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Abstract: This study investigates the influence of substitution methods for left-censored values on exploratory
data analysis (EDA) of the incineration bottom ash (IBA). IBA, a by-product of municipal solid waste incinera-
tion, contains a wide range of economically valuable elements, many of which are frequently reported below de-
tection limits due to analytical constraints. The study aims to evaluate the impact of different substitution meth-
ods on descriptive statistics, correlation analysis, and regression modeling outcomes.

Four widely used substitution approaches were compared: (i) replacement with half of the detection limit, (ii) ran-
dom values from a uniform distribution, (iii) robust regression on order statistics (ROS), and (iv) tobit regres-
sion (applied in both small and large variants). Five trace elements with different proportions of censored values
(13-67%) were analyzed using a dataset of 52 weekly samples collected throughout 2021 at the Krakow Thermal
Waste Treatment Plant. The impact of each method was assessed using descriptive statistics, Pearson correlation
matrices, and multiple linear regression models. Additional analyses incorporated 11 auxiliary elements to en-
hance correlation and regression model robustness.

The results show that substitution methods significantly affect data distributions, particularly for elements with
high censoring rates. ROS and tobit regression produced more stable statistical outputs and narrower histograms
compared to simpler methods. Furthermore, regression model performance improved with substitution com-
pared to raw data, with tobit methods demonstrating the highest accuracy for elements with strong inter-element
correlations. The findings provide methodological guidance for reliable data handling in IBA analysis and recov-
ery assessments.

Keywords: incineration bottom ash, robust regression on order statistics, tobit regression, left-censored, explor-
atory data analysis

INTRODUCTION This waste is made up of several key components

which include a mineral fraction with particles
Incineration bottom ash (IBA) generatedinmunic-  larger than 2 mm, such as glass, porcelain, tiles,
ipal solid waste incinerators is a free-flowing bulk  pottery, cement, and sintered grit. It also contains
solid with a density of approximately 1.2 Mg/m>.  slag, which is solidified partially molten material,
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and native metals larger than 2 mm, including
both ferrous and non-ferrous metals. Addition-
ally, there is unburnt organic matter larger than
2 mm, such as books, leather, and wood. Final-
ly, there is fine-grained grit, smaller than 2 mm,
which consists of a mixture of all the previous-
ly mentioned materials, along with metal oxides,
filler materials from paper and plastics, and wood
ash (Bunge 2019). Furthermore, IBA is a substan-
tial repository of valuable elements, including rare
earth metals, precious metals, and other strategic
elements of significant economic and industrial
importance (Morf et al. 2013, Funari et al. 2015).
The analysis of element flow reveals that the pro-
portion of elements present in municipal solid
waste IBA residues is considerable. This highlights
the potential of Municipal Solid Waste Incinera-
tion (MSWI) residues as an important second-
ary source of valuable raw materials. Given the
increasing demand for critical elements and the
challenges associated with mining them - due to
environmental, economic, and geopolitical fac-
tors, recovering these elements from waste offers
a promising strategy for reducing dependence on
primary resources. It also helps minimize the en-
vironmental impact of conventional mining while
contributing to circular economy practices by re-
introducing valuable materials back into produc-
tion cycles (Jedrusiak et al. 2023). The extraction
of valuable elements from bottom ash is achievable
through the utilization of diverse techniques, in-
cluding magnetic separation, electrostatic separa-
tion, and hydrometallurgical processes (Norgaard
et al. 2019, §yc et al. 2020, Back & Sakanakura
2022). Within the framework of a circular econo-
my, the recovery of elements from bottom ash can
generate substantial economic and environmental
advantages, including reduced primary raw mate-
rial consumption, decreased greenhouse gas emis-
sions, and minimized waste disposal (Brunner &
Rechberger 2016).

In addition to its complex composition, IBA
can be treated as a matrix containing composi-
tional data, which describes the proportions or
components of a mixture (Aitchison 2003). There-
fore, it is essential to understand the properties
and behavior of compositional data in the context
of IBA. Moreover, the presence of values below

the limit of detection (left-censored) in datasets
is a significant issue that can impact data analysis
and interpretation (Filzmoser et al. 2009, Buccian-
ti & Grunsky 2014).

The presence of left-censored values in datasets
is a consequence of the inherent limitations of an-
alytical methods, including instrument sensitivi-
ty, reagent quality, and external factor influences
(Helsel 1990). These values, which fall below the
limits of detection (LOD), can significantly im-
pact data analysis and interpretation. The omis-
sion or incorrect substitution of left-censored val-
ues can lead to biased statistical conclusions and
erroneous predictions (Singh & Nocerino 2002).
In the context of element recovery from IBA, the
neglect of left-censored values can result in the
underestimation of estimated recovery rates, po-
tentially leading to inaccurate assessments of eco-
nomic viability (Filzmoser et al. 2009). Converse-
ly, the failure to account for left-censored values
can also lead to overestimation of recovery quan-
tities, resulting in misguided investment decisions
(Filzmoser et al. 2009, Tekindal et al. 2017). To
mitigate these risks, it is crucial to employ suitable
statistical methods and analytical techniques that
accommodate left-censored values, thereby ensur-
ing accurate estimates of element recovery quanti-
ties from IBA (Tekindal et al. 2017).

