic transient strain that 
defines the rate with which sE is approached, and so is the 
back-extrapolated stress at ep = 0. Also in this case, sE can 
be defined as the theoretical strength achievable if no geo-
metrical instabilities occurred during mechanical testing. 
In order to find the characteristic equation parameters, 
the plot (2s·ds/dep) vs. s2 has to be analyzed [24, 26]. In 
fact, the differential form of Equation (5) is:

2 2 2

2 E
E

p c c c

d
d

ss s s
s = + =Q −

e e e e (6)

where:

QE – back-extrapolated squared strain hardening 
rate at s = 0 MPa

According to Equation (6), there is a linear relation-
ship between (2s·ds/dep) and s2, since sE and (1/ec) are 
constant during straining. Therefore, the s – ep range 
to fit the Estrin equation is not arbitrary, but a linear 
region in the experimental data (2s·ds/dep) vs. s2 has to 
be found (which usually occurs at high stresses). Finally,  
so is worked out by fitting Equation (5) to the experimen-
tal tensile flow curves, with (1/ec) and sE found from the 
strain hardening analysis.
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4. RESULTS

4.1. Hollomon-type constitutive equations:  
fitting results

The fitting procedures of the Hollomon and Ludwigson  
equations with the resulting curves that best approximated 
in the experimental tensile flow curves of ADI 1050 after the 
selected austempering times are reported in Figures 2–4. 
Initial strain ep,in for the Hollomon parameter determination 

was set to 0.002 for all flow curves. The best Hollomon fit for 
the experimental tensile flow curve at austempering time t7 
is reported in Figure 2, for example. The fits did not approx-
imate the experimental flow curves perfectly. Similar results 
were found for tensile flow curves from the other austem-
pering times regardless of the presence of martensite at 
short austempering times or carbides Fe-C e’ at t14 [15].

Two examples of Ludwigson equation fits are report-
ed in Figures 3 and 4 for austempering times t1 and t7, 
respectively. 

Fig. 4. Tensile flow curve data of ADI 1050 at austempering time t7: a) Log(s) vs. Log(ep) with Ludwigson best linear fit with ep,Holl = 0.074  
for Hollomon part determination; b) experimental tensile flow curve with the best approximating Ludwigson equation

a) b)

Fig. 2. Tensile flow curve data of ADI 1050 at austempering time t7: a) Log(s) vs. Log(ep) with Hollomon best linear fit with ep,in = 0.002;  
b) experimental tensile flow curve with best approximating Hollomon equation

a) b)

Fig. 3. Tensile flow curve data of ADI 1050 at austempering time t1: a) Log(s) vs. Log(ep) with Ludwigson best linear fit with ep,Holl = 0.018  
for Hollomon part determination, while D is exponential component of Ludwigson equation Eq. (2); b) experimental tensile flow curve with 
best approximating Ludwigson equation

a) b)
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In this case, there is no ambiguity in the choice of the 
strain ranges for the Hollomon parts of Equation (4). In 
fact, beyond ep,Holl = 0.018 for t1 and 0.074 for t7 until rup-
ture, there was linearity in the plot Log(s) vs. Log(ep). 
Exponential part D was negative for the t1 flow curve 
and positive for t7. Compared to the Hollomon equation, 
Ludwigson equations appeared to excellently approxi-
mate the experimental flow curves from yielding to rup-
ture. Similar results are for the tensile flow curves from 
the other austempering temperatures regardless the 
presence of martensite at short austempering times or 
carbides Fe-C e’ at t14 [15].

4.2. Voce-type constitutive equations:  
fitting results

The procedures for determining the best Voce and KME 
equations of the tensile flow curve of ADI 1050 after select-
ed austempering time t7 are reported in Figures 5 and 6, 
respectively. In the Voce procedure, the best linear fit was 
applied to the linear region of the differential data (ds/dep) 
vs. s at high stresses in Figure 5a, while for the KME equa-
tion, the best linear fit was applied to the linear region of 
the differential data (2s·ds/dep) vs. s2 at high stresses in 
Figure 6a. Though the best fits were excellent at high stress-
es, both the Voce and KME equations failed at low stresses 
(and small strains).

