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Abstract

The effect of rapid cooling by the vacuum suction casting method (VSC) on the microstructure and electrochemical 
response of the as-cast 5052 aluminium alloy is presented. The VSC method allowed us to obtain massive samples with  
a very high cooling rate (102 – 103) oC/s. The microstructure of the quick-cooled sample (QC) has been significantly 
changed. Finer grains and more-homogeneous intermetallic phase distribution has been observed. Corrosion potential 
(OCP) and polarization measurements (LSV) revealed a higher activity of the QC alloy than ingot (IN), which leads to  
a denser and thicker corrosion-product formation on the surface. Electrochemical Impedance Spectroscopy (EIS) indi-
cates higher resistance values, which suggests a greater thickness of the corrosion products.
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1. INTRODUCTION 

Aluminium alloys are widely used in many branches of in-
dustry because of their relatively low weight and high me-
chanical properties [1, 2]. For example, AlMg alloys have 
many advantages, like quite-high mechanical properties 
(especially after work hardening), good weldability, and 
very high corrosion resistance as compared to other Al al-
loys. The requirements for construction elements are high; 
thus, corrosion behavior is also very important factor. Many 
problems of the corrosion processes in aluminum alloys are 
related to local processes like pitting [3]. Susceptibility to 
a local corrosion attack is due to the heterogeneous micro-
structure containing intermetallic phases and precipitates 
that are usually present at the grain boundaries. It has been 
shown in several studies that the changes observed in the 
chemical composition between the matrix and precipitates 
are the reason for the differences in the electrochemical po-
tential distribution on the surface in high-conductivity en-
vironments. This promotes galvanic cells formation, which 
leads to local current flows and corrosion processes [4]. It 
has been revealed that some particles that are nobler than 
the matrix may act as cathodes, whereas particles that are 
less noble act as anodes [5–7]. In aluminium alloys, the ca-
thodic character of the intermetallic phases is usually ob-
served. For example, in AlMg alloys, Fe impurities cause an 
Al3Fe intermetallic phase formation, which is more noble 
than the surrounding matrix [8]. This is the reason for the 
anodic dissolution of the adjacent matrix [9]. A strongly 
dissolved matrix (precipitates are usually present in these 

sites) is the reason of decreasing mechanical properties –  
especially at the grain boundaries. Thus, the microstructure 
of a given alloy has a strong influence on corrosion behavior. 

The cooling rate affects the microstructure and causes 
the microstructure to be finer and more homogeneous.  
A finer and homogeneous microstructure has higher 
mechanical factors as well as better corrosion resistance, 
as confirmed by Dorin et al. [10] with double AlFe alloys. 
It has also been proven that higher cooling rates may play  
a key role in improving the corrosion resistance of Al alloys. 
It has been investigated in AlCuMg alloys that rapid cooling 
may inhibit the appearance of Fe-rich phases (or make them 
finer) [11]. Thus, it was interesting to study this effect in 
other aluminum alloy like AlMg.

In this paper, the rapid-cooling process (using the vac-
uum suction casting technique – VSC) influence on the 
microstructure and electrochemical response of the 5052 
aluminium alloy has been described. The VSC method 
allows us to receive a massive sample of any alloy with  
a very high cooling rate, which significantly affects the state 
of the microstructure and properties of a given alloy (as was 
studied for aluminium and other metallic alloys) [12–14].

2. EXPERIMENTAL

2.1. Material preparation

Our experiments were performed on the AlMg2 alloy 
(5052), which is dedicated to work hardening and shows 
relatively high corrosion resistance.
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Two types of samples were prepared from the alloy:  
(1) a sample marked as IN cut from the inner part of the 
ingot with a diameter of 25 cm; and (2) a quick-cooled 
sample (QC) obtained by sucking melted alloy to a cold 
copper mold. This method is called the vacuum suction 
casting method, and it allows us to obtain massive sam-
ples with very high cooling rates. In this case, the sample 
from the ingot was remelted by using an induction coil 
and sucked into the cold copper mold by use of a vacuum 
pump. In this manner, a massive quick-cooled sample with 
dimensions of 3 × 2 × 0.35 cm was prepared (Fig. 1). The 
cooling rate has been estimated at (102 – 103) °C/s.

Before the microstructure recognition and electro-
chemical studies, both the IN and QC samples (each with  
a surface area of about 0.5 cm2) were mechanically pol-
ished using diamond pastes and smoothed with a colloidal 
silica suspension. The samples were then cleaned in etha-
nol and dried in air.

