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Abstract
This paper investigates the microstructural and mechanical properties of copper metal matrix composites reinforced with 
B4C and crushed sea shell particles (fabricated using powder metallurgy). In powder form, copper is widely used in structu-
ral applications. Copper also possesses very good electrical and thermal conductivity, ductility, and corrosion resistance. B4C 
is the third-hardest-known material that also possesses excellent toughness and wear resistance. Sea shells are readily ava-
ilable along coastal areas. Therefore, an attempt has been made in this work to investigate the feasibility of its utilization in 
powder metallurgy. Two batches of samples were prepared. In the first batch, the percentage of boron carbide and copper 
powder were varied, and seashell powder was not included. In the second batch, the percentages of B4C, copper, and sea shell 
powder were varied in order to assess the change effected by the sea shell material. The sintered samples of both batches 
were subjected to microstructural characterization to ascertain the homogeneous distribution of the reinforcements. The 
microhardness and wear resistance of all of the fabricated samples were assessed. The results confirmed that the inclusion 
of 2% sea shell powder (by weight) with 10% boron carbide improved the wear resistance and hardness of the composite. 
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1. INTRODUCTION

Components for switch gears were converted from 
wrought copper to copper P/M parts to achieve a con-
siderable reduction in cost while still maintaining good 
electrical conductivity. These components are used in 
switch boxes with capacities of up to 600 amperes [1, 2]. 
Because of its excellent thermal conductivity, a P/M cop-
per component weighing 1/2 pounds was selected for 
a heat sink in an electronic application. Components for 
150- and 250-ampere fuse blow-outs (used in coal min-
ing equipment) were converted from machined copper 
bar stock to a P/M copper part. Although drilling and tap-
ping were still required, the conversion resulted in a cost 
saving of about 25% [3–5]. Materials such as silver and 
gold have physical properties higher than that of cop-
per, but they are not economical when compared to the 
cost for utilizing them in the manufacturing sector [1]. 
Elemental powders like copper are more compress-
ible, which helps produce compacted objects with good 
strength. Aerospace automotive drive shafts, ground 
vehicle brake rotors, and explosive engine components 
widely use copper [3]. Copper and copper alloy P/M parts 
can be pressed and sintered to their final shape and size, 
usually with the desired surface finish and with no draft 

angles [6, 7]. They can also be sized to close tolerances 
by coining or repressing, thus eliminating much of the 
machining required when other metal-forming proce-
dures are used. They can be machined, plated, and joined 
by brazing, and some of the alloys can be heat-treated 
to enhance their properties [8]. Using commercial au-
tomatic presses, copper and copper alloy P/M parts can 
be produced rapidly and accurately at an average rate of  
1000 parts per hour. Some very simple shapes have been 
produced on rotary compacting presses at rates as high as 
63,000 parts per hour [9]. Sizes can range from miniature 
parts smaller than the ball of a ball-point pen to bearings 
weighing over 100 pounds. The physical and mechani-
cal properties of copper and copper alloy P/M parts are 
comparable with those of cast and wrought copper-based 
materials of a similar composition. However, the P/M 
process allows for a flexibility that the other processes 
do not possess [10, 11]. Parts can be produced that vary 
in density from the low-density required for self-lubri-
cating bearings or filters to nearly the theoretical density 
of wrought parts. P/M parts are produced with a mini-
mum of raw material loss and greatly reduced processing 
wastes, resulting in a new approach towards lowering 
overall costs. As a further advantage, there is no pollu-
tion of the environment in the production of P/M parts.  
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The properties of P/M parts are influenced by the densi-
ty attained. Densification can be increased by addition-
al operations such as double pressing-double sintering  
or forging [12]. In the present work, 99% commercial-
ly pure copper powder of a size of 75 microns was used 
along with boron carbide and crushed sea shell powder 
for fabricating the composite. Since sea shells are read-
ily available in coastal areas, the effect of sea shell pow-
der on the microstructural and mechanical properties of  
Cu-base MMC was investigated. Two batches of samples 
were produced by varying the percentage weight of bo-
ron carbide alone in the first batch. Ground sea shell pow-
der was added to the second batch of samples, and the 
percentage weight of both reinforcements were varied  
to understand the effect of sea shell powder. Metallo- 
graphic characterization of the fabricated samples was 
done using optical microscopy. The hardness and wear 
resistance of the composite samples were assessed by 
subjecting them to Rockwell hardness and Pin on Disc 
tests, respectively.

2. EXPERIMENTAL

2.1. Powder and die preparation

Commercially available pure copper powder of A 75-mi-
cron mesh size was purchased from Alfa Aesar. Boron 
carbide powder was also procured from the same manu-
facturer. Sea shells available along the shores of the Bay 
of Bengal near Puducherry, India, were collected and sub-
jected to a rigorous cleaning procedure to remove all im-
purities. The sea shells were crushed into a fine powder 
using a ball mill and then sieved to a size of 250 microns. 
These powders were then blended as per requirement 
to prepare to batches of samples with and without sea 
shell powder. The setup used for producing the PM billets  
was comprised of a die, bed, lower punch, upper punch, 
ejecting block, and ejecting rod (as shown in Figure 1).  
EN24T steel was used to fabricate the compacting set- 
up. EN24T is generally used in components such as gears, 
shafts, studs, and bolts, and its hardness is within a range 
of 248/302 HB [13]. Figure 1 shows the die and its compo-
nents utilized for this work.

