An analysis of the chemistry, mineralogy and texture of waste dolomite powder used to identify its potential application in industry

Agnieszka Gruszecka-Kosowska, Magdalena Wdowin, Tomasz Kosowski, Agnieszka Klimek

Abstract


In this work the characteristic of the dolomite powder was carried out due to specifying possible industrial applications. After technological use of dolomite aggregates remaining fine powder becomes waste. Raw and calcined powder samples were subjected to mineralogical, textural and chemical studies involving leaching tests. The results of the calcination process indicate that the carbonate minerals present in the material sample undergo complete decomposition in the form of oxides. After the calcination, the material is practically non-porous and its surface area is more than five times smaller than that of the raw material. However, due to the high content of calcia in the calcined sample (CaO >45% wt.), the material cannot be used as an additive in cement. Leaching tests showed that the concentration of metals that can leach from the dolomite powder is not high enough to classify the material as hazardous waste according to the TCLP test. Moreover, the concentration of metals that can get into the environment does not exceed permissible values according to the Polish law. Thus it is recommended and justified to carry out detailed tests in view of the environmental protection i.e. wet flue gas desulfurization, heavy metals absorption, CO2 capture.


Keywords


dolomite powder; heavy metals; waste utilization; mineralogical-chemical research; environmental protection

Full Text:

PDF

References


Ahmaruzzaman M., 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater ladenwith heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36–59.

Alaibdo A.A., Elmoaty A. & Auda E.M., 2014. Re-use ofwaste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28–41.

Aziz H.A., Adlan M.N. & Ariffin K.S., 2008. Heavy metals(Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water inMalaysia: Post treatment by high quality limestone. Bioresource Technology, 99, 1578–1583.

Bąk B., Radwanek-Bąk B. & Wyszomirski P., 2011. Aktualnyprzegląd krajowych złóż dolomitów w aspekcie wykorzystania w przemyśle materiałów ogniotrwałych. Gospodarka Surowcami Mineralnymi – Mineral ResourcesManagement, 27(1), 21–47.

Beruto D.T., Vecchiattini R. & Giordani M., 2003. Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO 2 (g) atmosphere. Thermochimica Acta, 405, 183–194.

Bilgin N., Yeprem H.A., Arslan S., Bilgin A., Günay E. & Mar-şoglu M., 2012. Use of waste marble powder in brickindustry. Construction and Building Materials, 29, 449–457.

Bogahawatta V.T.L., Abdul-Jaleel A. & Behbehani M., 2004.The heat treatment and particle size effects in the thermal decomposition of dolomite for separation of constituents. Mineral Processing and Extractive Metallurgy, doi:10.1179/037195504225005750.

de Boer J.H., 1958. [in:] Everett D.H. & Stone F.S. (eds), Thestructure and Properties of Porous Materials, Butterworth, London, 68.

Brunauer S., Emmett P.H. & Teller E., 1938. Adsorption ofgases in multimolecular layers. Journal of the AmericanChemical Society, 60(2), 309–319.

Chen C.G., Sun C.J., Gau S.H., Wua C.W. & Chen Y.L., 2013.The effects of the mechanical-chemical stabilizationprocess for municipal solid waste incinerator fly ash onthe chemical reactions in cement paste. Waste Management, 33, 858–865.

Dehghani A. & Bridjanian H., 2010. Flue gas desulfurization methods to conserve the environment. Petroleum & Coal, 52(4), 220–226.

Dell’Orso M., Mangialardi T., Paolini A.E. & Piga L., 2012.Evaluation of the leachability of heavy metals from cement-based materials. Journal of Hazardous Materials,227–228, 1–8.

Disfani M.M., Arulrajah A., Bo M.W. & Hankour R., 2011.Recycled crushed glass in work applications. WasteManagement, 31, 2341–2351.

Engelsen C.J., Wibetoe G., van der Sloot H.A., Lund W. & Petkovic G., 2012. Field site leaching from recycledconcrete aggregates applied as sub-base material in roadconstruction. Science of the Total Environment, 427–428,86–97.

