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Abstract: The aim of the study was to determine changes in the land cover of the Błędów Desert, which is a habitat 
for rare flora and fauna species protected under the Natura 2000 program. Invasive plants, which pose a threat to 
protected species, are present in this area. Additionally, human activities can have negative impacts on the desert 
ecosystem. Therefore, the land manager is obligated to carry out actions aimed at maintaining the appropriate 
size and character of the desert. The analysis was conducted using satellite imagery from the Sentinel-2 mis-
sion, which provides images with high temporal and spatial resolution. The study covered the years 2015–2022 
and took into account seasonal variability due to the presence of green vegetation. Change detection methods 
based on data integration, including photointerpretation and machine learning classification, were used for 
land cover analysis. Five representative land cover classes were defined, enabling a quantitative presentation 
of changes in the Błędów Desert and a  qualitative assessment of the classification performed. The results of 
the study indicate variability in land cover depending on the season, with an increasing number of protected 
plant species, including grasslands. Simultaneously, a slight increase in the desert area was noted, manifesting 
as an increase in sand in forested areas. The results obtained demonstrate the effective implementation of the  
Natura 2000 program objectives.
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INTRODUCTION

Change detection in the natural environment us-
ing machine learning methods and satellite im-
agery has become a  key tool in ecosystem mon-
itoring worldwide. The development of satellite 
technologies and machine learning algorithms 
has enabled data analysis with unprecedented ac-
curacy and detail. Methods such as random for-
est, support vector machines (SVM), or neural 
networks, including deep neural networks, are 

commonly used for land cover classification and 
change analysis. For example, in the article (Furb-
erg et al. 2020) used SVM to monitor changes in 
urban green spaces, which allowed for the accu-
rate identification of vegetation loss due to urban-
ization. A  2016 article, on the other hand, used 
random forest to classify forest types, making it 
possible to identify varieties of tree species from 
satellite imagery (Belgiu & Drăgu 2016).

The use of multispectral satellite imagery, such 
as that provided by the Sentinel-2 and Landsat 
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missions, allows the collection of data in differ-
ent spectral ranges, which is crucial for identi-
fying subtle differences in land cover. Machine 
learning algorithms, with their ability to process 
large amounts of data, are an ideal tool for ana-
lyzing these images, enabling automatic change 
detection and classification of different types of 
coverage. For example, Mountrakis et  al. (2011) 
reviewed the machine learning methods used to 
analyse satellite images, highlighting their effec-
tiveness in monitoring changes in natural and ur-
ban landscapes.

Change detection using machine learning 
methods is particularly important in the con-
text of global climate change and human activi-
ties that affect biodiversity and ecosystem stabil-
ity. Through accurate temporal analyses, it is not 
only possible to understand current changes, but 
also to forecast future trends and threats. In the 
article (Li et  al. 2023) discusses the application 
of machine learning algorithms, including SVM 
and random forest, to monitor land cover changes 
in the context of urban heat islands and climate 
change. Another article (Zennaro et al. 2021) ex-
plores the use of machine learning in climate 
change risk assessment, highlighting the benefits 
of integrating remote sensing data for monitoring 
and forecasting change.

Recent advances in deep learning and machine 
learning have significantly enhanced the efficacy 
of forest classification tasks. However, challeng-
es such as limited model variance and restricted 
generalization capabilities persist, as highlighted 
in the literature. This study aims to improve clas-
sification accuracy by developing a hybrid model 
that integrates deep learning techniques (specifi-
cally ResNet50) and machine learning algorithms 
(particularly XGBoost), demonstrating that this 
ensemble approach outperforms individual meth-
ods like ResNet50, random forest and light gradi-
ent boost machine (Kwenda et al. 2023).

The application of machine learning methods 
in change detection using satellite imagery rep-
resents a significant step forward in environmen-
tal research. These methods not only offer high 
accuracy and precision, but also the possibility of 
large-scale analysis, which is crucial for global en-
vironmental monitoring. The article (Chen et al. 
2022) confirms the effectiveness of these methods 
for urban areas. With the development of satellite 

technology and algorithms, these methods are ex-
pected to play an increasingly important role in 
natural resource management and conservation.

STUDY AREA: BŁĘDÓW DESERT

The Błędów Desert is located in the eastern 
part of the Silesian Upland, between the villag-
es of Chechło, Klucze, Laski, Rudy, and Błędów 
(Fig.  1A). Małopolskie Province contains 86.4% 
of the desert area, with the remainder located in 
the Śląskie Province. The total area of the Błędów 
Desert is 1963.9 ha and constitutes the largest ac-
cumulation of sand and gravel areas in Poland. 
Although it is not a true desert in terms of climate, 
which is similar to that of the adjacent areas, the 
name of the area comes from its characteristic 
landscape (Fig. 1B).

The creation of the desert was the result of an-
thropogenic factors such as the felling of trees, 
which exposed sands carried by glacial waters  – 
a  natural factor. Mining activities further con-
tributed to the lowering of groundwater lev-
els, thus inhibiting vegetation growth. In the  
mid-20th century, the area was ploughed and 
sown, and dust from nearby industrial plants fer-
tilised the soil. Increased water levels, caused by 
the creation of artificial farm ponds near the des-
ert, also contributed to the growth of vegetation 
in the sandy areas (Rahmonov 2001).

The desert area consists of two parts: the north-
ern and the southern, separated by the valley of the 
Biała Przemsza River (Fig. 2). The northern part is 
entirely within a military complex, while the south-
ern part is managed by the Municipality of Klucze 
and the City of Dąbrowa Górnicza. The two parts 
differ in terms of terrain morphology; the northern 
area is flat and the southern area is more varied. To 
the north and south of the desert, the land is cov-
ered with pine forest (Rahmonow 1999).

The Błędów Desert is included in the list of Na-
tura 2000 sites (PLH1200014 Pustynia Błędow-
ska) by virtue of the European Union Commis-
sion Decision of 13 November 2007 (Commission 
Decision 2008/25/EC). The area is protected for 
its rare and protected species of flora and fauna. 
It contains four natural habitats: inland dunes 
with sand grasslands; warm temperate inland 
sand turf, a  priority natural habitat type; fertile 
beech forests, found only in the eastern part of the 
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Fig. 1. Location of the Błędów Desert on a map of Poland (A) and current view (B)

Fig. 2. Contour of the analysis area (red line) against the background of the Open Street Map

desert on the Czubatka Hill; willow, poplar, alder 
and ash forests, occurring in the valley of the Bia-
ła Przemsza River (Regionalna Dyrekcja Ochrony 
Środowiska w Krakowie 2023). 