Consequently, various methods have been de-
veloped to address this problem, including replac-
ing values with half of the detection limit (Hel-
sel 1990), Aitchison’s method (Aitchison 2003),
Cohen’s method (Cohen 2016), random substitu-
tion (Singh & Nocerino 2002), Kaplan-Meier es-
timation (Kaplan & Meier 1992), maximum like-
lihood estimation (Helsel 1990), robust regression
on order statistics (Helsel 2005), tobit regression
(Tobin 1958, Miksova et al. 2020), and Weibull
regression (Rodrigues et al. 2022). Moreover,
log-normal regression, gamma regression, and
bootstrapping can also be used for replacing val-
ues below the detection limit (Helsel 1990, 2005).
However, each method has its strengths and lim-
itations, and the choice of method depends on the
specific characteristics of the dataset and the re-
search question being addressed. As Helsel noted,
replacing values below the detection limit with
random values can lead to incorrect conclusions

https://journals.agh.edu.pl/geol


https://journals.agh.edu.pl/geol

Exploratory analysis of elements in incineration bottom ash with numerous values below the detection limit...

415

and imprecise estimates (Helsel 1990, 2005). For
instance, the half of detection limit method is
commonly utilized in environmental sciences,
such as assessing chemical contaminants in soil
or water (Singh & Nocerino 2002), with censor-
ing rates ranging from 1% to 50%. Robust regres-
sion on order statistics is recommended for small
datasets with left-censored values between 15%
and 50% (EPA 2006). Conversely, the maximum
likelihood estimation (MLE) approach is recom-
mended when dealing with datasets containing
left-censored values with multiple levels of LOD,
as it provides a robust framework for estimating
parameter values in the presence of complex cen-
sorship patterns (Helsel 1990).

The study examines and compares several
widely used methods for the substitution of val-
ues below the detection limit, using actual envi-
ronmental data sets that contain different propor-
tions of censored values, which is a frequent issue
in this field. The primary objective of the research
was to determine how different substitution
methods influence the outcomes of exploratory
data analysis, including descriptive statistics, dis-
tributional characteristics, correlation structures,
and the performance of multiple regression mod-
els. By systematically evaluating these methods
across datasets characterized by different cen-
sorship levels, the study provides a comprehen-
sive assessment of the robustness, consistency,

and potential biases introduced through substi-
tution. Moreover, the analysis aimed to quantify
how treating below-detection values as missing
data may distort statistical inference, thereby af-
fecting interpretation in applications such as ele-
ment recovery assessment, environmental moni-
toring, and material flow analysis. Through this
comparative framework, the study offers practi-
cal guidance for selecting appropriate substitu-
tion strategies in environmental research involv-
ing censored values.

MATERIALS AND METHODS

Incineration bottom ash (IBA)

The research concept for analyzing metal content
in bottom ashes from municipal waste incinera-
tion was developed at the Krakow Thermal Waste
Treatment Plant in 2020-2021 (Fig. 1A). The plant,
commissioned in 2016, has two independent in-
cineration lines with a total processing capacity of
245,000 Mg/year.

The feedstock consists of two municipal waste
streams: mechanically and biologically treated
waste (60%) and non-recyclable waste (40%). The
incineration technology employs a grate furnace
with a natural circulation steam boiler, generating
bottom ash that undergoes a two-week ageing pe-
riod to reduce leachability and change the mois-
ture content from 30% to 12-20%.

Fig. 1. Krakow Thermal Waste Treatment Plant (A) and incineration bottom ash (B)
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Sampling and laboratory analyses

Sampling and analysis were conducted on bottom
ash subjected to preliminary ageing and partial
metal recovery. Samples were collected weekly from
January to December 2021, as per PN-EN 14899
standard (PKN 2006, Skutan et al. 2018), and it
was known in advance that 52 samples would be
taken over the course of the year. Eight primary
samples (3.5-4.0 Mg each) were combined into
a composite sample, reduced in size through a se-
ries of divisions, and finally yielded approximately
10 kg laboratory samples (Fig. 1B). These samples
were crushed (<2 mm) and milled (<75 pm) be-
fore analysis via inductively coupled plasma mass
spectrometry. Metal content was determined us-
ing a Perkin Elmer ELAN 9000 mass spectrome-
ter, with quality control ensured through certified
reference materials and blank sample analysis.
Quality control procedures utilized the reference
standards STD BVGEOO1 and OREAS 262. The
analysis of the bottom ash chemical composition
was conducted at the Bureau Veritas Commodi-
ties Canada Ltd. laboratory.

Data

To evaluate the performance of different meth-
ods for replacing missing values, a dataset of 5 el-
ements with varying numbers of observations
below the detection limit was selected. The ele-
ments were measured in IBAat regular intervals
throughout 2021, resulting in 52 observations
per element, expressed in parts per billion (ppb).
Furthermore, to assess the effect of replacement
methods on exploratory data analysis and mod-
eling, a subset of 11 elements (Ag, Ba, Ca, Cr, Fe,
Li, Mg, Mn, Nj, S, and Sb) without missing or cen-
sored values was used. These elements exhibited
linear correlations with the analyzed elements,
and linear regression models could be successful-
ly fitted for most of them.

Methods

Four popular methods for replacing values below
the detection limit were selected and their impact
on data analysis was evaluated. The methods un-
der consideration included: replacement with half
of the detection limit (h), replacement with a ran-
dom value from a uniform distribution between

0 and the detection limit (g), robust regression
on order statistics (r), and tobit regression in two
variants: a small variant (t), which included only
data from the 5 elements with values below the de-
tection limit, and a large variant (tl), which addi-
tionally included a set of 11 elements.

ROS is a semiparametric method designed to
estimate the concentration of censored values in
datasets. This approach assumes an underlying
parametric distribution for the uncensored values
and utilizes ordered detected values and distribu-
tional quantiles to estimate the concentration of
censored observations. ROS is particularly useful
when dealing with multiple censored values, as it
provides a robust and efficient way to estimate the
true concentrations of the analytes (Helsel 1990,
2005). The substitution process involves finding
a distributional model that fits the joint sample
of detects and left-censored values, constructing
a partial ranking of the data and determining the
cumulative probability associated with each dis-
tinct LOD. In the last step, the fitted distribution-
al model is used to impute values for non-detects
through linear regression between detected values
and z-scores from the censored probability plot
(Helsel 2005).