Fang F., Li Z.S. & Cai N.S., 2009. CO 2 capture from flue gases using a fluidized bed reactor with limestone. KoreanJournal of Chemical Engineering, 26(5), 1414–1421.

Galvín A.P., Ayuso J., Agrela F., Barbudo A. & Jiménez J.R.,2013. Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Construction and Building Materials, 40,1207–1214.

Gregg S.J. & Sing K.S.W., 1982. Adsorption, Surface Area andPorosity. Academic Press, London.

Gruszecka-Kosowska A. & Mikoda B., 2015. Commercialutilization of mineral waste: review of analysis methodsdetermining its compliance with environmental laws.Geology, Geophysics& Environment, 41(3), 263–274, doi:10.7494/geol.2015.41.3.263.

Harris D.L. & Lottermoser B.G., 2006. Evaluation of phosphate fertilizers for ameliorating acid mine waste. Applied Geochemistry, 21, 1216–1225.

Helios-Rybicka E., Jarosz-Krzemińska E. & Gawlicki M.,2013. Zastosowanie zneutralizowanych, potrawiennychmateriałów odpadowych w postaci szlamów uzyskanych w wyniku trawienia powierzchni metalicznych.PL 216497 B1.

Hewlett P., 1998. Lea’s Chemistry of Cement and Concrete.Arnold, London.

Kinuthia J.M. & Nidzam R.M., 2011. Towards zero industrial waste: Utilisation of brick dust waste in sustainableconstruction. Waste Management, 31, 1867–1878.

Konik Z., Małolepszy J., Roszczynialski W. & Stok A., 2007.Production of expansive additive to portland cement. Journal of the European Ceramic Society, 27, 605–609.

Kozłowski S., 1986. Surowce skalne Polski. WydawnictwaGeologiczne, Warszawa.

Kurdowski W., 2010. Chemia cementu i betonu. Stowarzyszenie Producentów Cementu, Kraków, WydawnictwoNaukowe PWN, Warszawa.

Lewandowska A., 1991. Minerals of the zone of altered Devonian dolomites from Dubie area near Kraków (Southern Poland). Mineralogia Polonica, 22(2), 20–38.

Macías F., Caraballo M.A. & Nieto J.M., 2012. Environmental assessment and management of metal-rich wastesgenerated in acid mine drainage passive remediation systems. Journal of Hazardous Materials, 229–30, 107–114.

Mahmoud M.E., Hafez O.F., Alrefaay A. & Osman M.M.,2010. Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration ofheavy metals from drinking and industrial waste water.Desalination 253, 9–15.

Małolepszy J., Gawlicki M., Brylicki W., Deja J., ŻurawskiS., Szczepaniak K., Mrozowicz J. & Rutkowski J., 1994.Zestaw surowcowy do wytwarzania klinkieru portlandzkiego. PL 162748 B1.

Mangwandi C., Tao, L.J., Albadarin A.B. & Walker G.M.,2013. Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: high shear wet granulation. Powder Technology, 233,245–254.

Merrikhpour H. & Jalali J., 2012. Waste calcite sludge as anadsorbent for the removal of cadmium, copper, lead andzinc from aqueous solutions. Clean Technologies andEnvironmental Policy, 14, 845–855.

Ney R. (red. nauk.), 2000. Surowce skalne: surowce węglanowe. Series: Surowce Mineralne Polski, Wyd. InstytutuGSMiE PAN, Kraków.

Özyuğuran A. & Ersoy-Meriçboyu A., 2012. Using hydratedlime and dolomite for sulfur dioxide removal from fluegases. Chemical Engineering Transactions, 29, 1051–1056.

Park J.Y. & Chertow M.R., 2014. Establishing and testingthe “reuse potential” indicator for managing wastes asresources. Journal of Environmental Management, 137,45–53.

Pérez-López R., Castillo J., Quispe D. & Nieto J.M., 2010.Neutralization of acid mine drainage using the finalproduct from CO 2 emissions capture with alkaline paper mill waste. Journal of Hazardous Materials, 177,762–772.

Peukert S., 2000. Cementy powszechnego użytku i specjalne:podstawy produkcji, właściwości i zastosowanie. Stowarzyszenie Producentów Cementu, Kraków.