The Błędów Desert is facing several serious 
threats, which include the covering of sandstone 
sites by alien species that compete with native flo-
ra, which can lead to a reduction in biodiversity.

A B
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Acidification of the soil, a  process that nega-
tively affects soil conditions, making it difficult for 
typical plants in the area to survive. Motor vehicle 
use in habitat areas, motor vehicle traffic destroys 
soil structure and vegetation, contributing to hab-
itat degradation. Waste impacts, environmen-
tal pollution from waste poses a serious threat to 
the health of the ecosystem (Regionalna Dyrekcja 
Ochrony Środowiska w Krakowie 2023).

In response to these threats, the present study 
was conducted to investigate land cover changes 
in the Błędów Desert over the years. The aim of 
the research was to analyse the dynamics of hab-
itat changes in detail, to identify the main factors 
influencing these changes and to assess the effec-
tiveness of conservation measures aimed at pre-
serving the unique natural values of the area. The 
research provides the basis for formulating rec-
ommendations for further conservation and man-
agement measures in the Błędów Desert.

DATA USED IN THE RESEARCH

Sentinel satellite imagery was used in the pres-
ent study. Sentinel-2 was launched under the Co-
pernicus programme, initiated by the European 

Commission and the European Space Agency 
(EOS Data Analytics 2024). 

The land cover change detection analysis was 
carried out for the years 2015–2022. The consec-
utive years were divided into quarters that corre-
sponded to the respective seasons: spring, sum-
mer, autumn, and winter. In addition, dates in 
the corresponding months for each season were 
selected (spring  – March, summer  – June, au-
tumn  – September, winter  – December). Twenty- 
four Sentinel-2 L2A images with a spatial resolu-
tion of 10 m were acquired for the study. The da-
tabase of acquired data is not 100% full (Table 1). 
Most of the imagery is missing from 2018, but the 
imagery acquired from 2019 to 2022 already con-
stitutes a complete input data set.

The missing images in selected periods were 
due to high cloud cover or their unavailability. 
Some of the acquired imagery was not used in the 
study due to overexposure or other interferences 
negatively affecting the analyses. As a result, three 
images were removed. Ultimately, the database 
contained 21 images (Fig. 3). The largest number 
of missing data was recorded in the fourth quar-
ter. No analyses were carried out during the win-
ter season from 2015 to 2018.

Table 1
Timelines of selected Sentinel-2 L2A data for analysis

Year Quarter Month Day Year Quarter Month Day

2015

I – –

2019

I March 24

II – – II June 9

III September 13 III September 22

IV – – IV December 11

2016

I – –

2020

I March 28

II June 29 II June 13

III September 27 III September 21

IV December 16 IV December 15

2017

I March 29

2021

I March 3

II May 31 II June 21

III – – III September 9

IV December 26 IV November 25

2018

I – –

2022

I March 28

II June 7 II June 26

III – – III August 27

IV – – IV January 4
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Fig. 3. RGB color compositions on which analyses were performed

RESEARCH CHARACTERISTICS

In order to better illustrate and facilitate under-
standing of the conducted research, below is 
a flowchart that graphically shows all of the stages 
of data processing employed (Fig. 4). This diagram 

provides a holistic view of the research process, al-
lowing a better understanding of the relationships 
between the various steps. Later in the article, 
each of these steps is described in detail, includ-
ing the methods used, the tools employed, and the 
results obtained.



76

https://journals.agh.edu.pl/geol

Czernik A., Borowiec N., Marmol U.

Fig. 4. The diagram of the next stages of the research

The research began with the photointerpre-
tation of satellite images to identify land cover 
types and changes over time. Photointerpreta-
tion involved the visual analysis of satellite imag-
es, allowing for the identification of various types 
of land cover and their changes over the years. 
During this stage, satellite images were processed 
and analysed for colours, textures, and patterns 
characteristic of different types of land cover. This 
made it possible to distinguish five characteristic 
classes in the study area:
1) sand  – yellow pixel, indicating sand-covered 

terrain;
2) forest  – dark green pixel, indicating areas cov-

ered with high vegetation;
3) bare soil  – dark brown pixel, indicating land 

not covered by vegetation;
4) grasslands  – light green pixel, indicating areas 

covered with low vegetation;
5) turf  – light brown pixel, indicating areas with-

in the sand class that do not exhibit features of 
bare soil or meadow classes.
Although the Biała Przemsza River flows 

through the middle of the Błędów Desert, the de-
cision was made not to distinguish a water class. 
The reason for this was the width of the water-
course, which is about 2–3 m in the field. Working 
with images that have a ground pixel resolution of 

10 m would not allow for the clear distinction of 
this class in this area.

The bare soil class was only analysed in im-
ages from the first and fourth quarters, while the 
meadow class was analysed in images from the 
second and third quarters. This was due to the ab-
sence of these types of land cover in all the time 
periods taken for analysis.

The study used random forest classification, 
a machine learning method that employs a set of 
decision trees to perform classification. This is 
a  non-parametric machine learning algorithm 
based on constructing decision trees. In each node, 
random training fields (bootstrap) are selected, 
which eliminates overfitting and results in the al-
gorithm’s resistance to noise (Mishina et al. 2015).

Random forest classification is a technique that 
requires the precise selection of two key param-
eters: number of training samples and number 
of trees. In the context of this study, the default 
value for the number of training samples is 5000, 
meaning that the regions of interest did not ex-
ceed 5000 pixels. The second key parameter is the 
number of decision trees, which directly affects 
the accuracy of the model. A smaller number of 
trees leads to lower model accuracy, but reduces 
the computation time. Due to the importance of 
this parameter in assessing classification accu-
racy, tests were carried out to optimize it. Based 
on research (Van Anh et al. 2021) an experiment 
was conducted, testing different values of decision 
trees. In this study, the number of trees set to 500 
(ntree = 500) gave satisfactory results, achieving 
an overall accuracy (OA) above 90% and a kappa 
coefficient above 0.90 (Table 2). Overall accuracy 
is a measure that shows the percentage of correct-
ly classified samples relative to the entire dataset. 
The kappa coefficient, on the other hand, is a more 
sophisticated measure of classification consisten-
cy that takes into account random imputations.