Tobit regression is a type of regression analy-
sis that models the relationship between a depen-
dent variable and one or more independent vari-
ables when there are censored observations. The
method assumes that the censored values follow
a normal distribution and uses MLE to estimate
the model parameters. Tobit regression is partic-
ularly useful when dealing with datasets contain-
ing a large number of censored observations, as it
provides a way to account for the censoring mech-
anism and obtain unbiased estimates of the rela-
tionships between variables (Tobin 1958, MikSova
et al. 2020).

To test whether the application of substitution
methods affects the results of EDA, the following
analyses were performed for both the raw data
(where values below the detection limit were re-
placed with missing values) and the transformed
data using various substitution methods: descrip-
tive statistics, histograms, linear Pearson correla-
tion matrices, and multiple regression models.

All of the listed analyses were performed
in R (version 4.3.2), using standard statistical and
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data-processing tools available in this environ-
ment. The computational workflow included pro-
cedures for data cleaning, substitution of values
below the detection limit, exploratory data anal-
ysis, and statistical modelling.

RESULTS

The analysis involved 5 elements detected in IBA
after municipal waste incineration, which differed
in the number of values below the detection lim-
it (left-censored) in a dataset of 52 measurements.
For germanium, 27 left-censored values (52%
of the dataset) had a LOD of 100 ppb (Fig. 2A). The
mean values obtained using various substitution
methods were similar (137.4-140.6 ppb), where-
as the raw data mean was significantly higher
(236 ppb). The median and lower quartile values
varied among substitution methods, with the ran-
dom method and ROS yielding lower values (Ta-
ble 1, Fig. 2A, B). Additionally, the lower quartile
value and median for the raw data were 100 ppb,
which was at least twice as high as the lower quar-
tile value for selected substitution methods. For
minimum values, a greater spread of predicted
left-censored values was observed for ROS and
the random method (Fig. 2B). The tobit method,
based on both small and large datasets, yielded
similar minimum values to the half-method. No-
tably, the standard deviation and skewness of the
data differed significantly between the substitu-
tion methods and the raw data (Table 1).
Hafnium had 16 observations below the detec-
tion limit (31% of all observations) with a LOD of
20 ppb (Fig. 2C). The mean values obtained using
various substitution methods were similar but dif-
fered substantially from the raw data mean (approx.
26 ppb). Minimum values for the random method
and ROS were lower than those for other substi-
tution methods (1 ppb and 2.7 ppb, respectively),
whereas the minimum value for other substitution
methods exceeded 8.8 ppb. As evident from the
histogram (Fig. 2D), the left-skewed distribution
for the random method and ROS was more elon-
gated than that for other substitution methods. The
lower quartile values for substitution also exhibited
variability but were significantly lower than those
for the raw data, ranging from 9.0 ppb (tobit meth-
od) to 16.8 ppb (random method), whereas the raw

data had a lower quartile value of 30 ppb. The me-
dian, standard deviation, and skewness values were
similar or identical for all substitution methods
and differed significantly from those calculated for
the raw data (Table 1).

Indium exhibited the lowest number of values
below the detection limit (13% of all values — 7 ob-
servations) with a LOD of 20 ppb (Fig. 2E). The
mean value for all methods was very similar (dif-
ferences not exceeding 0.5 ppb), whereas the raw
data mean was higher (116 ppb). Minimum val-
ues for the random method and ROS were lower
than those obtained by other substitution meth-
ods (Table 1). The first quartile and median values
are identical for all substitution methods and also
lower than those calculated for the raw data. The
left-skewed distribution of the data for the random
method is significantly elongated due to the min-
imum value, similarly to the distributions for the
ROS and half-methods (Fig. 2F). The third quar-
tile value is identical for all datasets, including
the raw data. The standard deviation and skew-
ness values for all substitution methods are sim-
ilar to each other. The largest difference in skew-
ness between substitution methods was observed
between the half-method and ROS, with a differ-
ence of 0.24. The difference in skewness between
the raw data and imputed data is 0.24 (for ROS),
see Table 1.

Palladium had 14 observations below the de-
tection limit (27% of the entire dataset) with
a LOD of 10 ppm (Fig. 2G). The mean values for
each method were very similar (41.27-41.61 ppb),
whereas the raw data mean was higher (54.7 ppb).
The median value was identical for all substitution
methods (18 ppb), which was 10 ppb lower than
that calculated for the raw data. Similarly, for the
upper quartile, all substitution methods yielded
a single value of 39.75 ppm, which is lower than
the value calculated for the raw data (46 ppb).
The lowest minimum values were obtained for
the random method (2 ppb) and ROS (1.4 ppb),
as evident from the elongated left-skewed histo-
gram (Fig. 2H). For the remaining three substi-
tution methods, the minimum value was 5 ppb.
The standard deviation values for all substitution
methods are 102 ppb, whereas for the raw data, it
is 117 ppb. Skewness, except for the half-method,
is 5.9 (Table 1).