4.3. Hollomon-type constitutive equations:  
correlation between constitutive equation 
parameters and microstructure evolution

The parameters of the Hollomon-type constitutive equa-
tions were found for all of the tensile flow curves from the  
14 samples of ADI 1050 quenched from austempering to 
room temperature. Then, the parameters were plotted 
against the austempering time in Figures 7–10. In Figure 7, 
Hollomon parameters KH and n decreased continuously from 
the beginning of austempering until the end of the transfor-
mation. The KH and n trends seemed to indicate that, after 
the early stages of the transformation, , that is, the austem-
pering time interval (t1–t4), when significant volume frac-
tions of martensite were produced through quenching [15], 
the plastic behavior of ADI 1050 was independent on longer 
austempering times, showing no particular trend that could 
indicate the achievement of optimal ausferrite at interme-
diate austempering times or the precipitation of carbides  
Fe-C e’ at t14 [15].

The characteristic parameters of the Ludwigson equation 
are reported in Figure 8. KH and n showed a clear decrease 
with austempering time, that is, the austempering time 
interval (t1–t4), while KL and nL did not show any particular 
trend. Though the significant reduction of KH and n at short-
er austempering times was consistent with the martensite 
volume fraction reduction, no change of the Ludwigson 
parameters related to carbide Fe-C e’ precipitation at longer 
times could be detected. 

Fig. 5. Tensile flow curve data of ADI 1050 at austempering time t7: 
a) (ds/dep) vs. s with differential Voce best linear fit at high stresses;  
b) experimental tensile flow curve with best approximating Voce 
equation

a)

b)

Fig. 6. ADI 1050 at austempering time t7: a) (2s·ds/dep) vs. s2 with 
differential KME best linear fit at high stresses; b) experimental 
tensile flow curve with best approximating Estrin equation

a)

b)
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Fig. 7. Characteristic parameters of Hollomon equation: a) strength coefficient KH vs. austempering time; b) strain hardening exponent n  
vs. austempering time

a) b)

a) b)

Fig. 8. Characteristic parameters of Ludwigson equation: a) KH vs. austempering time; b) n vs. austempering time; c) KL vs. austempering time; 
d) nL vs. austempering time

c) d)

Fig. 9. Characteristic parameters of Voce equation: a) QV vs. austempering time; b) (1/ec) vs. austempering time

a) b)
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4.4. Voce-type constitutive equations:  
correlation between constitutive equation 
parameters and microstructure evolution

Voce parameters QV and (1/ec) in Equation (4) and KME 
parameters QE and (1/ec) in Equation (6) are reported in 
Figures 9 and 10, respectively. In Figure 9, the Voce pa-
rameters seemed to be consistent with the microstruc-
ture evolution of ADI 1050 during austempering. QV and  
(1/ec) decreased initially according to the martensite vol-
ume fraction reduction and increased slightly with longer 
austempering times, showing minima approximately at 
the same austempering time (t9). The change of the plas-
tic behavior at longer austempering time was consistent 
with the carbide Fe-C e’ precipitation observed through  
TEM at t14 [15].

Also, KME parameters QE and (1/ec) decreased initial-
ly according to the martensite volume fraction reduction 
and increased slightly with longer austempering times, 
showing minima approximately at the same austemper-
ing time (t9), consistent with the Voce equation. Therefore,  
the KME parameters also seemed to be consistent with 
the microstructure evolution of ADI 1050 during the aus-
tempering reported in [15].

5. DISCUSSION

5.1. Capability of constitutive equations  
in approximating tensile flow curves

A comparison among the different constitutive equa-
tions on the capabilities of approximating the tensile flow 
curves of ADI 1050 with different microstructures was 
reported in Paragraph 4.1. The Hollomon fitting proce-
dure was straightforward, even if the arbitrariness on 
determining the experimental strain range on which the 
Hollomon equation could be fitted was a drawback (since 
the Hollomon parameters depend on ep,in). However, the 
Hollomon equation provided good approximations of the 
whole tensile flow curves of ADI 1050. The Ludwigson 
fitting procedure was more-complex; however, there 
was no arbitrariness in the experimental strain range 
on which the Hollomon parts of Equation (2) were fitted. 

Indeed, the Ludwigson equation excellently approximated 
all of the tensile flow curves of ADI 1050 with different 
microstructures from yielding to rupture. These results 
agree with the evidence already reported in the literature  
on DIs [10, 28, 29].