Table 2
Results of classification accuracy tests for different values of 
the tree number parameter

Model parameter 13.09.2015 27.09.2016 29.03.2017

ntree 300 500 300 500 300 500

OA [%] 84.5 96.1 86.9 93.7 94.0 92.9

Kappa coefficient 0.79 0.94 0.81 0.90 0.92 0.90

https://journals.agh.edu.pl/geol
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Based on the above tests, classification was 
performed on each dataset, assigning pixels to 
the corresponding land cover classes. The classi-
fication algorithm was based on supervised ma-
chine learning methods, where the model was 
previously trained on a known dataset and then 
applied to classify new images. After the classi-
fication of each dataset, an accuracy assessment 
was performed, which is a  key element in veri-
fying the results. The classification accuracy as-
sessment process involved several steps. The first 
was the generation of an error matrix (confusion 
matrix) for each image. The confusion matrix is 
a  tool that represents the numbers of correctly 
and incorrectly classified pixels for each class. It 
is an essential element in verifying classification 
accuracy, allowing detailed analysis of the results 
(Marmol & Borowiec 2023). From this matrix, ac-
curacy assessment metrics such as overall classifi-
cation accuracy (ACC), accuracy per class (preci-
sion, recall), and weighted average (F1 score) were 
calculated. These results were presented in tabular 
and graphical form to identify trends and poten-
tial problems in classification. 

RESULTS AND ANALYSIS 

In this section, the classification results of the 
satellite images are discussed in detail, paying 

particular attention to the accuracy assessment 
achieved with the error matrix analysis and the 
classification quality indicators used. 

Classification analysis 
The classification was performed on all selected 
satellite images, with an example of a visual result 
shown below (Fig. 5). The land cover classification 
results are presented in tables, divided into quar-
ters, which allowed for the tracking of season-
al changes. Each table contains percentage and 
area values for the five representative land cover 
classes (Chapter “Research characteristics”). The 
percentage share of each class indicates the pro-
portion of the area covered, while the area val-
ues are given in hectares. The average values for 
each class were obtained by averaging the results 
from each quarter, which allows for the visual-
ization of long-term trends in land cover chang-
es. This analysis enabled the identification of sea-
sonal patterns, such as an increase in vegetation 
in spring and summer and a decrease in autumn 
and winter. These results are crucial for under-
standing the dynamics of changes in the Błędów 
Desert ecosystem and the effectiveness of con-
servation measures. Additionally, for each quar-
ter, charts were drawn to visualize the percentage 
share of each class in the respective time periods 
(Figs. 6–9).

Fig. 5. An example of a classification result using the random forest method
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Quarter I

Tables 3 and 4 show average land cover class val-
ues of: sand 26.2% (301.3 ha), turf 38.1% (438.2 ha), 
forest 25.1% (289.3 ha), bare soil 10.5% (121.4 ha). 
The overall accuracy of the classification ranges 
from 94.3 to 98.6% with an average value of 96.6%. 
This is a  very good result. The kappa coefficient 

maintains an average level of 0.95. Over the years, 
it ranges from 0.92 to 0.98, which indicates an ex-
cellent agreement (McHugh 2012).

 Analysing the above results (Fig. 6), the fol-
lowing conclusions can be drawn. The curve 
representing turf is very dynamic  – it does not 
maintain a  constant level, nevertheless it has an 
increasing trend. 

Fig. 6. Detection results of land cover changes for Quarter I by class (dotted lines  – trend of individual land cover class)

Table 3
Land cover change detection results for Quarter I in percentage terms

Classification results 2017-03 2019-03 2020-03 2021-03 2022-03 Mean

Sand [%] 27.2 30.8 27.3 18.4 27.3 26.2
Turf [%] 37.0 32.6 36.1 46.6 38.2 38.1
Forest [%] 25.7 24.2 24.8 25.6 25.4 25.1
Bare soil [%] 10.1 12.5 11.7 9.4 9.1 10.5
Grassland [%] – – – – – –
Overall accuracy [%] 98.6 97.2 94.3 95.3 97.5 96.6
Kappa coefficient 0.98 0.96 0.92 0.93 0.96 0.95

Table 4
Detection results of land cover changes for Quarter I by area

Land cover area 2017-03 2019-03 2020-03 2021-03 2022-03 Mean

Sand [ha] 313.3 354.3 313.8 211.2 313.8 301.3
Turf [ha] 425.7 374.6 415.2 535.9 439.5 438.2
Forest [ha] 295.8 278.4 285.1 295.0 292.4 289.3
Bare soli [ha] 115.7 143.4 134.2 108.5 105.0 121.4
Grassland [ha] – – – – – –

https://journals.agh.edu.pl/geol
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lowest quotation of 89.6% occurring in 2020 and 
the highest of 91.8% obtained in 2018. The kappa 
coefficient values over the years in Quarter II are 
0.85 and 0.88 with an average score of 0.87. A sta-
bilization of the index can be observed.

Figure 7 shows that there is a downward trend 
in the turf curve. It reached its minimum in 2019, 
amounting to 36.1% of land cover, which trans-
lates into 415.0 ha. It reached its highest value in 
2017, where it was 46.1% (529.9 ha). The difference 
is 10 percentage points (114.9 ha). As of 2019, the 
average value of the turf class has reached 37.5% 
(431.2 ha). The land cover of sand was increasing 
rapidly until 2019. Over the two years, the value in-
creased by 10 percentage points (115.4 ha). There-
after, it fell gently until 2021, when it reached an 
extreme of 24.7%, or 284.0 ha. It then increased by 
2.9 percentage points to a value of 27.6% (317.2 ha) 
of land cover. The curve for the forest is very sta-
ble. The difference between the extreme values 
over the years is 1.9 percentage points (22.1 ha). 
There is an upward trend. The graph for grassland, 
as for forest, is stabilised. The difference between 
2017, when the maximum land cover was reached, 
and 2022, when the minimum was reached, is 
1.1 percentage points, or 12.2 ha. The curve main-
tains a gentle downward trend.