Geology, Geophysics and Environment, 2025, 51 (4): 413-426
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Table 1

Descriptive statistics of raw data and data after substitution of LOD values

Descriptive statistics

German (Ge), ppb, LOD = 100 ppb, number of left-censored values = 27-52%

raw half (h) random (g) ROS (r) tobit_small (t) | tobit_large (tl)
mean 236.00 139.40 140.62 138.86 137.44 137.65
1st Q 100.00 50.00 35.50 30.72 44.44 44.85
median 100.00 50.00 96.50 100.00 62.91 63.21
3rd Q 100.00 100.00 100.00 100.00 100.00 100.00
min NA 50.00 3.00 7.35 41.27 41.71
max 2,900.00 2,900.00 2,900.00 2,900.00 2,900.00 2,900.00
standard deviation 557.43 393.74 394.04 394.79 394.23 394.18
skewness 4.63 7.02 6.99 6.97 7.01 7.01
L L. Hafn (Hf), ppb, LOD = 20 ppb, number of left-censored values = 16-31%
Descriptive statistics
raw half (h) random (g) ROS (r) tobit_small (t) | tobit_large (tl)
mean 93.33 67.69 68.23 67.47 67.41 67.44
Ist Q 30.00 10.00 16.75 13.05 9.04 9.25
median 40.00 30.00 30.00 30.00 30.00 30.00
3rd Q 95.00 70.00 70.00 70.00 70.00 70.00
min NA 10.00 1.00 2.68 8.88 8.81
max 420.00 420.00 420.00 420.00 420.00 420.00
standard deviation 105.23 95.44 95.16 95.61 95.61 95.59
skewness 1.71 2.26 2.26 2.25 2.25 2.25
L L. Indium (In), ppb, LOD = 20 ppb, number of left-censored values = 7-13%
Descriptive statistics
raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 116.20 101.90 102.20 101.72 102.03 102.03
Ist Q 30.00 20.00 20.00 20.00 20.00 20.00
median 50.00 40.00 40.00 40.00 40.00 40.00
3rd Q 100.00 100.00 100.00 100.00 100.00 100.00
min NA 10.00 2.00 3.46 10.39 10.38
max 2,030.00 2,030.00 2,030.00 2,030.00 2,030.00 2030.00
standard deviation 299.12 280.20 280.16 280.31 280.20 280.20
skewness 6.02 6.50 6.27 6.26 6.27 6.27
Pallad (Pd), ppb, LOD = 10 ppb, number of left-censored values = 14-27%
Descriptive statistics
raw half (h) random (g) ROS (1) tobit_small (t) tobit_large (tl)
mean 54.71 41.30 41.61 41.27 41.36 41.36
1st Q 15.25 5.00 10.00 7.95 5.90 5.90
median 28.50 18.00 18.00 18.00 18.00 18.00
3rd Q 46.00 39.75 39.75 39.75 39.75 39.75
min NA 5.00 2.00 1.40 5.01 5.01
max 731.00 731.00 731.00 731.00 731.00 731.00
standard deviation 117.33 102.40 102.28 102.42 102.38 102.38
skewness 5.27 6.10 5.94 5.92 5.93 5.93
L L. Ren (Re), ppb, LOD = 1 ppb, number of left-censored values = 35-67%
Descriptive statistics
raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 2.53 1.16 1.15 1.03 1.10 1.12
1st Q 1.00 0.50 0.35 0.12 0.37 0.43
median 1.00 0.50 0.75 0.32 0.43 0.44
3rd Q 2.00 1.00 1.00 1.00 1.00 1.00
min NA 0.50 0.06 0.01 0.35 0.39
max 18.00 18.00 18.00 18.00 18.00 18.00
standard deviation 4.06 2.47 2.49 2.52 2.49 2.48
skewness 3.52 6.30 5.99 5.85 6.03 6.06

NA - not available.
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Rhenium exhibited the highest number of val-
ues below the detection limit among the analyzed
elements, with 35 observations below the LOD of
1 ppb (67% of the entire dataset). The mean values
for the selected substitution methods were signifi-
cantly lower than those in the raw data. Median
values were substantially lower than the mean val-
ues, ranging from 0.32 ppb for the ROS method
to 0.75 ppb for the random method. A significant
spread of values was observed for the minimum
values (Table 1, Fig. 2I). The lowest minimum
values were obtained for the ROS and random
methods, at 0.01 ppb and 0.06 ppb, respective-
ly. In contrast, the tobit and half-methods yield-
ed significantly higher minimum values (Table 1,
Fig. 2]). Similar results were obtained for the sub-
stitution methods when calculating the upper
quartile. The standard deviation for the imput-
ed data ranges from 2.47 ppb (half) to 2.52 ppb
(ROS). Consistent with previous statistics, skew-
ness exhibits higher variability than in the case of
other analyzed elements, but is also higher than
that calculated for the raw data. Skewness var-
ies from 5.9 for the ROS method to 6.3 for the
half-method, whereas for the raw data, it is 3.52.

The distribution of elements in the raw data
is a distribution close to log-normal with occur-
ring outliers and extreme right-handed obser-
vations. For all of the analyzed elements, chang-
es in the distribution can be seen depending on
the method used. In the case of random substi-
tution and ROS methods, lower minimum values
resulted in a greater extension of the histogram to
the left with a smaller number for each histogram
interval. This effect is most visible for Rhenium
and Germanium. At the same time, the tobit and
half-substitution methods, compared to the pre-
viously mentioned methods, allow for obtaining
a narrower distribution. In the case of Rhenium,
the high frequency of observations below the de-
tection limit and the half-substitution method dis-
rupts the data distribution. A similar effect visible
for Rhenium is also observed for the tobit method.
For the remaining elements, the half-substitution
and tobit methods allow for obtaining a narrower
distribution (Fig. 2).

Correlation matrices were constructed for the
5 analyzed elements and an additional 11 elements

that did not contain values below the detection
limit or missing data (Table 2). The variability
of statistically significant Pearson linear correla-
tions (Pearson’s r) was analyzed for p < 0.05 and
52 pairs of observations. For this sample size, cor-
relations with absolute values greater than 0.275
can be considered statistically significant. The in-
terpretation of correlation strength was based on
established classification ranges provided in the
referenced publication (Schober et al. 2018). Addi-
tionally, patterns of variability were analyzed for
non-statistically significant correlations but high-
er than 0.2. The correlation matrices are presented
in Table 2.

