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Abstract: This study investigates the influence of substitution methods for left-censored values on exploratory 
data analysis (EDA) of the incineration bottom ash (IBA). IBA, a by-product of municipal solid waste incinera-
tion, contains a wide range of economically valuable elements, many of which are frequently reported below de-
tection limits due to analytical constraints. The study aims to evaluate the impact of different substitution meth-
ods on descriptive statistics, correlation analysis, and regression modeling outcomes.
Four widely used substitution approaches were compared: (i) replacement with half of the detection limit, (ii) ran-
dom values from a uniform distribution, (iii) robust regression on order statistics (ROS), and (iv) tobit regres-
sion (applied in both small and large variants). Five trace elements with different proportions of censored values 
(13–67%) were analyzed using a dataset of 52 weekly samples collected throughout 2021 at the Krakow Thermal 
Waste Treatment Plant. The impact of each method was assessed using descriptive statistics, Pearson correlation 
matrices, and multiple linear regression models. Additional analyses incorporated 11 auxiliary elements to en-
hance correlation and regression model robustness.
The results show that substitution methods significantly affect data distributions, particularly for elements with 
high censoring rates. ROS and tobit regression produced more stable statistical outputs and narrower histograms 
compared to simpler methods. Furthermore, regression model performance improved with substitution com-
pared to raw data, with tobit methods demonstrating the highest accuracy for elements with strong inter-element 
correlations. The findings provide methodological guidance for reliable data handling in IBA analysis and recov-
ery assessments.

Keywords: incineration bottom ash, robust regression on order statistics, tobit regression, left-censored, explor-
atory data analysis

INTRODUCTION

Incineration bottom ash (IBA) generated in munic-
ipal solid waste incinerators is a free-flowing bulk 
solid with a density of approximately 1.2 Mg/m³.  

This waste is made up of several key components 
which include a  mineral fraction with particles 
larger than 2 mm, such as glass, porcelain, tiles, 
pottery, cement, and sintered grit. It also contains 
slag, which is solidified partially molten material, 
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and native metals larger than 2 mm, including 
both ferrous and non-ferrous metals. Addition-
ally, there is unburnt organic matter larger than 
2 mm, such as books, leather, and wood. Final-
ly, there is fine-grained grit, smaller than 2 mm, 
which consists of a  mixture of all the previous-
ly mentioned materials, along with metal oxides, 
filler materials from paper and plastics, and wood 
ash (Bunge 2019). Furthermore, IBA is a substan-
tial repository of valuable elements, including rare 
earth metals, precious metals, and other strategic 
elements of significant economic and industrial 
importance (Morf et al. 2013, Funari et al. 2015). 
The analysis of element flow reveals that the pro-
portion of elements present in municipal solid 
waste IBA residues is considerable. This highlights 
the potential of Municipal Solid Waste Incinera-
tion (MSWI) residues as an important second-
ary source of valuable raw materials. Given the 
increasing demand for critical elements and the 
challenges associated with mining them  – due to 
environmental, economic, and geopolitical fac-
tors, recovering these elements from waste offers 
a promising strategy for reducing dependence on 
primary resources. It also helps minimize the en-
vironmental impact of conventional mining while 
contributing to circular economy practices by re-
introducing valuable materials back into produc-
tion cycles (Jędrusiak et al. 2023). The extraction 
of valuable elements from bottom ash is achievable 
through the utilization of diverse techniques, in-
cluding magnetic separation, electrostatic separa-
tion, and hydrometallurgical processes (Nørgaard 
et  al. 2019, Šyc et  al. 2020, Back & Sakanakura 
2022). Within the framework of a circular econo-
my, the recovery of elements from bottom ash can 
generate substantial economic and environmental 
advantages, including reduced primary raw mate-
rial consumption, decreased greenhouse gas emis-
sions, and minimized waste disposal (Brunner & 
Rechberger 2016). 

In addition to its complex composition, IBA 
can be treated as a  matrix containing composi-
tional data, which describes the proportions or 
components of a mixture (Aitchison 2003). There-
fore, it is essential to understand the properties 
and behavior of compositional data in the context 
of IBA. Moreover, the presence of values below 

the limit of detection (left-censored) in datasets 
is a significant issue that can impact data analysis 
and interpretation (Filzmoser et al. 2009, Buccian-
ti & Grunsky 2014).

The presence of left-censored values in datasets 
is a consequence of the inherent limitations of an-
alytical methods, including instrument sensitivi-
ty, reagent quality, and external factor influences 
(Helsel 1990). These values, which fall below the 
limits of detection (LOD), can significantly im-
pact data analysis and interpretation. The omis-
sion or incorrect substitution of left-censored val-
ues can lead to biased statistical conclusions and 
erroneous predictions (Singh & Nocerino 2002). 
In the context of element recovery from IBA, the 
neglect of left-censored values can result in the 
underestimation of estimated recovery rates, po-
tentially leading to inaccurate assessments of eco-
nomic viability (Filzmoser et al. 2009). Converse-
ly, the failure to account for left-censored values 
can also lead to overestimation of recovery quan-
tities, resulting in misguided investment decisions 
(Filzmoser et  al. 2009, Tekindal et  al. 2017). To 
mitigate these risks, it is crucial to employ suitable 
statistical methods and analytical techniques that 
accommodate left-censored values, thereby ensur-
ing accurate estimates of element recovery quanti-
ties from IBA (Tekindal et al. 2017).