Over the years, the turf area has occupied the 
Błędów Desert to the greatest extent. The differ-
ence in land cover between the minimum value 
(2019) and the maximum value (2021) is 14.0 per-
centage points and this translates into 161.3 ha. 
The graph for sand is the reverse of the curve for 
turf with the land cover trend reversed. The dif-
ference between the minimum (2021) and maxi-
mum (2019) proportion of land cover is 12.4 per-
centage points (143.0 ha). The curves for forest and 
bare soil are stable. The forest area, unlike the bare 
soil, tends to increase gently. Over the years, for-
est has covered the Błędów Desert to a similar ex-
tent. The discrepancy between the extreme values 
is 1.5 percentage points (17.4 ha) and the situation 
is analogous for the bare soil class. The difference 
of 3.3  percentage points translates into 38.3  ha. 
Uncovered soil consistently records the lowest 
land cover in the first quarter of each year.

Quarter II
In Tables 5 and 6, the average land cover values 
in Quarter II over the six years are: sand 24.7% 
(283.6 ha), turf 39.7% (456.8 ha), forest 28.3% 
(325.5 ha), grassland 7.4% (84.7 ha). During the 
Quarter II periods, bare soil was not analysed. 
The overall accuracy remains at 90.9% with the 

Table 5
Land cover change detection results for Quarter II in percentage terms

Classification results 2017-05 2018-06 2019-06 2020-06 2021-06 2022-06 Mean

Sand [%] 18.8 21.9 28.9 26.1 24.7 27.6 24.7
Turf [%] 46.1 42.2 36.1 38.1 39.0 36.7 39.7
Forest [%] 27.1 28.4 27.8 28.5 29.1 28.8 28.3
Bare soil [%] – – – – – – –
Grassland [%] 8.0 7.4 7.3 7.3 7.3 6.9 7.4
Overall accuracy [%] 90.7 91.8 90.2 89.6 91.2 91.7 90.9
Kappa coefficient 0.86 0.88 0.86 0.85 0.87 0.88 0.87

Table 6
Detection results of land cover changes for Quarter II by area

Land cover area 2017-05 2018-06 2019-06 2020-06 2021-06 2022-06 Mean

Sand [ha] 216.5 252.1 331.9 300.1 284.0 317.2 283.6
Turf [ha] 529.9 485.9 415.0 438.7 448.7 422.4 456.8
Forest [ha] 312.3 327.2 320.0 327.8 334.3 331.5 325.5
Bare soil [ha] – – – – – – –
Grassland [ha] 91.8 85.5 83.8 84.0 83.4 79.6 84.7



80

https://journals.agh.edu.pl/geol

Czernik A., Borowiec N., Marmol U.

Quarter III

Over the six years studied, Quarter III land 
cover averages: sand 15.2% (174.6 ha), turf 44.7% 
(514.1 ha), forest 33.1% (380.6 ha), grassland 4.2% 

(48.8  ha) (Tables 7, 8). The overall accuracy var-
ies between 92.5–97.2%. The average is 94.6%. It 
reached a maximum in 2019 and a minimum in 
2021. The kappa coefficient is unstable and is be-
tween 0.88–0.96, with an average value of 0.92.

Table 7
Land cover change detection results for Quarter III in percentage terms

Classification results 2015-09 2016-09 2019-09 2020-09 2021-09 2022-08 Mean

Sand [%] 13.8 11.5 18.1 18.7 9.6 19.3 15.2

Turf [%] 31.4 48.0 45.3 44.9 54.3 44.2 44.7

Forest [%] 38.6 32.7 32.0 32.1 32.1 31.1 33.1

Grassland [%] 2.5 4.5 4.6 4.4 4.1 5.4 4.2

Bare soil [%] 13.6 3.3 – – – – –

Overall accuracy [%] 96.0 93.7 97.2 93.1 92.5 94.7 94.6

Kappa coefficient 0.94 0.90 0.96 0.90 0.88 0.92 0.92

Table 8
Detection results of land cover changes for Quarter III by area

Land cover area 2015-09 2016-09 2019-09 2020-09 2021-09 2022-08 Mean

Sand [ha] 159.2 132.5 208.7 214.7 110.2 222.3 174.6

Turf [ha] 361.7 552.6 521.0 516.6 624.2 508.3 514.1

Forest [ha] 443.8 375.9 368.4 369.1 368.9 357.6 380.6

Grassland [ha] 28.9 51.9 52.4 50.2 47.3 62.4 48.8

Bare soli [ha] 156.9 37.5 – – – – –

Fig. 7. Detection results of land cover changes for Quarter II by class (dotted lines  – trend of individual land cover class)

https://journals.agh.edu.pl/geol
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Analysing Figure 8, it can be stated that the 
land cover values for turf over the years are incon-
sistent; however, the trend is upward. During the 
first year of the study, the indicator increased by 
16.6 percentage points to 48.0% (552.6 ha). It then 
declined to 44.9% (516.6 ha) by 2020. The follow-
ing year, it sharply rose by 9.4 percentage points, 
and in 2022 it returned to a level close to that of 
two years prior, at 44.2%, or 508.3 ha. The differ-
ence between the extreme values (2015 and 2021) 
is 22.8 percentage points, or 262.4 ha.

The sand cover curve is similarly variable to 
that of the turf class, but the trend is not as rapid-
ly increasing. The difference between the first and 
second analysed images (2015–2016) is 2.3 per-
centage points, translating to 26.7 ha. In the years 
2019–2020, the cover curve remained at a similar 
level (18.1% and 18.7%). The following year, the 
value dropped to 9.6% (110.2 ha), then increased 
by 9.7 percentage points to 19.3%, or 222.3 ha. The 
difference between the minimum and maximum 
values is 9.7 percentage points (112.1 ha), occur-
ring in the images from 2021 to 2022.

The land cover graph for the forest area shows 
stabilization beyond the first analysed period. The 
2015 image had a  value of 38.6% (443.8 ha). In 
subsequent years, it remained at an average lev-
el of 32.0% (368.0 ha). The higher forest cover in 

2015 was due to deforestation in the northern part 
of the Błędów Desert in later years. A downward 
trend is observed. The difference between the ex-
treme values (2015 and 2022) is 7.5 percentage 
points, or 86.2 ha.

The meadow curve shows a slight upward trend. 
The difference between the extremes is 2.9 percent-
age points, or 33.5 ha. The highest level, 5.4%, was 
reached in 2022, covering 62.4 ha.