Germanium does not exhibit any statistically
significant correlations or correlations with values
higher than 0.2.

Hafnium is significantly correlated with man-
ganese and chromium. The correlation value for
manganese with raw data is moderate (0.46). For
substitution methods, the correlation with chro-
mium is moderate (0.46), except for the random
method, where it remains moderate (0.45). The
correlation with chromium for the raw data and
all substitution methods is weak (0.30).

Indium exhibits one statistically significant
correlation with manganese and one non-statis-
tically significant but higher than 0.2 correlation
with chromium. The correlation with manganese
for both raw data and substitution methods is
weak (0.32). Similarly, the correlation with chro-
mium for raw data and substitution methods is
weak (0.24).

Palladium does not exhibit any statistically
significant correlations with the selected elements.
Only a slight correlation with iron is observed,
which is just below the statistical significance lev-
el. For raw data, this correlation is weak (0.25), and
for substitution methods, it is also weak (0.26).

Rhenium shows statistically significant correla-
tions with silver and magnesium. The correlation
with silver for raw data is moderate (0.46), and for
the half-method, ROS, and tobit substitution meth-
ods, it is also moderate (0.45). A slightly weaker
correlation with silver is observed for the random
method, at 0.43 (moderate). The correlation with
magnesium for raw data is weak (0.33), and for sub-
stitution methods, it remains weak (0.31).
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Table 2
Pearson linear correlation matrices

Raw data

Pearson’s r
Ge Hf In Pd Re Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge - | -=0.09| 0.00 {-0.01|-0.03|~0.01 | -0.05|-0.05|-0.06| 0.00 [ 0.11 | 0.12 | 0.03 [ 0.01 | 0.08 | 0.11
Hf -0.09| - |-0.07|-0.11| 0.02 | 0.11 | 0.17 - 0.30 | 0.02 | -0.10 [ —=0.13 | 0.01 | 0.02 | =0.17 | =0.12
In 0.00 | -0.07 | - -0.03 | —0.04 | -0.09 [ -0.08 | 0.32 | 0.24 | 0.00 |-0.02| 0.06 |[-0.03 | 0.01 |-0.06 | —0.05
Pd -0.01|-0.11 { -0.03 | - |-0.05|-0.03 | -0.07 | =0.10 | —0.01 | =0.17 | 0.19 | 0.11 | 0.25 | 0.02 | -0.01 | —0.06
Re -0.03 | 0.02 | -0.04 | -0.05 - - -0.06 | 0.17 | -0.06 | —0.05 | -0.05 | 0.04 | -0.04 [ 0.33 | -0.05| 0.01
Half (h)
Pearson’s r

Ge_h | Hf_h | In_h | Pd_h | Re_h Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb
Ge_h - | =0.09| 0.01 | 0.01 | 0.00 | -0.01 [ -0.05|—-0.04|-0.06| 0.00 [ 0.12 | 0.12 | 0.05 | 0.00 | 0.08 | 0.10
Hf h -0.09| - |-0.07|-0.11| 0.02 | 0.12 | 0.16 - 0.30 | 0.04 | -0.11 [ —-0.13 | 0.01 | 0.03 | -0.17 | -0.12
In_h 0.01 |-0.07| - —-0.03 | —0.05 [ -0.09 [ —-0.08 | 0.32 | 0.24 | 0.00 |-0.02| 0.06 |[-0.03 | 0.01 |-0.06 | —0.05
Pd_h 0.01 | -0.11 [ -0.03 | - -0.02 | -0.03 | -0.07 | -0.09 | =0.01 | =0.16 | 0.19 | 0.12 | 0.26 | 0.02 | —-0.01 | -0.06
Re_h 0.00 | 0.02 | -0.05(-0.02 - - -0.06 | 0.15 | -0.05 | -0.06 | -0.05 | 0.03 | -0.03 | 0.31 | —0.06 | 0.00

Random (g)

Pearson’s r
Ge_g |Hf g | In_g | Pd_g | Re_g | Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_g - |[-0.07| 0.01 | 0.01 | 0.00 | -0.01|-0.06|-0.04|-0.06| 0.00 | 0.11 | 0.12 | 0.05 | 0.10 | 0.07 | 0.12
Hf g -0.07| - |-0.07|-0.11]| 0.04 | 0.12 | 0.16 - 0.30 | 0.03 [ -0.10 [ -0.13 | 0.01 | 0.03 | -0.17 | —0.11
In_g 0.01 | -0.07 | - -0.03 | -0.06 | -0.08 [ -0.08 | 0.32 | 0.24 | 0.00 |-0.02| 0.06 |-0.03 | 0.01 |-0.06 | —0.05
Pd_g 0.01 | -0.11 [ -0.03 | - |-0.02|-0.03 | -0.07 | =0.09 | —0.01 | =0.17 | 0.19 | 0.12 | 0.26 | 0.02 | -0.01 | —0.06
Re_g 0.00 | 0.04 | 0.06 [-0.02| - 0.43 | -0.05| 0.13 | -0.06 [ -0.06 | =0.08 | 0.00 | -0.04 | 0.31 | -0.05| 0.20
ROS (r)
Pearson’s r