Consequently, various methods have been de-
veloped to address this problem, including replac-
ing values with half of the detection limit (Hel-
sel 1990), Aitchison’s method (Aitchison 2003), 
Cohen’s method (Cohen 2016), random substitu-
tion (Singh & Nocerino 2002), Kaplan–Meier es-
timation (Kaplan & Meier 1992), maximum like-
lihood estimation (Helsel 1990), robust regression 
on order statistics (Helsel 2005), tobit regression 
(Tobin 1958, Mikšová et  al. 2020), and Weibull 
regression (Rodrigues et  al. 2022). Moreover, 
log-normal regression, gamma regression, and 
bootstrapping can also be used for replacing val-
ues below the detection limit (Helsel 1990, 2005). 
However, each method has its strengths and lim-
itations, and the choice of method depends on the 
specific characteristics of the dataset and the re-
search question being addressed. As Helsel noted, 
replacing values below the detection limit with 
random values can lead to incorrect conclusions 
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and imprecise estimates (Helsel 1990, 2005). For 
instance, the half of detection limit method is 
commonly utilized in environmental sciences, 
such as assessing chemical contaminants in soil 
or water (Singh & Nocerino 2002), with censor-
ing rates ranging from 1% to 50%. Robust regres-
sion on order statistics is recommended for small 
datasets with left-censored values between 15% 
and 50% (EPA 2006). Conversely, the maximum 
likelihood estimation (MLE) approach is recom-
mended when dealing with datasets containing 
left-censored values with multiple levels of LOD, 
as it provides a robust framework for estimating 
parameter values in the presence of complex cen-
sorship patterns (Helsel 1990).

The study examines and compares several 
widely used methods for the substitution of val-
ues below the detection limit, using actual envi-
ronmental data sets that contain different propor-
tions of censored values, which is a frequent issue 
in this field. The primary objective of the research 
was to determine how different substitution 
methods influence the outcomes of exploratory 
data analysis, including descriptive statistics, dis-
tributional characteristics, correlation structures, 
and the performance of multiple regression mod-
els. By systematically evaluating these methods 
across datasets characterized by different cen-
sorship levels, the study provides a  comprehen-
sive assessment of the robustness, consistency, 

and potential biases introduced through substi-
tution. Moreover, the analysis aimed to quantify 
how treating below-detection values as missing 
data may distort statistical inference, thereby af-
fecting interpretation in applications such as ele-
ment recovery assessment, environmental moni-
toring, and material flow analysis. Through this 
comparative framework, the study offers practi-
cal guidance for selecting appropriate substitu-
tion strategies in environmental research involv-
ing censored values. 

MATERIALS AND METHODS

Incineration bottom ash (IBA)
The research concept for analyzing metal content 
in bottom ashes from municipal waste incinera-
tion was developed at the Krakow Thermal Waste 
Treatment Plant in 2020–2021 (Fig. 1A). The plant, 
commissioned in 2016, has two independent in-
cineration lines with a total processing capacity of 
245,000 Mg/year. 

The feedstock consists of two municipal waste 
streams: mechanically and biologically treated 
waste (60%) and non-recyclable waste (40%). The 
incineration technology employs a  grate furnace 
with a natural circulation steam boiler, generating 
bottom ash that undergoes a two-week ageing pe-
riod to reduce leachability and change the mois-
ture content from 30% to 12–20%.

Fig. 1. Krakow Thermal Waste Treatment Plant (A) and incineration bottom ash (B)

A B
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Sampling and laboratory analyses

Sampling and analysis were conducted on bottom 
ash subjected to preliminary ageing and partial 
metal recovery. Samples were collected weekly from 
January to December 2021, as per PN-EN 14899  
standard (PKN 2006, Skutan et  al. 2018), and it 
was known in advance that 52 samples would be 
taken over the course of the year. Eight primary 
samples (3.5–4.0 Mg each) were combined into 
a composite sample, reduced in size through a se-
ries of divisions, and finally yielded approximately 
10 kg laboratory samples (Fig. 1B). These samples 
were crushed (<2 mm) and milled (<75 µm) be-
fore analysis via inductively coupled plasma mass 
spectrometry. Metal content was determined us-
ing a Perkin Elmer ELAN 9000 mass spectrome-
ter, with quality control ensured through certified 
reference materials and blank sample analysis. 
Quality control procedures utilized the reference 
standards STD BVGEO01 and OREAS 262. The 
analysis of the bottom ash chemical composition 
was conducted at the Bureau Veritas Commodi-
ties Canada Ltd. laboratory.

Data

To evaluate the performance of different meth-
ods for replacing missing values, a dataset of 5 el-
ements with varying numbers of observations 
below the detection limit was selected. The ele-
ments were measured in IBAat regular intervals 
throughout 2021, resulting in 52 observations 
per element, expressed in parts per billion (ppb). 
Furthermore, to assess the effect of replacement 
methods on exploratory data analysis and mod-
eling, a subset of 11 elements (Ag, Ba, Ca, Cr, Fe, 
Li, Mg, Mn, Ni, S, and Sb) without missing or cen-
sored values was used. These elements exhibited 
linear correlations with the analyzed elements, 
and linear regression models could be successful-
ly fitted for most of them. 

Methods

Four popular methods for replacing values below 
the detection limit were selected and their impact 
on data analysis was evaluated. The methods un-
der consideration included: replacement with half 
of the detection limit (h), replacement with a ran-
dom value from a uniform distribution between 

0 and the detection limit (g), robust regression 
on order statistics (r), and tobit regression in two 
variants: a small variant (t), which included only 
data from the 5 elements with values below the de-
tection limit, and a large variant (tl), which addi-
tionally included a set of 11 elements.