Quarter IV
For Quarter IV, the average land cover is: sand 
17.3% (198.9 ha), turf 45.2% (519.9 ha), forest 28.8% 
(331.4 ha), bare soil 8.7% (100.3 ha) (Tables 9, 10). 
The curves for all classes are very stable. The total 
accuracy reaches an average of 92.9% (min. 91.8%, 
max. 93.5%) and the kappa coefficient 0.89 (the 
lowest value obtains 0.88, the highest value 0.90).

Figure 9 shows that the proportion of land cover 
by turf varies between 43.9% and 46.7%. It reach-
es its maximum value in 2021, where it reaches 
537.4 ha, and its minimum value in 2023 (505.4 ha). 
The difference is 2.8 percentage points. This trans-
lates into 32.0 ha. Both of these values had informa-
tion taken from photographs with a staggered date 
relative to the previous ones. In 2021, the images 
are from November, while the data for Quarter IV 
2022 were taken from January 2023. 

Fig. 8. Detection results of land cover changes for Quarter III by class (dotted lines  – trend of individual land cover class)
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The shifting of these dates is assumed to cause 
slight fluctuations in the land cover values of each 
class. There is a gently decreasing trend. The sand 
curve gently decreases from a  value of 17.1% to 
a value of 15.5% (178.3 ha) by 2021. This is followed 
by an increase of 4.5 percentage points, or 51.5 ha. 
This results in an increasing trend of the sand curve. 
The difference between the minimum value (2021) 

and the maximum value (2023) is 4.5 percentage 
points, or 51.5 ha. The graphs for the forest and bare 
soil classes show no significant change. For forest, 
the difference between the extremes is 1 percent-
age point (11.4 ha) and for bare soil 1.3 percentage 
points (14.4 ha). As a result of the changes in land 
cover in the last analysed image for Quarter  IV, 
both curves achieve a slight downward trend.

Table 9
Land cover change detection results for Quarter IV in percentage terms

Classification results 2019-12 2020-12 2021-11 2023-01 Mean
Sand [%] 17.1 16.6 15.5 20.0 17.3
Turf [%] 44.9 45.3 46.7 43.9 45.2
Forest [%] 29.0 29.0 29.1 28.2 28.8
Grassland [%] – – – – –
Bare soil [%] 9.1 9.2 8.7 7.9 8.7
Overall accuracy [%] 91.8 93.4 93.5 93.0 92.9
Kappa coefficient 0.88 0.90 0.90 0.90 0.89

Table 10
Detection results of land cover changes for Quarter IV by area

Land cover area 2019-12 2020-12 2021-11 2023-01 Mean
Sand [ha] 196.3 191.0 178.3 229.9 198.9
Turf [ha] 516.1 520.7 537.4 505.4 519.9
Forest [ha] 333.4 333.1 335.3 323.9 331.4
Grassland [ha] – – – – –
Bare soil [ha] 104.7 105.7 99.5 91.4 100.3

Fig. 9. Detection results of land cover changes for Quarter IV by class (dotted lines  – trend of individual land cover class)
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Error matrix and calculated indices

Image classification was assessed using perfor-
mance coefficients, which were calculated from an 
error matrix. The error matrix is a basic tool for 
assessing the quality of a classification model, al-
lowing the calculation of a number of derived coef-
ficients (Goldblatt et al. 2017, Drobnjak et el. 2019). 

In the present study, the following coefficients 
were calculated (Tables 11–17): 
− TPR (true positive rate)  – sensitivity, i.e. the 

proportion of truly positive class relative to all 
positive cases; 

− TNR (true negative rate)  – specificity, i.e. the 
proportion of truly negative class relative to all 
negative cases; 

− PPV (positive predictive value)  – the pro-
portion of positive predictions confirmed by 
a genuinely positive condition; 

− NPV (negative predictive value)  – the pro-
portion of negative predictions confirmed by 
a genuinely negative condition; 

− ERR (error rate)  – the proportion of misclassi-
fications relative to all classifications;

− F1 (F1 score)  – the harmonic mean between 
PPV and TPR, which is a measure of the bal-
ance between precision and sensitivity (Das 
et al. 2021);

− ACC (accuracy)  – the proportion of correct 
classifications relative to all classifications.

TPR index
The true positive rate, which indicates the propor-
tion of correctly classified true positives among all 
positives, shows considerable variability depend-
ing on the class of site and the period of analysis.

For the entire dataset, the TRP index ranges 
from 0.67 to 1.00, with the maximum value of 1.00 
reached in 42% of cases, indicating high classifi-
cation accuracy. 61% of the results exceeded the 
value of 0.90, confirming good agreement of the 
classification models. The highest values were ob-
tained in the third quarters of the analysed years, 
with the maximum result occurring in 2022. The 
forest class had high TRP indices, with the best 
results achieved by the grassland class (average in-
dex of 0.94). The lowest value (0.67) was record-
ed for the grassland class in the second quarter of 
2018, but overall, the index remained high. The 

sand class had an average index of 0.91, and the 
bare soil class had an index of 0.90. The average 
TRP index for all classes was 0.92, confirming the 
high quality of the classification (Table 11).

Table 11
TPR index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 0.71 1.00 1.00 – 1.00
2016-09 0.83 0.93 1.00 – 0.80
2017-03 1.00 0.83 1.00 0.86 –
2017-05 1.00 0.86 0.80 – 1.00
2018-06 0.89 0.92 1.00 – 0.67
2019-03 0.91 1.00 0.90 1.00 –
2019-06 1.00 0.83 0.91 – 0.83
2019-09 0.89 1.00 1.00 – 0.83
2019-12 0.86 0.93 1.00 0.71 –
2020-03 0.90 0.83 1.00 1.00 –
2020-06 0.80 1.00 0.82 – 1.00
2020-09 1.00 0.93 0.91 – 0.83
2020-12 0.88 0.93 1.00 0.86 –
2021-03 1.00 0.93 0.90 0.86 –
2021-06 0.80 1.00 0.91 – 0.83
2021-09 1.00 0.88 1.00 – 0.83
2021-11 1.00 1.00 0.82 0.86 –
2022-03 1.00 1.00 0.90 1.00 –
2022-06 1.00 0.92 0.82 – 1.00
2022-08 0.89 0.93 1.00 – 1.00
2023-01 0.78 1.00 0.91 1.00 –