Ge_r | Hf r | In_r | Pd_r | Re_r | Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb
Ge_r - -0.11 | 0.01 | 0.01 | 0.02 |-0.02|-0.04 | -0.04 | -0.06 | 0.10 | 0.12 | 0.12 | 0.05 | 0.00 | 0.10 | 0.12
Hf r -0.11 - [-0.07 | -0.11 | 0.03 | 0.11 | 0.16 - 0.30 | 0.04 | -0.11 | -0.13 | 0.01 | 0.03 | -0.18 | —0.11
In_r 0.01 | -0.07 | - —-0.03 | —0.06 | —0.08 [ -0.08 | 0.32 | 0.24 | 0.00 |-0.02| 0.06 |-0.03 | 0.01 |-0.06 | —0.05
Pd_r 0.01 | -0.11 [ -0.03 | - 0.00 | -0.03 | —0.07 | -0.09 | =0.01 | =0.16 | 0.19 | 0.11 | 0.26 | 0.02 | -0.02 | -0.06
Re_r 0.02 | 0.03 | —-0.06 | 0.00 - - -0.05| 0.14 | -0.03 | -0.07 | —0.03 | 0.04 | -0.03 | 0.31 | —0.07 | 0.00

tobit_small (t)
Pearson’s r

Ge_t | Hf t | In_t | Pd_t | Re_t Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb
Ge_t - -0.09| 0.01 | 0.01 0.10 | -0.01 | —0.05 | —-0.04 | —-0.06 | 0.00 | 0.12 | 0.13 | 0.06 | 0.00 | 0.08 | 0.10
Hf_t -0.09 - -0.07 | -0.12 | 0.02 | 0.12 | 0.16 - 0.30 | 0.04 | -0.11|-0.13 | 0.01 | 0.03 | -0.18 | —0.12
In_t 0.01 | -0.07| - -0.03 | -0.05 | -0.09 | —0.08 | 0.32 | 0.24 | 0.00 |-0.02 | 0.06 | -0.03 | 0.01 | -0.06 | —0.05
Pd_t 0.01 | -0.12|-0.03| - |-0.01|-0.03|-0.07 [ -0.09 | =0.01 [ =0.16 | 0.19 | 0.12 | 0.26 | 0.02 | -0.01 | —0.06
Re_t 0.10 | 0.02 | -0.05| —0.01 - —-0.06 | 0.15 | -0.05|-0.06 | -0.05 | 0.04 | -0.03 | 0.31 | -0.05| 0.00

tobit_large (tl)

Pearson’s r

Ge_tl | Hf tl | In_tl | Pd_tl | Re_tl | Ag Ni Mn Cr Ba N Ca Fe Mg Li Sb
Ge_tl - [-0.09| 0.01 | 0.01 | 0.10 | -0.01|-0.05|-0.04|-0.06 | 0.00 [ 0.12 | 0.12 | 0.05 | 0.00 | 0.08 | 0.10
Hf_tl -0.09( - |-0.07|-0.12| 0.02 | 0.12 | 0.16 - 0.30 | 0.04 | -0.11 | —=0.13 | 0.01 | 0.03 | -0.18 [ —0.12
In_tl 0.01 | -0.07| - |-0.03|-0.05|-0.09|-0.08 | 0.32 | 0.24 | 0.00 |-0.02| 0.06 | -0.03| 0.01 |-0.06 | -0.05
Pd_tl 0.01 | -0.12|-0.03| - |-0.01|-0.03|-0.07 [ =0.09 | =0.01 [ =0.16 | 0.19 | 0.12 | 0.26 | 0.02 | -0.01 [ —-0.06
Re_tl 0.10 | 0.02 | -0.05|-0.01 | - —-0.06 | 0.15 | —0.05|-0.06 | —0.05| 0.03 | —0.03 [ 0.31 | —0.06 | 0.00
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For the analyzed elements, six multiple regres-
sion models were constructed for raw data and data
subjected to substitution. The set of potential inde-
pendent variables included elements of the same
type as the dependent variable and a pool of 11 vari-
ables used for correlation matrices. Stepwise back-
ward regression was employed. Initially, each model
contained all independent variables. In subsequent
iterations, one variable with the highest p-value was
removed from the model until a statistically signif-
icant model was obtained. Due to the small sample

size (52 observations) and large number of indepen-
dent variables, it was decided not to split the data
into training and testing sets. Subsets were also not
created due to the possibility of disrupting the as-
sessment of the impact of values below the detec-
tion limit on the regression model by creating un-
balanced subsets of data. The models were evaluated
using the coefficient of determination (R?), mean
absolute percentage error (MAPE), mean absolute
error (MAE), and Akaike information criterion
(AIC). The collective results are presented in Table 3.

Table 3
Regression models
riien-t Surl:etg:)t(ilon Model parameters R* | MAPE| MSE AIC

raw —-492.95 + 40.27Sb 0.18 1.35 244,387 | 387.11
half (h) no statistically significant model
random (g) no statistically significant model

oe ROS (1) no statistically significant model
tobit_small (t) | no statistically significant model
tobit_large (tl) | no statistically significant model
raw —-11.52 + 0.43Sb 0.16 1.22 9,055 436.16
half (h) 111.9 - 0.11In + 0.06Mn + 0.11Cr - 0.002Ca 0.42 1.57 5,196 604.47
random (g) 10.05 - 0.11In + 0.06Mn + 0.10Cr 0.36 3.42 5,694 607.23