ROS is a semiparametric method designed to 
estimate the concentration of censored values in 
datasets. This approach assumes an underlying 
parametric distribution for the uncensored values 
and utilizes ordered detected values and distribu-
tional quantiles to estimate the concentration of 
censored observations. ROS is particularly useful 
when dealing with multiple censored values, as it 
provides a robust and efficient way to estimate the 
true concentrations of the analytes (Helsel 1990, 
2005). The substitution process involves finding 
a  distributional model that fits the joint sample 
of detects and left-censored values, constructing 
a partial ranking of the data and determining the 
cumulative probability associated with each dis-
tinct LOD. In the last step, the fitted distribution-
al model is used to impute values for non-detects 
through linear regression between detected values 
and z-scores from the censored probability plot 
(Helsel 2005).

Tobit regression is a type of regression analy-
sis that models the relationship between a depen-
dent variable and one or more independent vari-
ables when there are censored observations. The 
method assumes that the censored values follow 
a normal distribution and uses MLE to estimate 
the model parameters. Tobit regression is partic-
ularly useful when dealing with datasets contain-
ing a large number of censored observations, as it 
provides a way to account for the censoring mech-
anism and obtain unbiased estimates of the rela-
tionships between variables (Tobin 1958, Mikšová 
et al. 2020).

To test whether the application of substitution 
methods affects the results of EDA, the following 
analyses were performed for both the raw data 
(where values below the detection limit were re-
placed with missing values) and the transformed 
data using various substitution methods: descrip-
tive statistics, histograms, linear Pearson correla-
tion matrices, and multiple regression models.

All of the listed analyses were performed  
in R (version 4.3.2), using standard statistical and 

https://journals.agh.edu.pl/geol


417

Geology, Geophysics and Environment, 2025, 51 (4): 413–426

Exploratory analysis of elements in incineration bottom ash with numerous values below the detection limit...

data-processing tools available in this environ-
ment. The computational workflow included pro-
cedures for data cleaning, substitution of values 
below the detection limit, exploratory data anal-
ysis, and statistical modelling.

RESULTS

The analysis involved 5 elements detected in IBA 
after municipal waste incineration, which differed 
in the number of values below the detection lim-
it (left-censored) in a dataset of 52 measurements.

For germanium, 27 left-censored values (52% 
of the dataset) had a LOD of 100 ppb (Fig. 2A). The 
mean values obtained using various substitution 
methods were similar (137.4–140.6 ppb), where-
as the raw data mean was significantly higher 
(236 ppb). The median and lower quartile values 
varied among substitution methods, with the ran-
dom method and ROS yielding lower values (Ta-
ble 1, Fig. 2A, B). Additionally, the lower quartile 
value and median for the raw data were 100 ppb, 
which was at least twice as high as the lower quar-
tile value for selected substitution methods. For 
minimum values, a  greater spread of predicted 
left-censored values was observed for ROS and 
the random method (Fig. 2B). The tobit method, 
based on both small and large datasets, yielded 
similar minimum values to the half-method. No-
tably, the standard deviation and skewness of the 
data differed significantly between the substitu-
tion methods and the raw data (Table 1).

Hafnium had 16 observations below the detec-
tion limit (31% of all observations) with a LOD of 
20 ppb (Fig. 2C). The mean values obtained using 
various substitution methods were similar but dif-
fered substantially from the raw data mean (approx. 
26 ppb). Minimum values for the random method 
and ROS were lower than those for other substi-
tution methods (1 ppb and 2.7 ppb, respectively), 
whereas the minimum value for other substitution 
methods exceeded 8.8 ppb. As evident from the 
histogram (Fig. 2D), the left-skewed distribution 
for the random method and ROS was more elon-
gated than that for other substitution methods. The 
lower quartile values for substitution also exhibited 
variability but were significantly lower than those 
for the raw data, ranging from 9.0 ppb (tobit meth-
od) to 16.8 ppb (random method), whereas the raw 

data had a lower quartile value of 30 ppb. The me-
dian, standard deviation, and skewness values were 
similar or identical for all substitution methods 
and differed significantly from those calculated for 
the raw data (Table 1).

Indium exhibited the lowest number of values 
below the detection limit (13% of all values  – 7 ob-
servations) with a  LOD of 20 ppb (Fig. 2E). The 
mean value for all methods was very similar (dif-
ferences not exceeding 0.5 ppb), whereas the raw 
data mean was higher (116 ppb). Minimum val-
ues for the random method and ROS were lower 
than those obtained by other substitution meth-
ods (Table 1). The first quartile and median values 
are identical for all substitution methods and also 
lower than those calculated for the raw data. The 
left-skewed distribution of the data for the random 
method is significantly elongated due to the min-
imum value, similarly to the distributions for the 
ROS and half-methods (Fig. 2F). The third quar-
tile value is identical for all datasets, including 
the raw data. The standard deviation and skew-
ness values for all substitution methods are sim-
ilar to each other. The largest difference in skew-
ness between substitution methods was observed 
between the half-method and ROS, with a differ-
ence of 0.24. The difference in skewness between 
the raw data and imputed data is 0.24 (for ROS), 
see Table 1.