2.2. Fabrication of B4C-sea shell-copper 
metal matrix composite

The copper metal matrix composites were prepared in two 
batches. The first batch did not contain sea shell powder, 
whereas it was included in the second batch of samples. In 
the first batch, copper powder of 100%, 98%, 96%, 94%, 
92%, and 90% compositions and boron carbide powder 
of 2%, 4%, 6%, 8%, and 10% (by weight) were blended.  
The second batch of samples contained copper in the pro-
portions of 98%, 96%, 94%, 92%, and 90%. Boron carbide 
of 2%, 4%, 6%, 8%, and 10% as well as sea shell powder of 
10%, 8%, 6%, 4%, and 2% (by weight) were also blended 
in a conical flask using a mechanical blender. Each sam-
ple was compacted in a uni-axial universal testing ma-
chine with a pressure of 260 MPa in order to obtain sam-
ples of a size of 20 mm in diameter and 10 mm in length. 
The green compacts were then subjected to sintering. 
Sintering is done to bond the metallic particles, thereby 
increasing the strength and hardness of the final product. 
This is usually carried out at temperatures between 70% 
and 90% of the metal’s melting point [14–16]. However, 
the hardness of the sintered part increases remarkably 
when the density of the sintered part becomes smaller [9]. 
The compacts were then placed in silica crucibles filled 
with fine sand and kept in a muffle furnace for 6 hours at 
a temperature of 900°C and then allowed to cool down in 
the furnace itself [17]. The detailed composition of each 
sample is present in Table 1.

Fig. 1. Die and its components

Table 1	  
Sample chemical composition details

Sample Details Copper,  
%

B4C,  
%

Sea shell 
powder,  

%

Without  
adding of 
sea shell

0A 100 0 0

1A 98 2 0

2A 96 4 0

3A 94 6 0

4A 92 8 0

5A 90 10 0

Adding of 
sea shell

1B 98 2 10

2B 96 4 8

3B 94 6 6

4B 92 8 4

5B 90 10 2
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The sintered samples are shown below (Fig. 2). 1A, 2A, 
3A, 4A, and 5A represent the samples without sea shell 
powder, and samples 1B, 2B, 3B, 4B, and 5B were those pre-
pared with sea shell powder. A pure copper sample was also 
prepared in order to compare the properties.

2.3. Microstructural characterization 
and Mechanical testing 

The sintered samples were polished with emery sheets of 
100, 220, 500, 800, and 1200 scales. Fine polishing was 
done on a disc-polishing machine using alumina paste and 
distilled water [18]. A microstructural analysis was per-
formed by an Olympus optical microscope equipped with 
AnaliSys image processing software. The samples were an-
alyzed under various magnifications. Macroscopic and mi-
croscopic images of all samples were captured. All samples 
except the pure copper sample confirmed the homogeneous 
distribution of the reinforcements. An in-depth analysis of 
the samples was done using a Hitachi S-3500 scanning elec-
tron microscope. A qualitative analysis of the samples was 
done using EDS. The results confirmed the presence of all 
elements as per the composition. Each sample was analyzed 
in six places in order to confirm the uniform distribution of 
the particulates. 

The samples were subjected to a dry sand/rubber wheel 
abrasion measurement apparatus as per ASTM G 65-16 [19].  
This method is used to determining the resistance of 

metallic materials to scratching abrasion by means of the 
dry sand/rubber wheel test. It is the intent of this method 
to produce data that will reproducibly rank materials in 
their resistance to scratching abrasion under a specified set 
of conditions. Abrasion test results are reported as volume 
loss. The speed of the steel disc was 200 rotations/min, and 
a 130N load was given to the lever arm. Each sample was 
tested for 5 min, and control box was used to control the 
time and rotations. The abrasive resistance of the samples 
was determined by calculating the difference between the 
weight before the abrasion test and weight after the abra-
sion test given in Formula (1).

Δg = weight before abrasion – weight after abrasion (1)

The hardness of the composites was then measured with 
a Rockwell hardness tester with a 1/16”-diameter steel ball. 
A load of 100 kg was applied, and the hardness was read on 
the “B” scale.

3. RESULTS AND DISCUSSION

3.1. Microstructural characterization  
and composition

The optical micrographs confirmed the presence of boron 
carbide particulates. The micrograph of the pure copper is 
displayed in Figure 3.       

Fig. 2. Sintered samples

Fig. 3. Pure Copper (a) and Boron Carbide (b) in Copper Matrix

a) b)
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The particles are loosely packed due to the lesser weight 
percentage of the boron carbide. The density of the boron 
carbide steadily increased with the increase in weight 
percentage. Figure 4 shows the sample with boron carbide 
along with sea shell powder.

