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Abstract: New parameters are proposed to evaluate the filtration properties of rocks obtained on the basis of 3D 
interpretation of images from X-ray computed tomography. The analyzed parameters are: global average pore 
connectivity, average blind pore connectivity, blind pore coefficient per object and blind pore coefficient per 
branch. The 3D pore space from computed X-ray tomography must be subjected to a process of pore space trans-
formation into a skeleton. Then, the presented parameters can be evaluated, taking into consideration the pore 
channels (branches), pore channel connection points (junctions) and blind pores (pore without connection to 
the other pore). The calculations were made for low porosity sandstones, mudstones, limestones, and dolomites 
which differ in terms of age and depth of present deposition. The global average pore connectivity reflects the de-
gree of development of the pore space in which the formation fluid can flow. The higher the global average pore 
connectivity, the most complex the pore structure can be expected. The higher the parameter of the average blind 
pore connectivity, the worse are the filtration properties of the rock. The higher the concentration of blind pore 
coefficient per object or branch, the worse the filtration properties of the rock. Moreover, new parameters were 
compared with the Euler characteristic and coordination number, revealing a high consistency.

Keywords: new parameters for filtration properties, computed X-ray tomography, pore space, tight rocks, poros-
ity, connectivity, pore channels

INTRODUCTION

An important aspect in exploration work is the 
conventional as well as unconventional approach-
es to interpreting the laboratory test results of 
rocks. One noninvasive method is computed 
X-ray tomography (CT), which enables the 3D 
analysis of pores and fractures (Arns et al. 2005, 
Cnudde & Boone 2013, Backeberg et  al. 2017). 
CT images can be used for qualitative and quan-
titative characterization of the pores and rock 
filtration abilities (Soulaine et  al. 2016, Lu et  al. 
2018), as well as for the generation of 3D geometri-
cal models for simulation purposes, e.g., thermal 

or fluid flow (Krakowska & Madejski 2019, Adel-
eye & Akanji 2022, Al Balushi & Taleghani 2022). 
CT images bring new insights in the evaluation 
of pore size and shape. Several standard param-
eters can be determined based on 3D images: 
pore diameters, microfracture apertures, porosi-
ty, total pore area (Tsakiroglu & Payatakes 2000, 
Karpyn et  al. 2009, Dohnalik & Jarzyna 2015). 
There is still scope for retrieving new informa-
tion from CT images, because only one limita-
tion is significant in CT analysis  – the resolution 
of the measurement (Vásárhelyi et al. 2020). Be-
low a certain resolution, which is different for dif-
ferent CT scanners, CT does not see pores. New 
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quantitative parameters describing the pore space 
of rocks, calculated from X-ray computed tomog-
raphy (CT) results, are continually emerging in 
the national and global literature (Osher & Schla-
ditz 2009). The goal of the research was connected 
with the discovery of new and significant param-
eters describing rock flow abilities. New parame-
ters, based on the skeletonization process of the 
pore space from CT results, have been proposed 
for the assessment of rock filtration properties: 
global average pore connectivity (GAPC), average 
blind pore connectivity (ABPC), blind pore coeffi-
cient per object (BPC_object) and blind pore coef-
ficient per branch (BPC_branch). Skeletonization 
process can be applied in commercial and open-
source software (e.g., ImageJ). Nowadays, great 
importance is attached to CT image analyses as 
they provide valuable information on rock reser-
voir properties which enable effective exploitation 
of hydrocarbons (Golab et  al. 2013, Wang et  al. 
2016, Liu et al. 2017, Yu et al. 2022).

METHODS

The analyses were performed on CT data for 
low-porosity mudstone, sandstone, dolomite, and 
limestone samples. The samples differ with respect 

to age (Cambrian, Ordovician, Silurian, Devonian, 
Permian), well location and burial depth (below 
2000 m). In order to reduce the potential impact of 
CT measurement artefacts (ring artefacts) located 
in the center of the CT images on the calculations, 
each sample was divided into smaller subareas (Bur-
liga & Dohnalik 2011) located at the corners of the 
sample: left upper (LG), right upper (PG), left lower 
(LD), right lower (PD). In the next step, only those 
samples were selected that were characterized by the 
appropriate statistics of the geometrical parameters 
of the pore space in the sample, including checking 
the correspondence of the porosity values between 
samples cut from a given sample. 