Palladium had 14 observations below the de-
tection limit (27% of the entire dataset) with 
a LOD of 10 ppm (Fig. 2G). The mean values for 
each method were very similar (41.27–41.61 ppb), 
whereas the raw data mean was higher (54.7 ppb). 
The median value was identical for all substitution 
methods (18 ppb), which was 10 ppb lower than 
that calculated for the raw data. Similarly, for the 
upper quartile, all substitution methods yielded 
a  single value of 39.75 ppm, which is lower than 
the value calculated for the raw data (46  ppb). 
The lowest minimum values were obtained for 
the random method (2 ppb) and ROS (1.4 ppb), 
as evident from the elongated left-skewed histo-
gram (Fig.  2H). For the remaining three substi-
tution methods, the minimum value was 5 ppb. 
The standard deviation values for all substitution 
methods are 102 ppb, whereas for the raw data, it 
is 117 ppb. Skewness, except for the half-method, 
is 5.9 (Table 1).
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Table 1
Descriptive statistics of raw data and data after substitution of LOD values

Descriptive statistics
German (Ge), ppb, LOD = 100 ppb, number of left-censored values = 27–52%

raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 236.00 139.40 140.62 138.86 137.44 137.65
1st Q 100.00 50.00 35.50 30.72 44.44 44.85
median 100.00 50.00 96.50 100.00 62.91 63.21
3rd Q 100.00 100.00 100.00 100.00 100.00 100.00
min NA 50.00 3.00 7.35 41.27 41.71
max 2,900.00 2,900.00 2,900.00 2,900.00 2,900.00 2,900.00
standard deviation 557.43 393.74 394.04 394.79 394.23 394.18
skewness 4.63 7.02 6.99 6.97 7.01 7.01

Descriptive statistics
Hafn (Hf), ppb, LOD = 20 ppb, number of left-censored values = 16–31%

raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 93.33 67.69 68.23 67.47 67.41 67.44
1st Q 30.00 10.00 16.75 13.05 9.04 9.25
median 40.00 30.00 30.00 30.00 30.00 30.00
3rd Q 95.00 70.00 70.00 70.00 70.00 70.00
min NA 10.00 1.00 2.68 8.88 8.81
max 420.00 420.00 420.00 420.00 420.00 420.00
standard deviation 105.23 95.44 95.16 95.61 95.61 95.59
skewness 1.71 2.26 2.26 2.25 2.25 2.25

Descriptive statistics
Indium (In), ppb, LOD = 20 ppb, number of left-censored values = 7–13%

raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 116.20 101.90 102.20 101.72 102.03 102.03
1st Q 30.00 20.00 20.00 20.00 20.00 20.00
median 50.00 40.00 40.00 40.00 40.00 40.00
3rd Q 100.00 100.00 100.00 100.00 100.00 100.00
min NA 10.00 2.00 3.46 10.39 10.38
max 2,030.00 2,030.00 2,030.00 2,030.00 2,030.00 2030.00
standard deviation 299.12 280.20 280.16 280.31 280.20 280.20
skewness 6.02 6.50 6.27 6.26 6.27 6.27

Descriptive statistics
Pallad (Pd), ppb, LOD = 10 ppb, number of left-censored values = 14–27%

raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 54.71 41.30 41.61 41.27 41.36 41.36
1st Q 15.25 5.00 10.00 7.95 5.90 5.90
median 28.50 18.00 18.00 18.00 18.00 18.00
3rd Q 46.00 39.75 39.75 39.75 39.75 39.75
min NA 5.00 2.00 1.40 5.01 5.01
max 731.00 731.00 731.00 731.00 731.00 731.00
standard deviation 117.33 102.40 102.28 102.42 102.38 102.38
skewness 5.27 6.10 5.94 5.92 5.93 5.93

Descriptive statistics
Ren (Re), ppb, LOD = 1 ppb, number of left-censored values = 35–67%

raw half (h) random (g) ROS (r) tobit_small (t) tobit_large (tl)
mean 2.53 1.16 1.15 1.03 1.10 1.12
1st Q 1.00 0.50 0.35 0.12 0.37 0.43
median 1.00 0.50 0.75 0.32 0.43 0.44
3rd Q 2.00 1.00 1.00 1.00 1.00 1.00
min NA 0.50 0.06 0.01 0.35 0.39
max 18.00 18.00 18.00 18.00 18.00 18.00
standard deviation 4.06 2.47 2.49 2.52 2.49 2.48
skewness 3.52 6.30 5.99 5.85 6.03 6.06

NA – not available.
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Fig. 2. Data distribution: raw data  – left; values lower then median  – right
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Rhenium exhibited the highest number of val-
ues below the detection limit among the analyzed 
elements, with 35 observations below the LOD of 
1 ppb (67% of the entire dataset). The mean values 
for the selected substitution methods were signifi-
cantly lower than those in the raw data. Median 
values were substantially lower than the mean val-
ues, ranging from 0.32 ppb for the ROS method 
to 0.75 ppb for the random method. A significant 
spread of values was observed for the minimum 
values (Table 1, Fig. 2I). The lowest minimum 
values were obtained for the ROS and random 
methods, at 0.01 ppb and 0.06 ppb, respective-
ly. In contrast, the tobit and half-methods yield-
ed significantly higher minimum values (Table 1, 
Fig. 2J). Similar results were obtained for the sub-
stitution methods when calculating the upper 
quartile. The standard deviation for the imput-
ed data ranges from 2.47 ppb (half) to 2.52  ppb 
(ROS). Consistent with previous statistics, skew-
ness exhibits higher variability than in the case of 
other analyzed elements, but is also higher than 
that calculated for the raw data. Skewness var-
ies from 5.9 for the ROS method to 6.3 for the 
half-method, whereas for the raw data, it is 3.52.