A ROS (r) 112.6 - 0.11In + 0.06Mn + 0.11Cr-0.002Ca 0.42 1.96 5,199 604.50
tobit_small (t) | 111.6 — 0.11In + 0.06Mn + 0.11Cr — 0.002Ca 0.42 1.70 5,216 604.77
tobit_large (tI) | 111.6 — 0.11In + 0.06Mn + 0.11Cr — 0.002Ca 0.42 1.68 5,213 604.63
raw 87.77 — 0.53Ni + 0.47Cr 0.17 2.46 72,765 639.00
half (h) 59.62 — 1.19Hf — 0.49Ni + 0.13Mn + 0.53Cr 0.32 3.89 52,696 725.00
random (g) 244.45 - 1.15Hf - 0.93Ni + 0.14Mn + 0.78Cr — 0.11S + 24.05Li | 0.41 4.72 45,016 720.74

n ROS (1) 244.19 — 1.15Hf-0.92Ni + 0.14Mn + 0.78Cr — 0.11S + 24.87Li 0.41 5.60 45,240 720.99
tobit_small (t) | 244.26 — 1.15Hf-0.93Ni + 0.14Mn + 0.78Cr—0.11S + 25.01Li 0.42 4.17 45,072 720.8
tobit_large (tl) | 244.26 — 1.15Hf-0.93Ni + 0.14Mn + 0.78Cr — 0.11S + 25.01Li 0.42 4.17 45,072 720.8
raw no statistically significant model
half (h) 24.8 - 0.21Ba + 0.003Fe 0.14 2.66 8,847 628.14

Pd random (g) 25.98 - 0.21Ba + 0.003Fe 0.14 2.65 8,819 627.98
ROS (1) 24.70 - 0.21Ba + 0.003Fe 0.14 3.41 8,856 628.19
tobit_small (t) | 24.89 — 0.21Ba + 0.003Fe 0.14 2.60 8,844 628.12
tobit_large (tI) | 24.89 — 0.21Ba + 0.004Fe 0.14 2.60 8,844 628.12
raw 0.07 + 0.0004Ag 0.60 1.07 6.12 85.04
half (h) 0.54 + 0.0001Ag 0.20 0.90 4.75 234.57
random (g) 2.42 +0.0001Ag - 0.0007Ca + 0.0004Mg 0.30 1.52 4.26 232.89

ke ROS (r) 1.84 + 0.0002Ag — 0.0006Ca + 0.0004Mg 0.29 4.86 4.42 234.89
tobit_small (t) | —0.5+ 0.0001Ag + 0.0002Mg 0.24 1.26 4.58 234.75
tobit_large (tI) | 2.02 + 0.0001Ag — 0.0006Ca + 0.0004Mg 0.30 1.24 4.21 232.44
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Germanium is an element for which a model
was successfully constructed only for raw data.
The created model is of low quality and contains
one independent variable: Sb.

The quality of the hafnium models, as de-
termined by the coeflicient of determination, is
non-uniform. For raw data, the model is of very
poor quality, with R* = 0.16, and contains only one
independent variable: Sb. The MAPE for this mod-
el is lower than for models with substitution data
and equals 1.22. Due to the small number of inde-
pendent variables, the AIC value is also the lowest
and equals 436. Models for substitution methods
have a quality ranging from 0.36 (random) to 0.42
(other substitution methods). The highest MAPE
values were calculated for the model with random
substitution (3.42). Other models with substitu-
tions have lower MAPE values, ranging from 1.68
to 1.96. The absolute error is lower than for the
raw data model. Independent variables for models
with imputed data contain from 3 to 4 variables,
including In, Mn, and Cr. Models except for ran-
dom substitution also include Ca. AIC values for
models with imputed data are similar.

Models for indium can be divided into three
groups. The first model for raw data has the low-
est quality (R* = 0.17), the lowest MAPE value of
2.46, a higher absolute error, and two independent
variables: Ni and Cr. The second model is for half-
substitution method data and has a higher R’
value of 0.32, a higher MAPE value, a lower ab-
solute error, and a higher AIC value. The model
for half-substitution method data contains more
independent variables: Hf, Ni, Mn, and Cr. Other
models have similar R? values, similar MSE val-
ues, and similar AIC values but differ in MAPE
values, with the highest achieved by the model
for ROS-imputed data. These models possess the
same six independent variables with very similar
regression coefficients.

For palladium, it was possible to construct mul-
tiple regression models only for data with substi-
tution. These models have very similar R? values,
absolute error values, and AIC values. In the case
of MAPE, the model calculated for ROS data has
worse results. Each model has the same indepen-
dent variables with similar regression coeflicients.

In the case of rhenium, the model for raw data
achieved the highest coefficient of determination

value and the lowest AIC value. At the same time,
this model has the highest absolute error value.
The model for half-substitution method has only
one independent variable: Ag. Despite this, model
is significantly weaker, with a higher AIC value,
but lower MAPE and absolute error values. Mod-
els for other substitution methods have variable
quality, ranging from 0.24 for tobit method for
a small dataset to 0.30 for random and tobit meth-
od for a large dataset. AIC values are very similar
and higher than for the raw data model. Absolute
error values are also similar and lower than for the
raw data model. The largest variation in results
is for MAPE. The MAPE value for the ROS data
model equals 4.86, while for models with oth-
er substitution methods, it does not exceed 1.52.
All models include Ag as an independent variable.
Models for the random, ROS, and tobit substitu-
tion methods also include Ca and Mg, except for
the tobit method with a small dataset, which does
not include Ca.

DISCUSSION

This article presents an exploratory analysis of
four substitution methods for left-censored data
using real-world data from the measurement of el-
ements in IBA. The analyzed data exhibit a vari-
able number of left-censored values (ranging from
13% to 67%) with a small sample size of 52 obser-
vations.