TNR index
The true negative rate, which measures the propor-
tion of correctly classified negative cases, averaged 
0.97, with a minimum value of 0.89, indicating very 
good classification quality. The maximum value of 
1.00 was reached in 38% of cases. For the turf class, 
TNR ranged from 0.89 to 1.00, with an average of 
0.96, peaking in 2017 and 2021. For the sand class, 
TNR ranged from 0.93 to 1.00, with an average of 
0.98, showing high consistency across quarters. The 
forest class had TNR values between 0.93 and 1.00, 
averaging 0.98, with fluctuations in certain years. 
The bare soil class showed TNR from 0.97 to 1.00, 
with an average of 0.98, although lower values were 
recorded in the first and fourth quarters. The grass-
land class had the highest TNR, ranging from 0.97 
to 1.00, with an average of 0.99 and consistent high 
values in most quarters (Table 12). 
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PPV index

The precision of the positive prediction defines 
the proportion of correctly classified positive cas-
es among all cases classified as positive.

In the surveys conducted, the target PPV of 
1.00 was reached in 38% of the cases, and 70% of 
the results exceeded 0.9, indicating high classifica-
tion accuracy. The best results were achieved in the 
fourth quarters, where the majority of images were 
from 2022, particularly for the grassland class. The 
bare soil class had the highest PPV of 0.86, with 
93% of results close to 1.00. The turf class had the 
lowest PPV of 0.81, recorded in the second quar-
ters of 2020 and 2021. The average PPV across all 
surveys was 0.93, indicating strong classification 
performance. For the sand class, the PPV ranged 
from 0.83 to 1.00, with an average of 0.93. The for-
est class had a PPV range from 0.85 to 1.00, with 
an average of 0.94. The grassland class showed the 
highest PPV, ranging from 0.83 to 1.00, with an av-
erage of 0.97. The highest values for grassland were 
achieved in 2019, 2021, and 2022. The lowest PPV 

for sand was recorded in the third quarter of 2016 
at 0.83. The forest class showed the lowest PPV in 
2018 and 2021, with the highest values achieved in 
2019, 2020, and 2022 (Table 13).

NPV index
The negative precision index indicates the percent-
age of correctly classified negative cases among all 
cases classified as negative.

The study achieved an NPV of 1.00 in 42% of 
cases, and all results exceeded 0.9, reflecting high 
accuracy. The best results were obtained in the 
first quarters, particularly for the forest class, with 
the highest levels achieved in 2022. Classes such 
as sand, bare soil (Quarter IV 2019), and grassland 
(Quarter II 2018) reached minimum values of 0.94, 
while the turf class had the lowest minimum value 
of 0.92 in Quarter III 2021. The overall NPV for 
the study reached an average of 0.98, indicating 
excellent prediction quality. The turf class showed 
values ranging from 0.92 to 1.00, with fluctua-
tions between years, peaking at 1.00 in 2020–2021. 
The sand class had values between 0.94 and 1.00, 

Table 12
TNR index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 1.00 0.94 1.00 – 1.00
2016-09 0.97 0.96 0.97 – 1.00
2017-03 0.97 1.00 0.97 0.97 –
2017-05 0.98 0.98 0.98 – 0.97
2018-06 0.97 0.96 0.93 – 1.00
2019-03 1.00 0.96 1.00 0.97 –
2019-06 0.93 0.96 0.97 – 1.00
2019-09 1.00 0.96 0.97 – 1.00
2019-12 0.97 0.92 0.96 1.00 –
2020-03 0.97 0.96 1.00 0.97 –
2020-06 1.00 0.89 1.00 – 0.97
2020-09 0.97 1.00 0.97 – 0.97
2020-12 0.97 0.96 0.97 1.00 –
2021-03 0.97 1.00 0.97 0.97 –
2021-06 1.00 0.89 0.97 – 1.00
2021-09 0.97 1.00 0.93 – 1.00
2021-11 1.00 0.96 0.97 0.97 –
2022-03 1.00 0.96 1.00 1.00 –
2022-06 0.97 0.93 1.00 – 1.00
2022-08 0.97 0.96 1.00 – 1.00
2023-01 1.00 0.93 1.00 0.97 –

Table 13
PPV index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 1.00 0.83 1.00 – 1.00
2016-09 0.83 0.93 0.92 – 1.00
2017-03 0.91 1.00 0.91 0.86 –
2017-05 0.89 0.92 0.89 – 0.96
2018-06 0.89 0.92 0.85 – 1.00
2019-03 1.00 0.92 1.00 0.88 –
2019-06 0.85 0.91 0.91 – 1.00
2019-09 1.00 0.93 0.92 – 1.00
2019-12 0.86 0.87 0.92 1.00 –
2020-03 0.90 0.91 1.00 0.88 –
2020-06 1.00 0.81 1.00 – 0.86
2020-09 0.90 1.00 0.91 – 0.83
2020-12 0.88 0.93 0.92 1.00 –
2021-03 0.90 1.00 0.90 0.86 –
2021-06 1.00 0.81 0.91 – 1.00
2021-09 0.88 1.00 0.85 – 1.00
2021-11 1.00 0.93 0.90 0.86 –
2022-03 1.00 0.93 1.00 1.00 –
2022-06 0.92 0.85 1.00 – 1.00
2022-08 0.89 0.93 1.00 – 1.00
2023-01 1.00 0.88 1.00 0.88 –
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with notable variations in the second quarter, in-
cluding a drop to 0.94 in 2020–2021. For the for-
est class, the NPV ranged from 0.93 to 1.00, with 
consistent values of 1.00 in some years and a low 
of 0.94 in 2022. The bare soils class showed values 
between 0.94 and 1.00, with the lowest values re-
corded in 2017 and 2021, and the highest in other 
years. The grasslands class had a range from 0.94 
to 1.00, with an average of 0.98; the lowest value of 
0.94 was recorded in Quarter II 2018, and it later 
increased to 1.00 in 2022. The NPV index showed 
stability in the third trimester, maintaining 1.00 in 
2015 and 2022, and 0.97 in other years (Table 14).

F1 index
The F1 index, which is the harmonic average of the 
True positive rate and positive predictive value, 
is a key measure of the quality of classifiers. The 
higher the index value, the better the classification 
performance. 