The distribution of elements in the raw data 
is a distribution close to log-normal with occur-
ring outliers and extreme right-handed obser-
vations. For all of the analyzed elements, chang-
es in the distribution can be seen depending on 
the method used. In the case of random substi-
tution and ROS methods, lower minimum values 
resulted in a greater extension of the histogram to 
the left with a smaller number for each histogram 
interval. This effect is most visible for Rhenium 
and Germanium. At the same time, the tobit and 
half-substitution methods, compared to the pre-
viously mentioned methods, allow for obtaining 
a narrower distribution. In the case of Rhenium, 
the high frequency of observations below the de-
tection limit and the half-substitution method dis-
rupts the data distribution. A similar effect visible 
for Rhenium is also observed for the tobit method. 
For the remaining elements, the half-substitution 
and tobit methods allow for obtaining a narrower 
distribution (Fig. 2).

Correlation matrices were constructed for the 
5 analyzed elements and an additional 11 elements 

that did not contain values below the detection 
limit or missing data (Table 2). The variability 
of statistically significant Pearson linear correla-
tions (Pearson’s r) was analyzed for p ≤ 0.05 and 
52 pairs of observations. For this sample size, cor-
relations with absolute values greater than 0.275 
can be considered statistically significant. The in-
terpretation of correlation strength was based on 
established classification ranges provided in the 
referenced publication (Schober et al. 2018). Addi-
tionally, patterns of variability were analyzed for 
non-statistically significant correlations but high-
er than 0.2. The correlation matrices are presented 
in Table 2.

Germanium does not exhibit any statistically 
significant correlations or correlations with values 
higher than 0.2.

Hafnium is significantly correlated with man-
ganese and chromium. The correlation value for 
manganese with raw data is moderate (0.46). For 
substitution methods, the correlation with chro-
mium is moderate (0.46), except for the random 
method, where it remains moderate (0.45). The 
correlation with chromium for the raw data and 
all substitution methods is weak (0.30).

Indium exhibits one statistically significant 
correlation with manganese and one non-statis-
tically significant but higher than 0.2 correlation 
with chromium. The correlation with manganese 
for both raw data and substitution methods is 
weak (0.32). Similarly, the correlation with chro-
mium for raw data and substitution methods is 
weak (0.24).

Palladium does not exhibit any statistically 
significant correlations with the selected elements. 
Only a  slight correlation with iron is observed, 
which is just below the statistical significance lev-
el. For raw data, this correlation is weak (0.25), and 
for substitution methods, it is also weak (0.26).

Rhenium shows statistically significant correla-
tions with silver and magnesium. The correlation 
with silver for raw data is moderate (0.46), and for 
the half-method, ROS, and tobit substitution meth-
ods, it is also moderate (0.45). A  slightly weaker 
correlation with silver is observed for the random 
method, at 0.43 (moderate). The correlation with 
magnesium for raw data is weak (0.33), and for sub-
stitution methods, it remains weak (0.31).
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Table 2
Pearson linear correlation matrices

Pearson’s r
Raw data

Ge Hf In Pd Re Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge – −0.09 0.00 −0.01 −0.03 −0.01 −0.05 −0.05 −0.06 0.00 0.11 0.12 0.03 0.01 0.08 0.11

Hf −0.09 – −0.07 −0.11 0.02 0.11 0.17 0.46 0.30 0.02 −0.10 −0.13 0.01 0.02 −0.17 −0.12

In 0.00 −0.07 – −0.03 −0.04 −0.09 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd −0.01 −0.11 −0.03 – −0.05 −0.03 −0.07 −0.10 −0.01 −0.17 0.19 0.11 0.25 0.02 −0.01 −0.06

Re −0.03 0.02 −0.04 −0.05 – 0.46 −0.06 0.17 −0.06 −0.05 −0.05 0.04 −0.04 0.33 −0.05 0.01

Pearson’s r
Half (h)

Ge_h Hf_h In_h Pd_h Re_h Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_h – −0.09 0.01 0.01 0.00 −0.01 −0.05 −0.04 −0.06 0.00 0.12 0.12 0.05 0.00 0.08 0.10

Hf_h −0.09 – −0.07 −0.11 0.02 0.12 0.16 0.46 0.30 0.04 −0.11 −0.13 0.01 0.03 −0.17 −0.12

In_h 0.01 −0.07 – −0.03 −0.05 −0.09 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd_h 0.01 −0.11 −0.03 – −0.02 −0.03 −0.07 −0.09 −0.01 −0.16 0.19 0.12 0.26 0.02 −0.01 −0.06

Re_h 0.00 0.02 −0.05 −0.02 – 0.46 −0.06 0.15 −0.05 −0.06 −0.05 0.03 −0.03 0.31 −0.06 0.00

Pearson’s r
Random (g)

Ge_g Hf_g In_g Pd_g Re_g Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_g – −0.07 0.01 0.01 0.00 −0.01 −0.06 −0.04 −0.06 0.00 0.11 0.12 0.05 0.10 0.07 0.12

Hf_g −0.07 – −0.07 −0.11 0.04 0.12 0.16 0.45 0.30 0.03 −0.10 −0.13 0.01 0.03 −0.17 −0.11

In_g 0.01 −0.07 – −0.03 −0.06 −0.08 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd_g 0.01 −0.11 −0.03 – −0.02 −0.03 −0.07 −0.09 −0.01 −0.17 0.19 0.12 0.26 0.02 −0.01 −0.06

Re_g 0.00 0.04 0.06 −0.02 – 0.43 −0.05 0.13 −0.06 −0.06 −0.08 0.00 −0.04 0.31 −0.05 0.20

Pearson’s r
ROS (r)