2.2. Surface observations and analysis

LM and SEM/EDS techniques were used to conduct ob-
servations of the surface and analyze the chemical com-
position of both the IN and OU specimens. An LM (Nikon 
Eclipse L100 microscope) was used for the optical ob-
servations of the surface of the specimens. The SEM/EDS 
technique (FEI SEM XL30) was used to observe the sur-
face with high resolution and analyze the local chemical 
element composition. 

2.3. Electrochemical studies

Corrosion behavior studies were performed by using the 
classical electrochemical three-electrode system [15]. In 
this system, the platinum plate was used as a counter elec-
trode, Ag/AgCl (3 M KCl) as a reference electrode, and the 
previously described aluminium alloy specimens act as 
working electrodes. The working surface of the specimens 
used for these measurements was about 0.5 cm2.

As an environment, a 0.1 M NaCl water solution was 
used, and the measurements were conducted at room 
temperature.

To investigate the corrosion behavior of the IN and 
QC samples, linear sweep voltammetry (LSV), corrosion 
potential – open circuit potential measurements (OCP), 
and electrochemical impedance spectroscopy (EIS) were 
employed.

The LSV method is based on recording the current den-
sity response from the tested material according to the 
linear potential growth. This allows us to obtain polari-
zation curves that are characteristic for a given material 
under the given conditions.

The OCP method is a simple measurement of the elec-
trode potential versus the reference electrode.

The principle of EIS measurement consists of apply-
ing a variable signal (usually sinusoidal) to the sample 
with a given instantaneous frequency and amplitude. 
The current response and phase shift are recorded. The 
potential and current values ratio is an impedance that 
provides information about the conditions at the elec-
trode/electrolyte interface.

3. RESULTS AND DISCUSSION

3.1. Microstructure of IN and QC samples

In Figure 2, the optical microscope images are posted of 
the surface of the samples cut from the ingot (a) and the 
QC sample obtained by the vacuum-suction technique (b). 
Both the IN and QC samples were mechanically polished 
and etched in a 2% HF water solution. 

Fig. 1. Schematic drawing of vacuum suction casting process that 
was used to obtain quick-cooled sample (QC)

melting pot
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Fig. 2. Optical images of surface of IN (a) and QC (b) samples after 
etching in 2% HF water solution in order to reveal grain boundaries
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First of all, a large change in the grain size can be 
observed after etching. The structure of the QC sample 
is much finer. Moreover, for the QC specimen, the micro-
structure transformed from equal-axes grains to den-
dritic (Fig. 2). Also, the chemical element distribution has 
been modified after the rapid-cooling process (as revealed 
by SEM/EDS analysis) (Fig. 3). 

It can be seen that, for the ingot (Fig. 3a), the micro-
structure is heterogeneous and coarse, which is caused by 
the slow solidification of the alloy in such a big casting (as 
mentioned, the ingot is 25 cm in diameter). The matrix is 
composed of 98 at.% of Al and about 2 at.% of Mg (Tab. 1). 
There are long and narrow intermetallic phases observed 
that are enriched in Fe. SEM/EDS analysis suggests that it 
is the Al3Fe phase that often occurs in aluminium alloys.

The rapid-cooling process results in changes to the chem-
ical element distribution. The matrix is enriched in the Mg 
and Fe. The precipitates are much smaller-enriched in Mg, 
and they contain lower amounts of Fe (Tab. 1).

Table 1	  
Chemical element composition analysis obtained from sites indi-
cated in Figure 3

Element 
at. %

Figure 3a Figure 3b
Point +1 Point +2 Point +1 Point +2

Al 97.4 86.5 97.3 91.5
Mg 2.2 1.2 2.6 4.7
Fe 0.03 9.5 0.1 3.8

3.2. Electrochemical investigations

Differences in the grain size, chemical composition, and 
precipitate distribution observed between both the IN and 
QC samples may have an impact on the corrosion behavior 
of the 5052 alloy in a chloride environment; thus, electro-
chemical studies in chlorides have been performed.