In the study, a F1 index of 1.00 was achieved in 
10% of the cases, with 70% of results exceeding 0.9. 
The highest F1 values were recorded in the fourth 

quarters, with 2022 producing five images at 1.00. 
The best F1 scores were for the grassland class, 
ranging from 0.87 to 0.97, with the lowest values 
recorded in Quarter I  2020 and Quarter II 2019. 
The random forest classifier had the lowest per-
formance for grassland, scoring 0.80 in Quarter II 
2018. The turf class achieved an average F1 of 0.92, 
with 0.87 recorded in Quarter I 2020 and Quarter II 
2019. In Quarter I, the F1 index increased from 0.91 
in 2017 to 0.96 in 2019, 2021, and 2022, except for 
2020, which saw a drop to 0.87. In Quarter II, the 
F1 values ranged from 0.87 in 2019 to 0.90 in 2020, 
maintaining this value in 2021, with 0.88 in 2022. 
In Quarter III, the F1 index grew from 0.91 in 2015 
to 0.97 in 2019, decreasing to 0.93 in 2022. The sand 
class had an F1 range from 0.83 to 1.00, averaging 
0.92, with 1.00 achieved in 2022. The forest class 
showed F1 values between 0.84 and 1.00, averaging 
0.93, and reached 1.00 in 2020. The bare soil class 
had an F1 index between 0.83 and 1.00, with an av-
erage of 0.90, and peaked at 1.00 in 2022. The grass-
land class fluctuated between 0.80 and 1.00, with 
an average of 0.92, reaching 1.00 in 2022 (Table 15).

Table 14
NPV index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 0.94 1.00 1.00 – 1.00
2016-09 0.97 0.96 1.00 – 0.97
2017-03 1.00 0.93 1.00 0.97 –
2017-05 1.00 0.95 0.96 – 1.00
2018-06 0.97 0.96 1.00 – 0.94
2019-03 0.97 1.00 0.97 1.00 –
2019-06 1.00 0.93 0.97 – 0.97
2019-09 0.97 1.00 1.00 – 0.97
2019-12 0.97 0.96 1.00 0.94 –
2020-03 0.97 0.93 1.00 1.00 –
2020-06 0.94 1.00 0.94 – 1.00
2020-09 1.00 0.96 0.97 – 0.97
2020-12 0.97 0.96 1.00 0.97 –
2021-03 1.00 0.96 0.97 0.97 –
2021-06 0.94 1.00 0.97 – 0.97
2021-09 1.00 0.92 1.00 – 0.97
2021-11 1.00 1.00 0.93 0.97 –
2022-03 1.00 1.00 0.97 1.00 –
2022-06 1.00 0.96 0.94 – 1.00
2022-08 0.97 0.96 1.00 – 1.00
2023-01 0.94 1.00 0.97 1.00 –

Table 15
F1 index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 0.83 0.91 1.00 – 1.00
2016-09 0.83 0.93 0.96 – 0.89
2017-03 0.95 0.91 0.95 0.86 –
2017-05 0.94 0.89 0.84 – 0.98
2018-06 0.89 0.92 0.92 – 0.80
2019-03 0.95 0.96 0.95 0.93 –
2019-06 0.92 0.87 0.91 – 0.91
2019-09 0.94 0.97 0.96 – 0.91
2019-12 0.86 0.90 0.96 0.83 –
2020-03 0.90 0.87 1.00 0.93 –
2020-06 0.89 0.90 0.90 – 0.92
2020-09 0.95 0.96 0.91 – 0.83
2020-12 0.88 0.93 0.96 0.92 –
2021-03 0.95 0.96 0.90 0.86 –
2021-06 0.89 0.90 0.91 – 0.91
2021-09 0.93 0.93 0.92 – 0.91
2021-11 1.00 0.97 0.86 0.86 –
2022-03 1.00 0.96 0.95 1.00 –
2022-06 0.96 0.88 0.90 – 1.00
2022-08 0.89 0.93 1.00 – 1.00
2023-01 0.88 0.93 0.95 0.93 –
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ERR index

The error rate is a measure indicating the number 
of incorrect classifications in relation to all classifi-
cations made. A high ERR value indicates a higher 
percentage of errors made by the algorithm.

In the study, an ERR value of 0.00 was achieved 
in 10% of the cases, indicating excellent classifica-
tion quality. 75% of the results exceeded the aver-
age ERR value, demonstrating high compliance. 
The best results were obtained for the third quar-
ters, with the lowest ERR recorded in four images 
from this period. Five images from 2022 had the 
lowest ERR values, with three for the forest class 
and three for the grassland class. The highest ERR 
of 0.08 was observed in the grassland class in sev-
en images, while the lowest was 0.03 in six imag-
es. The average ERR value was 0.04, ranging from 
0.00 to 0.08, which is considered very good. For 
the grassland class, ERR ranged from 0.03 to 0.08, 
averaging 0.05. In Quarter I  2017, the ERR was 
0.05, dropping to 0.03 in 2019, and reaching its 
highest value of 0.08 in 2020. From 2021 to 2022, 
the ERR remained at 0.03. In Quarter II, the ERR 

was 0.06 in 2017, with a minimum of 0.05 in 2019 
and a maximum of 0.08 in 2020–2022. In Quar-
ter III, the ERR ranged from 0.03 to 0.05, with 
a minimum in 2019–2020. In Quarter IV, ERR de-
creased from 0.08 in 2019 to 0.03 in 2021, reaching 
0.05 in 2023. The sand class had an ERR range of 
0.00 to 0.05, with an average of 0.04, reaching 0.00 
in 2021–2022. For the forest class, ERR ranged 
from 0.00 to 0.08, averaging 0.03, with the low-
est value in 2020. The bare soil class showed ERR 
values between 0.00 and 0.05, with an average of 
0.03, reaching 0.05 in 2019 and 2021. The grass-
land class had ERR values between 0.00 and 0.05, 
with an average of 0.02, decreasing to 0.00 in 2022 
(Table 16).

ACC index
The accuracy index, a measure of overall classifi-
cation accuracy, reports the percentage of correct 
classifications relative to all classifications made.

The analysis yielded ACC values ranging from 
0.92 to 1.00. The maximum level of 1.00 was reached 
in 10 per cent of cases, demonstrating the very high 
compliance of the classification algorithm. 