Ge_r Hf_r In_r Pd_r Re_r Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_r – −0.11 0.01 0.01 0.02 −0.02 −0.04 −0.04 −0.06 0.10 0.12 0.12 0.05 0.00 0.10 0.12

Hf_r −0.11 – −0.07 −0.11 0.03 0.11 0.16 0.46 0.30 0.04 −0.11 −0.13 0.01 0.03 −0.18 −0.11

In_r 0.01 −0.07 – −0.03 −0.06 −0.08 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd_r 0.01 −0.11 −0.03 – 0.00 −0.03 −0.07 −0.09 −0.01 −0.16 0.19 0.11 0.26 0.02 −0.02 −0.06

Re_r 0.02 0.03 −0.06 0.00 – 0.45 −0.05 0.14 −0.03 −0.07 −0.03 0.04 −0.03 0.31 −0.07 0.00

Pearson’s r
tobit_small (t)

Ge_t Hf_t In_t Pd_t Re_t Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_t – −0.09 0.01 0.01 0.10 −0.01 −0.05 −0.04 −0.06 0.00 0.12 0.13 0.06 0.00 0.08 0.10

Hf_t −0.09 – −0.07 −0.12 0.02 0.12 0.16 0.46 0.30 0.04 −0.11 −0.13 0.01 0.03 −0.18 −0.12

In_t 0.01 −0.07 – −0.03 −0.05 −0.09 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd_t 0.01 −0.12 −0.03 – −0.01 −0.03 −0.07 −0.09 −0.01 −0.16 0.19 0.12 0.26 0.02 −0.01 −0.06

Re_t 0.10 0.02 −0.05 −0.01 – 0.45 −0.06 0.15 −0.05 −0.06 −0.05 0.04 −0.03 0.31 −0.05 0.00

Pearson’s r
tobit_large (tl)

Ge_tl Hf_tl In_tl Pd_tl Re_tl Ag Ni Mn Cr Ba S Ca Fe Mg Li Sb

Ge_tl – −0.09 0.01 0.01 0.10 −0.01 −0.05 −0.04 −0.06 0.00 0.12 0.12 0.05 0.00 0.08 0.10

Hf_tl −0.09 – −0.07 −0.12 0.02 0.12 0.16 0.46 0.30 0.04 −0.11 −0.13 0.01 0.03 −0.18 −0.12

In_tl 0.01 −0.07 – −0.03 −0.05 −0.09 −0.08 0.32 0.24 0.00 −0.02 0.06 −0.03 0.01 −0.06 −0.05

Pd_tl 0.01 −0.12 −0.03 – −0.01 −0.03 −0.07 −0.09 −0.01 −0.16 0.19 0.12 0.26 0.02 −0.01 −0.06

Re_tl 0.10 0.02 −0.05 −0.01 – 0.46 −0.06 0.15 −0.05 −0.06 −0.05 0.03 −0.03 0.31 −0.06 0.00

Pearson’s r value −1.00 −0.80 −0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00
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For the analyzed elements, six multiple regres-
sion models were constructed for raw data and data 
subjected to substitution. The set of potential inde-
pendent variables included elements of the same 
type as the dependent variable and a pool of 11 vari-
ables used for correlation matrices. Stepwise back-
ward regression was employed. Initially, each model 
contained all independent variables. In subsequent 
iterations, one variable with the highest p-value was 
removed from the model until a statistically signif-
icant model was obtained. Due to the small sample 

size (52 observations) and large number of indepen-
dent variables, it was decided not to split the data 
into training and testing sets. Subsets were also not 
created due to the possibility of disrupting the as-
sessment of the impact of values below the detec-
tion limit on the regression model by creating un-
balanced subsets of data. The models were evaluated 
using the coefficient of determination (R2), mean 
absolute percentage error (MAPE), mean absolute 
error (MAE), and Akaike information criterion 
(AIC). The collective results are presented in Table 3.

Table 3
Regression models 

Ele-
ment

Substitution 
method Model parameters R2 MAPE MSE AIC

Ge

raw −492.95 + 40.27Sb 0.18 1.35 244,387 387.11

half (h) no statistically significant model

random (g) no statistically significant model

ROS (r) no statistically significant model 

tobit_small (t) no statistically significant model

tobit_large (tl) no statistically significant model

Hf

raw −11.52 + 0.43Sb 0.16 1.22 9,055 436.16

half (h) 111.9 − 0.11In + 0.06Mn + 0.11Cr − 0.002Ca 0.42 1.57 5,196 604.47

random (g) 10.05 − 0.11In + 0.06Mn + 0.10Cr 0.36 3.42 5,694 607.23

ROS (r) 112.6 − 0.11In + 0.06Mn + 0.11Cr−0.002Ca 0.42 1.96 5,199 604.50

tobit_small (t) 111.6 − 0.11In + 0.06Mn + 0.11Cr − 0.002Ca 0.42 1.70 5,216 604.77

tobit_large (tl) 111.6 − 0.11In + 0.06Mn + 0.11Cr − 0.002Ca 0.42 1.68 5,213 604.63

In

raw 87.77 − 0.53Ni + 0.47Cr 0.17 2.46 72,765 639.00

half (h) 59.62 − 1.19Hf − 0.49Ni + 0.13Mn + 0.53Cr 0.32 3.89 52,696 725.00

random (g) 244.45 − 1.15Hf − 0.93Ni + 0.14Mn + 0.78Cr − 0.11S + 24.05Li 0.41 4.72 45,016 720.74