The fitting procedures of the Voce-type equations 
were more-complex since the differential data had to 
be considered and the linear regions had to be found for 
fitting the differential forms of the Voce and KME equa-
tions. However, at low stresses, considerable parts of the 
experimental differential data were not well-described 
by Equations (4) and (6), while the fits at high stresses 
were excellent. As a consequence, the experimental ten-
sile flow curves in Figures 5b and 6b were well-fitted with 
the Voce-type equations only at high strains. This dis-
crepancy at low stresses has also been reported in ductile 
materials like copper [23] and stainless steel [30] and has 
been attributed to a transient of the dislocation structure 
evolution with straining [23, 30]. In DIs the interpretation 
of this discrepancy could be more-complex, since soon 
after yielding the decohesion of the interface between the 
graphite nodules and the matrix occurs. This decohesion 
gives rise to the nucleation of voids that then grow, and 
finally coalesce, which should significantly affect the DIs 
tensile flow curve. However, despite the large damage 
because of the void coalescence, no dramatic drop of ten-
sile stress occurs in DIs [31, 32]. Indeed, a detailed strain 
hardening investigation has proven that the tensile flow 
curves of DIs at high stresses are representative of the 
microstructure of DIs [33], so Voce-type equations could 
be fitted to the experimental flow curves at high stresses 
(high strains). However, further investigations should be 
needed to rationalize the contribution of the void nucle-
ation to the flow curves at yielding.

However, despite the fact that the Ludwigson equation 
described excellently the whole tensile flow curves, there 
is indeed a fundamental problem with the application 
of the Hollomon-type equations. The fitting procedures 
to find the equation parameters are based on Log(s)  
vs. Log(ep); that is, on plastic strain ep that is an ill-defined 
parameter [22, 34] since it depends on the thermo-me-
chanical history of the material (heat treatments and 
pre-strain). 

Fig. 10. Characteristic parameters of KME equation: a) QE vs. austempering time; b) (1/ec) vs. austempering time

a) b)
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For instance, if the sample ADI 1050 at t7 was hypotheti-
cally reloaded during tensile testing after 0.060 and 0.075, 
two other flow curves that are distinct from the mono-
tonic flow curve can be found (as reported in Figure 11).  

The Ludwigson and Voce equations could be fitted on the 
reloaded flow curves to work out the equation parameters. 
In Table 1, the results of KH and n for the Ludwigson equa-
tion and sV and (1/ec) for the Voce equation are reported 
together with the results from the monotonic curve for 
comparison. The Ludwigson parameters change signifi-
cantly with increasing pre-strain, and the percentage 
variations achieve –17.2% for KH and –62.7% for n after 
the pre-stain 0.075 with respect to the monotonic equa-
tion parameters. This proves that the Ludwigson param-
eters are not material constants since they depend on 
the pre-strains (the mechanical history). This is true for 
all Hollomon-type equations since their fitting proce-
dures are based on strain. On the contrary, the applica-
tion of Voce-type equations is based on the analysis of the 
experimental differential data (ds/dep) vs. s, which have 
been reported to be in good approximation independent 
on the thermo-mechanical history of materials [22, 34]. 
Consistently, Voce parameters QV and (1/ec) of each reloaded 

tensile flow curve are similar in the range of the experi-
mental error of the differential analyses, being the per-
centage variations with respect to monotonic equation 
parameters –5.6% for Qo and –8.1% for (1/ec) after the  
pre-stain 0.075. So, Voce parameters QV and (1/ec) (and 
QE and (1/ec) for the KME equation for which the fitting  
procedure is also based on differential data analysis) are 
material constants independent of the pre-strains.           

5.2. Capability of constitutive equations  
in correlating equation parameters  
and microstructure

A comparison among the constitutive equations on their 
capabilities of correlating the plastic behavior with the mi-
crostructure evolution of ADI 1050 during austempering 
was reported in Paragraph 4.2. The Hollomon-type equa-
tion parameters in Figures 7 and 8 could describe the ADI 
1050 microstructure evolution reported in [15]. Though 
general decreasing trends of the Hollomon-type parame-
ters at short austempering times, that is, the austemper-
ing time interval (t1−t4), seemed to be consistent with the 
martensite volume fraction reduction, the trends did not 
catch the carbide Fe-C e’ precipitation at t14 [15]. The rea-
son for the failure in the correlating plastic behavior with 
the microstructure evolution has to be attributed to the 
empirical nature of Hollomon-type constitutive equations. 
Indeed, attempts have been made to provide a physical in-
terpretation of the Ludwigson equation [19]. The Hollomon 
part of Equation (2) was related to the proper dislocation 
cell structure built up during deformation, while the ex-
ponential part at low stresses (small strains) was related 
to the planar slip with no dislocation structure typical of 
low stacking fault materials like stainless steel [35, 36].  
However, as reported in Figures 3 and 4, exponential 
deviation D of Equation (2) can be positive or negative, 
confirming the lack of real physical bases. However, 
as proven above, the determination of the parameters 
through using fitting procedures where the plastic strain 
is considered is the most-significant confirmation of 
a lack of physical bases of the Hollomon-type equations. 