The presence of sea shell powder can be easily figured 
out from this micrograph. The sea shell particles are 
comparatively larger than the boron carbide. Due to the 
presence of large sea shell particles, the boron carbide 
particulates were agglomerated and heterogeneously dis-
tributed. However, in Sample 5B shown in Figure 5, the 
percentage of boron carbide particles was the highest and 
sea shell powder was the lowest. 

Hence, the homogeneous distribution of B4C particu-
lates was observed. A few larger sea shell particulates 
were also noted. The SEM image of this sample presented 
below presents a better view of the uniformly distributed 
fine boron carbide particles.          

3.2. Hardness

From the following graph, it is clear that the hardness 
of the composite increases with the increase in bo-
ron carbide weight percentage. As boron carbide is the 
third-hardest material, it definitely improved the hard-
ness of the metal matrix composite. Figure 6 shows that 
Sample 2 exhibited lowest hardness of 74 on the Rockwell 
B scale. However, this is four times greater than the hard-
ness of pure copper (which was 1B). The hardness value 
continued to improve with the increments of the weight 
percentage, and a maximum hardness of 95 was achieved 
for Sample 5A with 10% boron carbide particles (as shown  
in Figure 7). 

Fig. 4. Boron carbide and sea shell powder in copper matrix

Fig. 6. Micrographs of samples with content of 4% B4C and 8% SS

Fig. 5. Micrographs of samples with content of 10% B4C with 2% SS Fig. 7. Hardness vs composition of samples

Sea Shell

B4C
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This is due to the high dislocation density at the interfa-
ce of the boron carbide and copper grains. Grain boundary 
pinning due to the homogeneously distributed B4C particles 
caused the hardness to increase by restricting the movement 
of the copper grains. This can be confirmed by referring to 
the microstructure of this sample, which reveals a homoge-
neous distribution of the particulates. With the addition of 
sea shell powder, the hardness suddenly plunged to 76 for 
Sample 2B (which had 8% sea shell powder). This is due to 
the large size of the sea shell particles, which failed to pin the 
grain boundary dislocation. However, the hardness improved 
with the reduction in the sea shell powder percentage and 
increase in the boron carbide particles. The maximum hard-
ness of 96 (which was 5 times higher than pure copper) was 
achieved for Sample 5B, which had 10% boron carbide and 
2% sea shell powder. This shows that a very small inclusion  
of sea shell contributes to the improvement in hardness. This 
could be due to the Orowan strengthening mechanism initia-
ted by the less-populated incoherent sea shell particulates. 
The sudden decrease in hardness could also be attributed to 
the voids that were formed due to inhomogeneous consoli-
dation. The SEM image of Sample 2B presented below (with 
4% B4C and 8% sea shell powder) shows an uneven distri-
bution of sea shell particles with voids. This is the reason 
for the sudden drop in the hardness of the composite. The 
effect of the composition of all samples on the hardness of 
the composite is shown in the plot.

3.3. Wear behavior

An analysis of the worn surface morphology was done 
in order to investigate the wear pattern of the metal ma-
trix composites. The analysis of wear tracks revealed 
that both adhesive and abrasive wear mechanisms were 
present, and Figure 8 shows the wear morphology of  
Sample 2B. 

This micrograph of Sample 2B exhibits deep grooves 
caused by adhesion and abrasion on the surface of the 
composite. This sample in particular exhibited the highest 

wear rate. The hardness values are in complete agreement 
with the wear test results. These grooves are bigger in 
size; hence, it is confirmed that they are formed due to the 
delamination of larger sea shell particles (which later paved 
the way for abrasive wear). This extensive delamination 
resulted in the highest wear rate of this sample. The wear 
rate continued to decrease as the percentage composition 
of sea shell powder decreased. The wear-loss trendcould be 
deciphered from the plot presented in Figure 9.

The lowest wear rate was observed in Sample 5B (which 
had 10% B4C and 2% sea shell particles). This reveals that 
boron carbide plays an important role in controlling the 
wear rate. However, the 2% of sea shell particles increased 
the wear resistance by 1% as compared to Sample 5A 
(which also contained 10% boron carbide without  
sea shell particles). This clearly indicates that inclusion 
of sea shell particles at a low percentage enhances the 
hardness and wear resistance of the composites. Hence, 
in this work, the composition of 10% B4C and 2% sea shell 
powder has been deemed the optimum composition for 
obtaining the best hardness and wear resistance.

4. CONCLUSIONS

Copper metal matrix composites reinforced with boron 
carbide and sea shell powder were synthesized success-
fully through the powder metallurgy route. The sintered 
samples were free from porosity and surface defects. The 
hardness of the composite samples reinforced with 10% 
boron carbide and 2% sea shell powder exhibited the max-
imum hardness, which was five times higher than the pure 
copper sample.

The wear resistance of the composites improved with 
increases in the weight percentage of boron carbide but 
deteriorated with increases in sea shell powder composi-
tion. The best wear resistance was observed for the opti-
mal weight percentage of 2% sea shell powder and 10% 
boron carbide. It is concluded that both the hardness and 
wear resistance of the composites improved as compared 
to the pure copper metal matrix composites. 

Fig. 8. Wear morphology of sample 2B
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Fig. 9. Wear loss vs. composition of samples
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