ROS (r) 244.19 − 1.15Hf−0.92Ni + 0.14Mn + 0.78Cr − 0.11S + 24.87Li 0.41 5.60 45,240 720.99

tobit_small (t) 244.26 − 1.15Hf−0.93Ni + 0.14Mn + 0.78Cr−0.11S + 25.01Li 0.42 4.17 45,072 720.8

tobit_large (tl) 244.26 − 1.15Hf−0.93Ni + 0.14Mn + 0.78Cr − 0.11S + 25.01Li 0.42 4.17 45,072 720.8

Pd

raw no statistically significant model

half (h) 24.8 − 0.21Ba + 0.003Fe 0.14 2.66 8,847 628.14

random (g) 25.98 − 0.21Ba + 0.003Fe 0.14 2.65 8,819 627.98

ROS (r) 24.70 − 0.21Ba + 0.003Fe 0.14 3.41 8,856 628.19

tobit_small (t) 24.89 − 0.21Ba + 0.003Fe 0.14 2.60 8,844 628.12

tobit_large (tl) 24.89 − 0.21Ba + 0.004Fe 0.14 2.60 8,844 628.12

Re

raw 0.07 + 0.0004Ag 0.60 1.07 6.12 85.04

half (h) 0.54 + 0.0001Ag 0.20 0.90 4.75 234.57

random (g) 2.42 + 0.0001Ag − 0.0007Ca + 0.0004Mg 0.30 1.52 4.26 232.89

ROS (r) 1.84 + 0.0002Ag − 0.0006Ca + 0.0004Mg 0.29 4.86 4.42 234.89

tobit_small (t) −0.5 + 0.0001Ag + 0.0002Mg 0.24 1.26 4.58 234.75

tobit_large (tl) 2.02 + 0.0001Ag − 0.0006Ca + 0.0004Mg 0.30 1.24 4.21 232.44
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Germanium is an element for which a model 
was successfully constructed only for raw data. 
The created model is of low quality and contains 
one independent variable: Sb.

The quality of the hafnium models, as de-
termined by the coefficient of determination, is 
non-uniform. For raw data, the model is of very 
poor quality, with R2 = 0.16, and contains only one 
independent variable: Sb. The MAPE for this mod-
el is lower than for models with substitution data 
and equals 1.22. Due to the small number of inde-
pendent variables, the AIC value is also the lowest 
and equals 436. Models for substitution methods 
have a quality ranging from 0.36 (random) to 0.42 
(other substitution methods). The highest MAPE 
values were calculated for the model with random 
substitution (3.42). Other models with substitu-
tions have lower MAPE values, ranging from 1.68 
to 1.96. The absolute error is lower than for the 
raw data model. Independent variables for models 
with imputed data contain from 3 to 4 variables, 
including In, Mn, and Cr. Models except for ran-
dom substitution also include Ca. AIC values for 
models with imputed data are similar.

Models for indium can be divided into three 
groups. The first model for raw data has the low-
est quality (R2 = 0.17), the lowest MAPE value of 
2.46, a higher absolute error, and two independent 
variables: Ni and Cr. The second model is for half- 
substitution method data and has a  higher R2 
value of 0.32, a higher MAPE value, a  lower ab-
solute error, and a  higher AIC value. The model 
for half-substitution method data contains more 
independent variables: Hf, Ni, Mn, and Cr. Other 
models have similar R2 values, similar MSE val-
ues, and similar AIC values but differ in MAPE 
values, with the highest achieved by the model 
for ROS-imputed data. These models possess the 
same six independent variables with very similar 
regression coefficients.

For palladium, it was possible to construct mul-
tiple regression models only for data with substi-
tution. These models have very similar R2 values, 
absolute error values, and AIC values. In the case 
of MAPE, the model calculated for ROS data has 
worse results. Each model has the same indepen-
dent variables with similar regression coefficients.

In the case of rhenium, the model for raw data 
achieved the highest coefficient of determination 

value and the lowest AIC value. At the same time, 
this model has the highest absolute error value. 
The model for half-substitution method has only 
one independent variable: Ag. Despite this, model 
is significantly weaker, with a  higher AIC value, 
but lower MAPE and absolute error values. Mod-
els for other substitution methods have variable 
quality, ranging from 0.24 for tobit method for 
a small dataset to 0.30 for random and tobit meth-
od for a large dataset. AIC values are very similar 
and higher than for the raw data model. Absolute 
error values are also similar and lower than for the 
raw data model. The largest variation in results 
is for MAPE. The MAPE value for the ROS data 
model equals 4.86, while for models with oth-
er substitution methods, it does not exceed 1.52. 
All models include Ag as an independent variable. 
Models for the random, ROS, and tobit substitu-
tion methods also include Ca and Mg, except for 
the tobit method with a small dataset, which does 
not include Ca.

DISCUSSION 

This article presents an exploratory analysis of 
four substitution methods for left-censored data 
using real-world data from the measurement of el-
ements in IBA. The analyzed data exhibit a vari-
able number of left-censored values (ranging from 
13% to 67%) with a small sample size of 52 obser-
vations.