Curve

Ludwigson parameters Voce parameters

KH,  
MPa

ΔKH,  
% n Δn,  

%
Qo,  

MPa
ΔQo,  

% 1/ ec
Δ(1/ ec),  

%

Monotonic 1812.4 – 0.193 – 7559.2 – 4.54 –

First reload 1659.5 −8.4 0.127 −34.2 7008.2 −7.3 4.06 −10.6

Second reload 1501.5 −17.2 0.072 −62.7 7133.2 −5.6 4.17 −8.1

Table 1	  
Ludwigson and Voce equation parameters found through fitting flow curves of ADI 1050 at austempering time t7 in Figure 11 after two different 
reloadings: first, after ep = 0.60, and second, after ep = 0.75. Percentage variation D (%) of parameters are calculated with respect to monotonic 
parameters

Fig. 11. ADI 1050 at austempering time t7: monotonic curve and 
hypothetical reloaded flow curves after 0.060 and 0.075 pre-strains
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Conversely, Voce-type constitutive equation parame-
ters could describe the ADI 1050 microstructure evolu-
tion during austempering. Even if the Voce equation was 
first proposed as an empirical equation in 1948 [20], the 
mechanistic interpretation of strain hardening proposed by 
Kocks–Mecking [22–24] and Estrin [25–27] (see [14, 15, 37] 
for DIs) has given physical meaning to the differential 
forms of Voce and KME equations (Eqs. (4) and (6), re-
spectively). The characteristic parameters of these equa-
tions can be correlated to the dislocation theory and mi-
crostructure of materials, and they are in fact well-known 
as dislocation-density-related constitutive equations [26] 
(among which, the Voce equation is the best-known). On 
these physical bases, parameters QV and QE are athermal 
components of strain hardening because of dislocation 
multiplication and storage and are inversely proportional 
to the mean free path of mobile dislocations that, in turn, 
are correlated to microstructural features like dislocation 
cells, average grain size, and average spacing λ between 
the geometric obstacles and precipitates. Based on the 
KME equation, a detailed calculation of l with austemper-
ing time in the present ADI 1050 is reported in [15]. The 
found values of λ were numerically consistent with the 
ADI 1050 microstructure. The dynamic recovery terms 
(1/ec) depend strongly on the dislocation properties and, 
in turn, on the crystallographic lattice where the mo-
bile dislocations move. The crystallographic structure, 
chemical composition, and stacking fault energy are the 
parameters that mainly affect the dislocation cores and, 
as a consequence, the dynamic recovery rate [24, 38]. 
So, Voce-type constitutive equations have robust phys-
ical bases, which explains their capability of correlating 
plastic behavior with the microstructure evolution in  
ADI 1050 during austempering.

6. CONCLUSIONS

A comparison among different constitutive equations on 
their capabilities of approximating the tensile flow curves 
of ADI 1050 with different microstructures as well as the 
correlating plastic behavior and ADI 1050 microstructure 
evolution during austempering have been reported. The 
following conclusions can be stated:

•	 though the Hollomon equation could fit the tensile flow 
curves of ADI 1050 with different microstructures from 
yielding to rupture quite well, the Ludwigson equa-
tion fits of the experimental tensile flow curves were 
excellent;

•	 Voce-type equations perfectly fit the tensile flow curves 
at high stresses (high strains) while failing at low stress-
es (small strains) soon after yielding;

•	 though Hollomon-type equations better fit the tensile 
flow curves, it should be kept in mind that Hollomon-
type equation parameters are not material constants 
but depend significantly on the mechanical history (an 
example of the pre-strain effects on the equation pa-
rameters was given);

•	 Voce-type equations could excellently correlate plastic 
behavior with the microstructure evolution of ADI 1050 
during austempering, while the Hollomon-type equa-
tions failed;

•	 the reason for this success is due to the physical bases of 
the differential forms of Voce-type equations.

In conclusion: if the aim is to approximate all of the 
tensile flow curves of ADI 1050, the Ludwigson consti-
tutive equation should be used, even if the limits related 
to the empirical nature of the equation should always be 
remembered. For microstructure investigations, Voce- 
-type equations have to be used because of their robust 
physical bases and can be useful tools in validating the 
solid state transformations involved in material industri-
al production.
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