Most of the existing literature focuses on an-
alyzing substitution methods for non-parametric
and half-substitution methods using synthetic
or real-world data (Singh & Nocerino 2002, Ver-
bovsek 2011, Tekindal et al. 2017, Tekindal 2021,
Rodrigues et al. 2022). These studies have exam-
ined the impact of imputing left-censored val-
ues on mean values and other statistical metrics
(Singh & Nocerino 2002, Filzmoser et al. 2009,
Tekindal et al. 2017). We also decided to compare
the tobit regression method for compositional
data with other methods, despite its typical appli-
cation to compositional data, when other meth-
ods do not have such a limitation (Aitchison 2003,
Buccianti & Grunsky 2014, Miksova et al. 2020).
Currently, R supports two methods for estimating
summary statistics from censored data sets: MLE
and ROS. Previous studies have demonstrated
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that non-parametric methods yield better results
when dealing with a higher number of substitu-
tions (Singh & Nocerino 2002, Tekindal et al.
2017, Tekindal 2021). However, based on Hel-
sel’s findings regarding MLE, we focused on ROS
(Helsel 2005). Another method, the Kaplan-Mei-
er method, is commonly used in other disciplines
and is also available in R; however, the KM meth-
od is only recommended when there are multiple
censoring levels (i.e., multiple detection limits in
the analyzed data set). Therefore, we did not apply
the KM method and instead tested the ROS meth-
od. Additionally, ROS is recommended for small-
er datasets (Helsel 2005).

Simple substitution by zero ignores the mea-
surement distribution in favor of an a priori as-
sumption about what non-detects might repre-
sent. Substitution by half LOD or by the LOD
itself ignores the larger distributional pattern,
especially since this distribution will rarely be
uniform in the interval [0, LOD] (Helsen 2005,
EPA 2006). When using the half of LOD method
with a higher number of imputed values, we ob-
served a problem with data distribution, result-
ing in a histogram with significant skewness, and
higher kurtosis (Table 1, Fig. 2). However, when
using this method with fewer substitutions, the
effect was less pronounced. The similarity be-
tween the descriptive statistics obtained for In-
dium and other elements (such as Palladium and
Hafnium) suggests that the half of LOD method
can be used as a convenient and quick substitu-
tion method for left-censored data with a low-
er number of censored values. This conclusion
is supported by the Environmental Protection
Agency (EPA), which recommends this substi-
tution method when the number of non-detects
is less than 15%: “As a guideline, if 15% or fewer
of the values are not detected, replace them with
the method detection limit divided by two and
proceed with the appropriate analysis using these
modified values” (EPA 2006).

CONCLUSIONS

Analyzing changes in data distribution after the
application of selected substitution methods re-
vealed that random and ROS methods typically

generate lower minimum values compared to oth-
er methods. The tobit regression method generates
minimal observations around half of the LOD.
Each substitution method is better than replac-
ing values below the LOD with NA. When dealing
with a lower number of censored values, the re-
sults for all substitution methods are quite similar
(Table 1).

However, when using a higher number of sub-
stitutions, the discrepancy between results in-
creases, particularly in descriptive statistics, data
distribution, and regression models. Applying re-
gression models to substituted methods datasets
generates smaller mean absolute error (MAE)
values compared to replacing left-censored with
NA. In regression models, we observed chang-
es in model quality, calculated as the coefficient
of determination (R*), and changes in indepen-
dent variables used for modeling specific elements
(Table 3).

The tobit regression method better fits the
left-censored values to data when there are strong
correlations between the imputed variable and
other variables (Tables 1 and 3). This method
yielded similar parameters for substituted values
in both small and large datasets.

Methods for replacing values below the limit
of detection, such as random substitution, ROS,
and tobit regression, exert varying influences on
data analysis outcomes. The random substitu-
tion method is suitable for elements with fewer
left-censored values, whereas ROS and tobit meth-
ods are more applicable to elements with a larger
number of such values (Tables 1 and 3). The cor-
relation values are similar for all methods of re-
placing left-censored values and very close to the
values for the raw data, indicating that replacing
left-censored values does not disrupt the relation-
ships between the variables with left-censored
values and the remaining variables in the dataset
(Table 2).

When applying to the calculation of poten-
tial returns on investment in extracting elements
from IBA, it is essential to consider that not re-
placing values below the detection limit can im-
pact return calculations. Given the changes in de-
scriptive statistics (mean, median, lower quartile)
and their significantly higher values for raw data
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where left-censored values were replaced with
NA, the actual return on investment may be sub-
stantially lower than calculated. Additionally, us-
ing simpler methods to replace a large number of
left-censored values can also lead to distorted re-
sults, but this error is significantly lower than ig-
noring left-censored values in the data.

Generally, the choice of method for replacing
values below the limit of detection depends on
the type of analysis and the characteristics of the
dataset. It is essential to note that each substitu-
tion method has its strengths and limitations, and
the selection of an appropriate method should be
based on a thorough understanding of the data
and the underlying mechanisms generating the
missing values. Additionally, the use of multiple
substitution methods can provide a more com-
prehensive understanding of the data and help to
identify potential biases or errors in the analysis.

In summary, replacing values below the detec-
tion limit is a critical step in data analysis, par-
ticularly in environmental sciences and analytical
chemistry. The choice of substitution method de-
pends on the specific characteristics of the data-
set and the research question being addressed. By
using appropriate substitution methods and con-
sidering the limitations and strengths of each ap-
proach, researchers can ensure that their results
are accurate and reliable.

Finally, future studies should focus on devel-
oping and evaluating new substitution methods
for replacing values below the detection limit, as
well as exploring the application of existing meth-
ods in different fields and contexts. This will help
to improve our understanding of the data and
provide more accurate and reliable results in vari-
ous areas of research.

The results of this study can help researchers and
practitioners select the most suitable method for
their specific needs and improve the accuracy of ex-
ploratory data analysis (EDA) in the context of IBA.
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the AGH University of Krakow, Faculty of Geolo-
gy, Geophysics and Environmental Protection, as
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