Most of the existing literature focuses on an-
alyzing substitution methods for non-parametric  
and half-substitution methods using synthetic 
or real-world data (Singh & Nocerino 2002, Ver-
bovšek 2011, Tekindal et al. 2017, Tekindal 2021, 
Rodrigues et al. 2022). These studies have exam-
ined the impact of imputing left-censored val-
ues on mean values and other statistical metrics 
(Singh & Nocerino 2002, Filzmoser et  al. 2009, 
Tekindal et al. 2017). We also decided to compare 
the tobit regression method for compositional 
data with other methods, despite its typical appli-
cation to compositional data, when other meth-
ods do not have such a limitation (Aitchison 2003, 
Buccianti & Grunsky 2014, Mikšová et al. 2020). 
Currently, R supports two methods for estimating 
summary statistics from censored data sets: MLE 
and ROS. Previous studies have demonstrated 
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that non-parametric methods yield better results 
when dealing with a higher number of substitu-
tions (Singh & Nocerino 2002, Tekindal et  al. 
2017, Tekindal 2021). However, based on Hel-
sel’s findings regarding MLE, we focused on ROS 
(Helsel 2005). Another method, the Kaplan–Mei-
er method, is commonly used in other disciplines 
and is also available in R; however, the KM meth-
od is only recommended when there are multiple 
censoring levels (i.e., multiple detection limits in 
the analyzed data set). Therefore, we did not apply 
the KM method and instead tested the ROS meth-
od. Additionally, ROS is recommended for small-
er datasets (Helsel 2005).

Simple substitution by zero ignores the mea-
surement distribution in favor of an a priori as-
sumption about what non-detects might repre-
sent. Substitution by half LOD or by the LOD 
itself ignores the larger distributional pattern, 
especially since this distribution will rarely be 
uniform in the interval [0, LOD] (Helsen 2005, 
EPA 2006). When using the half of LOD method 
with a higher number of imputed values, we ob-
served  a  problem with data distribution, result-
ing in a histogram with significant skewness, and 
higher kurtosis (Table 1, Fig. 2). However, when 
using this method with fewer substitutions, the 
effect was less pronounced. The similarity be-
tween the descriptive statistics obtained for In-
dium and other elements (such as Palladium and 
Hafnium) suggests that the half of LOD method 
can be used as a convenient and quick substitu-
tion method for left-censored data with a  low-
er number of censored values. This conclusion 
is supported by the Environmental Protection 
Agency (EPA), which recommends this substi-
tution method when the number of non-detects 
is less than 15%: “As a guideline, if 15% or fewer 
of the values are not detected, replace them with 
the method detection limit divided by two and 
proceed with the appropriate analysis using these 
modified values” (EPA 2006).

CONCLUSIONS

Analyzing changes in data distribution after the 
application of selected substitution methods re-
vealed that random and ROS methods typically 

generate lower minimum values compared to oth-
er methods. The tobit regression method generates 
minimal observations around half of the LOD. 
Each substitution method is better than replac-
ing values below the LOD with NA. When dealing 
with a  lower number of censored values, the re-
sults for all substitution methods are quite similar 
(Table 1).

However, when using a higher number of sub-
stitutions, the discrepancy between results in-
creases, particularly in descriptive statistics, data 
distribution, and regression models. Applying re-
gression models to substituted methods datasets 
generates smaller mean absolute error (MAE) 
values compared to replacing left-censored with 
NA. In regression models, we observed chang-
es in model quality, calculated as the coefficient 
of determination (R2), and changes in indepen-
dent variables used for modeling specific elements  
(Table 3). 

The tobit regression method better fits the  
left-censored values to data when there are strong 
correlations between the imputed variable and 
other variables (Tables 1 and 3). This method 
yielded similar parameters for substituted values 
in both small and large datasets. 

Methods for replacing values below the limit 
of detection, such as random substitution, ROS, 
and tobit regression, exert varying influences on 
data analysis outcomes. The random substitu-
tion method is suitable for elements with fewer 
left-censored values, whereas ROS and tobit meth-
ods are more applicable to elements with a larger 
number of such values (Tables 1 and 3). The cor-
relation values are similar for all methods of re-
placing left-censored values and very close to the 
values for the raw data, indicating that replacing 
left-censored values does not disrupt the relation-
ships between the variables with left-censored 
values and the remaining variables in the dataset 
(Table 2). 

When applying to the calculation of poten-
tial returns on investment in extracting elements 
from IBA, it is essential to consider that not re-
placing values below the detection limit can im-
pact return calculations. Given the changes in de-
scriptive statistics (mean, median, lower quartile) 
and their significantly higher values for raw data 
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where left-censored values were replaced with 
NA, the actual return on investment may be sub-
stantially lower than calculated. Additionally, us-
ing simpler methods to replace a large number of 
left-censored values can also lead to distorted re-
sults, but this error is significantly lower than ig-
noring left-censored values in the data.

Generally, the choice of method for replacing 
values below the limit of detection depends on 
the type of analysis and the characteristics of the 
dataset. It is essential to note that each substitu-
tion method has its strengths and limitations, and 
the selection of an appropriate method should be 
based on a  thorough understanding of the data 
and the underlying mechanisms generating the 
missing values. Additionally, the use of multiple 
substitution methods can provide a  more com-
prehensive understanding of the data and help to 
identify potential biases or errors in the analysis.

In summary, replacing values below the detec-
tion limit is a  critical step in data analysis, par-
ticularly in environmental sciences and analytical 
chemistry. The choice of substitution method de-
pends on the specific characteristics of the data-
set and the research question being addressed. By 
using appropriate substitution methods and con-
sidering the limitations and strengths of each ap-
proach, researchers can ensure that their results 
are accurate and reliable.

Finally, future studies should focus on devel-
oping and evaluating new substitution methods 
for replacing values below the detection limit, as 
well as exploring the application of existing meth-
ods in different fields and contexts. This will help 
to improve our understanding of the data and 
provide more accurate and reliable results in vari-
ous areas of research.

The results of this study can help researchers and 
practitioners select the most suitable method for 
their specific needs and improve the accuracy of ex-
ploratory data analysis (EDA) in the context of IBA.
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search University” for the AGH University. 
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