PN-C87006-2:1996 Nawozy sztuczne wapniowo-magnezowe– Podział, oznaczenie i wymagania.

PN-EN 12457-1:2006 Charakteryzowanie odpadów – Wymywanie – Badanie zgodności w odniesieniu do wymywaniaziarnistych materiałów odpadowych i osadów – Część 1:Jednostopniowe badanie porcjowe przy stosunku cieczy dofazy stałej 2 l/kg w przypadku materiałów o wysokiej zawartości fazy stałej i wielkości cząstek poniżej 4 mm (bezredukcji lub z redukcją wielkości).

Poon C.S. & Chan D., 2006. Feasible use of recycled concreteaggregates and crushed clay brick as unbound road subbase. Construction and Building Materials, 20, 578–585.

Rashad M.M. & Baioumy H.M., 2005. Chemical processingof dolomite associated with the phosphorites for production of magnesium sulfate heptahydrate. The EuropeanJournal of Mineral Processing and Environmental Protection, 5(2), 174–183.

Romero D., James J., Mora R. & Hays C.D., 2013. Study onthe mechanical and environmental properties of concrete containing cathode ray tube glass aggregate. WasteManagement, 33, 1659–1666.

Rozporządzenie Ministra Środowiska z dnia 18 listopada2014 r. w sprawie warunków, jakie należy spełnić przywprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiskawodnego. Dz.U. 2014, poz. 1800 [Journal of Laws from2014, item 1800].

Said A., Mattila H.P., Järvinen M. & Zevenhoven R., 2013.Production of precipitated calcium carbonate (PCC)from steelmaking slag for fixation of CO 2 . Applied Energy, 112, 765–771.

Sarbak Z., 2005. Metody instrumentalne w badaniach adsorbentów i katalizatorów. Chemia – Uniwersytet im.Adama Mickiewicza w Poznaniu, 75, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań.

Skarżyńska K.M., 1995. Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone. WasteManagement, 15(2), 83–126.

Tozsin G., Arol A.I., Oztas T. & Kalkan E., 2014. Using marble wastes as a soil amendment for acidic soil neutralization. Journal of Environmental Management, 133,374–377.

Trypuć M. & Białowicz K., 2011. CaCO 3 production usingliquid waste from Solvay method. Journal of CleanerProduction, 19, 751–756.

Uliasz-Bocheńczyk A., Mokrzycki E., Piotrowski Z. & Pomykała R., 2009. Estimation of CO 2 sequestration potential via mineral carbonation in fly ash from lignitecombustion in Poland. Energy Procedia, 1, 4873–4879.

US EPA, 1992. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Rev. 0,Office of Solid Waste, Washington, DC.

US EPA, 2014. RCRA Orientation Manual 2014. ResourceConservation and Recovery Act. Office of Resource Conservation and Recovery Program Management. Communications and Analysis Office, Washington, DC.

Wang Y.H., Lin S.H. & Juang R.S., 2003. Removal of heavymetal ions from aqueous solutions using various lowcost adsorbents. Journal of Hazardous Materials, 102(2–3), 291–302.

Wdowin M. & Gruszecka A.M., 2012. Charakterystyka mineralogiczno-chemiczna i teksturalna odpadów poflotacyjnych z przemysłu Zn-Pb pod kątem dalszych rozważań wykorzystania ich jako sorbentów. GospodarkaSurowcami Mineralnymi – Mineral Resources Management, 28(3), 55–69.

Xing S., Zhao M. & Ma Z., 2011. Removal of heavy metal ionsfrom aqueous solution using red loess as an adsorbent.Journal of Environmental Science, 23, 1497–1502.

Yoshimi I. & Kenichi O., 1969. Method for removing sulfur dioxide from flue gases of a combustion furnace.US 3481289 A.

Zhang J., Liu J., Nie Y. & Jin Y., 2008. Comparison of thefixation of heavy metals in raw material, clinker andmortar using a BCR sequential extraction procedureand NEN7341 test. Cement and Concrete Research, 38,675–680.




DOI: https://doi.org/10.7494/geol.2015.41.4.343

Refbacks

  • There are currently no refbacks.