First, the polarization curves have been plotted with  
a 1 mV/s scan rate (Fig. 4a). As it is seen for the ingot 
(IN; black curve) and quick-cooled (QC; red curve) spec-
imens, a sharp increase in the anodic current density is 
observed in the anodic domain as soon as the corrosion 
potential is reached (no passive range). Both the IN and 
QC samples undergo pitting corrosion, which has been 
proven by the optical images (Figs. 4b and 4c). However, 
the pitting potential registered for the QC specimen (Epit) 
is about –0.6 V vs. Ag/AgCl) is higher when compared to 
IN (pitting starts immediately after corrosion potential 
is achieved); this indicates a slightly better resistance 
against pitting for the QC alloy. Moreover, the struc-
tural etching is observed in the case of IN (while not 
observed for QC). The corrosion potential (Ecorr) is lower 
for the QC specimen (–830 mV vs. Ag/AgCl) than for IN  
(–770 mV vs. Ag/AgCl), which suggests higher electro-
chemical activity of the alloy after rapid cooling. 

Fig. 3. FEM images of surface of IN (a) and QC (b) samples after 
mechanical polishing

Fig. 4. Polarization curves (1 mV/s scan rate) obtained for IN (black 
curve) and QC (red curve) – (a); optical images of IN and QC samples 
respectively, after polarization tests – (b) and (c)
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In order to verify the influence of time on the corrosion 
behavior of the 5052 aluminium alloy after the rapid-
cooling process, the open circuit potential (OCP) has been 
registered after 5, 24, and 48 h of immersion in 0.1 M NaCl 
(Fig. 5). As can be seen, the corrosion potential decreased 
for both IN and QC specimens during 48 h of contact with 
a 0.1 M NaCl environment. This indicates that there are no 
passive-layer-forming processes (no passivation), which 
correlates well with the polarization measurements  
(Fig. 4). Moreover, the corrosion potential is lower for the 
QC specimen, which has been confirmed by previous LSV 
measurements.

Impedance measurements were conducted at the corro-
sion potential (OCP). These measurements were made using 
a sinusoidal signal with an amplitude of 10 mV in a range of 
frequencies from 50 kHz to 10 mHz. EIS studies were per-
formed after 5 h, 24 h, and 48 h of immersion in a 0.1 M NaCl 
water solution in order to observe the kinetics of the corro-
sion processes.

The EIS diagrams obtained for the ingot (Fig. 6a) and 
quick-cooled sample (Fig. 6b) shows two time constants 
(two loops are visible). This infers two electrochemical pro-
cesses at the electrodes/electrolyte interface and is related 
to the nonhomogeneous surface where the anodic matrix 
and cathodic precipitates occur. 

It is clearly seen that, for the QC sample, the impedance 
loops are larger in diameter (resistances are higher) for 
each 5 h, 24 h, and 48 h of immersion when compared to 
the IN sample. This suggests a higher corrosion-product 
resistance in the 5052 alloy after the vacuum suction cast-
ing method. This may be related to the higher activity and 
higher surface density of the precipitates that are present 
in the QC sample. This leads to the formation of a thicker 
corrosion-product layer covering the specimen surface.

The impedance results confirm the earlier measurements of 
the polarization curves obtained for these electrodes (Fig. 4). 
The sample after processing by VSC (QC) has a higher cathodic 
current density and nonlinear (“shredded”) anodic current, 
which may suggest difficulties in the dissolving process of the 
material – associated with the presence of the thicker/more 
resistant corrosion-product layer.

4. CONCLUSIONS

The Vacuum Suction Casting process allowed us to ob-
tain massive samples of the 5052 aluminium alloy with 
a much-finer microstructure when compared to the as-
-cast sample. 

Electrochemical measurements (OCP, LSV) revealed  
a higher activity in the alloy after rapid cooling (QC speci-
men). The higher electrochemical activity causes more-
intensive electrochemical reactions, which leads to the 
higher density and thicker corrosion-product-layer forma-
tion on the QC specimen surface. The higher density and 
thicker corrosion-product layer that covers the surface of 
the QC alloy has been confirmed by the EIS method (higher 
resistances values). Moreover, EIS measurements indicate 
that the thick corrosion-product layer formed in 0.1 M NaCl 
after rapid cooling makes the 5052 alloy more resistant  
to chlorides.

Acknowledgements

The authors gratefully acknowledge the financial sup-
port by the Polish Ministry of Higher Education (Grant no. 
15.11.170.576).

Fig. 6. EIS results obtained for IN (a) and QC (b) specimens during  
48 h immersion test showing electrochemical behavior at electro-
lyte/electrode interface

Fig. 5. Corrosion potential evolution during 48 h immersion test  
in chlorides
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