Table 16
ERR index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 0.05 0.05 0.00 – 0.00
2016-09 0.05 0.05 0.02 – 0.02
2017-03 0.03 0.05 0.03 0.05 –
2017-05 0.02 0.06 0.06 – 0.02
2018-06 0.05 0.05 0.05 – 0.05
2019-03 0.03 0.03 0.03 0.03 –
2019-06 0.05 0.08 0.05 – 0.03
2019-09 0.03 0.03 0.03 – 0.03
2019-12 0.05 0.08 0.03 0.05 –
2020-03 0.05 0.08 0.00 0.03 –
2020-06 0.05 0.08 0.05 – 0.03
2020-09 0.03 0.03 0.05 – 0.05
2020-12 0.05 0.05 0.03 0.03 –
2021-03 0.03 0.03 0.05 0.05 –
2021-06 0.05 0.08 0.05 – 0.03
2021-09 0.03 0.05 0.05 – 0.03
2021-11 0.00 0.03 0.08 0.05 –
2022-03 0.00 0.03 0.03 0.00 –
2022-06 0.03 0.08 0.05 – 0.00
2022-08 0.05 0.05 0.00 – 0.00
2023-01 0.05 0.05 0.02 0.02 –

Table 17
ACC index for the classes in each image

Date Sand Turf Forest Bare 
soil

Grass-
land

2015-09 0.95 0.95 1.00 – 1.00
2016-09 0.95 0.95 0.98 – 0.98
2017-03 0.97 0.95 0.97 0.95 –
2017-05 0.98 0.94 0.94 – 0.98
2018-06 0.95 0.95 0.95 – 0.95
2019-03 0.98 0.98 0.98 0.98 –
2019-06 0.95 0.93 0.95 – 0.98
2019-09 0.98 0.98 0.98 – 0.98
2019-12 0.95 0.92 0.97 0.95 –
2020-03 0.95 0.92 1.00 0.97 –
2020-06 0.95 0.93 0.95 – 0.98
2020-09 0.98 0.98 0.95 – 0.95
2020-12 0.95 0.95 0.98 0.98 –
2021-03 0.98 0.98 0.95 0.95 –
2021-06 0.95 0.93 0.95 – 0.98
2021-09 0.98 0.95 0.95 – 0.98
2021-11 1.00 0.98 0.93 0.95 –
2022-03 1.00 0.98 0.98 1.00 –
2022-06 0.98 0.93 0.95 – 1.00
2022-08 0.95 0.95 1.00 – 1.00
2023-01 0.95 0.95 0.98 0.98 –
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All other results achieved a value above 0.90, 
which also confirms the high degree of accuracy. 
The highest ACC index values were recorded in 
the third quarters, covering four images, includ-
ing two from the autumn season of 2022. Two of 
these images represented the grassland class. The 
best results were achieved for the sand, bare soil 
and grassland classes, with a minimum ACC in-
dex value of 0.95. These results were obtained for 
eleven images in the sand class, four images in 
the bare soil class and two images in the grass-
land class. The lowest ACC index value of 0.92 was 
recorded for the grassland class in the first quar-
ter of 2020 and in the fourth quarter of 2019. The 
average ACC index value for all surveys was 0.96, 
which is a very good result. A maximum value of 
1.00 was obtained in 10% of the cases (Table 17).

The results indicate high classification accura-
cy for all analysed classes, with the lowest ACC 
index values observed mainly in some quarters, 
which may suggest seasonal variations in the data 
or differences in the quality of the satellite images.

CONCLUSION

The research carried out in the Błędów Desert was 
aimed at analysing land cover changes from 2015 
to 2022 using random forest classification based 
on Sentinel-2 imagery. The study assumed that 
this method would allow the detailed determina-
tion of changes in the share of different land cov-
er classes and evaluation of the impact of natu-
ral and anthropogenic factors on these changes. 
A  key aspect was also the verification of the ef-
fectiveness of the random forest classification in 
the context of remote sensing applications and to 
compare the results with other studies on the use 
of Sentinel-2 data.

Solving the research problem included:
− performing Sentinel-2 image classification us-

ing the random forest algorithm,
− analysing the dynamics of changes in different 

land cover classes from year to year,
− evaluating the impact of natural factors (season-

ality, temperature changes) and human activi-
ties (stand removal) on land cover variability,

− evaluation of classification accuracy and its 
comparison with other methods.
The results showed that the largest area is oc-

cupied by protected turf habitat (41.8%), and the 

smallest by low vegetation and exposed soil. The 
share of sand in land cover averaged 20.9%, forest 
29.0%, uncovered soil 9.7%, and grassland 5.8%, with 
their highest share in the second quarter of the year. 
An important finding was the relationship between 
sand areas and grassy vegetation  – an increase in 
vegetation cover leads to a decrease in sandy areas.

Verification of classification accuracy showed 
the high degree of consistency of the results, which 
was confirmed by performance indicators: the av-
erage classification accuracy was 95%, and the 
kappa coefficient reached a value of at least 0.85. 
Indicators such as TPR, TNR, PPV, NPV, F1 and 
ACC had values above 0.80, confirming the high 
quality of classification, with the highest classifi-
cation errors for the grassland class.

The analysis carried out demonstrated the ef-
fectiveness of random forest classification in mon-
itoring land cover changes in the Błędów Desert 
based on Sentinel-2 imagery. The method proved 
effective in detecting changes, especially in the 
semi-desert environment. The main changes are 
in sand cover and grass vegetation, which have 
a dynamic relationship, indicating the process of 
desert overgrowth. Seasonal factors and tempera-
ture influence the dynamics of changes in land 
cover, with the largest areas of sand observed in 
spring and forests in autumn. The classification 
results confirm previous studies on the effective-
ness of Sentinel-2 data and the random forest al-
gorithm, according to Forkuor et  al. (2018) and 
Belgiu & Drăgu (2016). Limitations of the analy-
sis are the incompleteness of the database in some 
periods and the limited spatial resolution (10 m), 
which may be insufficient for analysing narrow 
objects, such as watercourses. Despite the high 
accuracy of the classification, analysis of satellite 
imagery is not a  substitute for field monitoring, 
which is necessary to accurately distinguish in-
dividual habitats. Further studies in future years 
will allow the observation of long-term trends and 
identification of new ecological processes occur-
ring in the Błędów Desert.
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