The first step in the research was connected with 
the pore space transformation into a skeleton using 
skeletonization process on CT images. It produces 
an axis along each identified object in the pore space. 
Pores are transferred into the central axis (branch-
es) and meet in the junctions (meeting point of 
pore channels). Figure 1 presents the transformation 
process from the 3D pore space into the network of 
branches (pore channels) and junctions (meeting 
points). All analyses on CT images were performed 
using the poROSE software (Technology Transfer 
Centre AGH University of Science and Technology 
in Krakow, Poland) (Krakowska et al. 2018).

Fig. 1. Scheme of pore space processing into pore space skeleton and skeleton elements (branches and junctions)
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The second step delivered detailed information 
about the blind pores (pores which do not have 
connections with other pores), as well as junction 
and number of branches. These parameters al-
lowed the testing of the correct interpretation of 
the new parameters.

Laboratory X-ray computed tomography ex-
aminations were performed using a General Elec-
tric Nanotom S tomograph with a  57W X-ray 
tube, maximum operating voltage of 180 kV in 
Laboratory of Micro- and Nanotomography at 
AGH UST, Faculty of Physics and Applied Com-
puter Science. In addition, a  Hamamatsu HAM 
C 7942CA-02 detector was used. The measure-
ment achieved a  voxel size of 800×800×800 nm 
for each sample. A voxel is a 3D pixel. CT imag-
es were processed qualitatively and quantitatively 
using poROSE software (poROus materials exam-
ination SoftwarE) (Krakowska 2019). The analyses 
focused on the capabilities of CT in determining 
the geometrical parameters of the pore space. The 
transformation of the 3D pore space into a skele-
ton as well as newly developed parameters were 
implemented in the poROSE software.

The APC is expressed by the average number 
of central axis branches (skeletonized objects) that 
meet at a junction (Hormann et al. 2016):
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where:
	 APC	 –	 average pore connectivity,
	 nj	 –	 total number of junctions, 
	 nt	 –	 number of junctions connecting 

3 branches, 
	 nq	 –	 number of junctions connecting 

4 branches, 
	 nx	 –	 junctions connecting 5 or more 

branches.

By modifying Equation (1), it is possible to in-
troduce and determine the GAPC and find out 
the average number of branches per total num-
ber of branches, i.e., the global average number of 
branches (post-skeletonization objects) that meet 
at the junction (3).
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where:
	 GAPC	 –	 global average number of branches 

(global average pore connectivity), 
	 nb	 –	 total number of branches, 
	 nt	 –	 number of junctions connecting 

3 branches,
	 nq	 –	 number of junctions connecting 

4 branches, 
	 nf	 –	 number of junctions connecting 

5 branches, 
	 ns	 –	 number of junctions connecting 

6 branches.

The formula can also be modified by express-
ing the ABPC, i.e., the average number of central 
axis branches (post-skeletonization objects) that 
meet at a junction but do not connect to another 
junction (4):
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where:
	ABPC	 –	 average blind pore connectivity, 
	 nb	 –	 total number of branches, 
	 n2b	 –	 number of junctions connecting 2 bran

ches which do not end in a junction (i.e. 
not connected to other branches), 

	 n3b	 –	 number of junctions connecting 3 bran
ches which do not end in a junction (i.e. 
not connected to other branches), 

	 n4b	 –	 number of junctions connecting 4 bran
ches that do not end in a junction, 

	 n5b	 –	 number of junctions connecting 5 bran
ches that do not end in a junction, 

	 n6b	 –	 number of junctions connecting 6 bran
ches that do not end in a junction.

The GAPC and the ABPC parameters provide 
information about the quality of the pore space net-
work for fluid flow. The GAPC takes into consid-
eration junctions connecting branches and the to-
tal number of branches detected in the pore space. 
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The more junction connecting branches, the better 
the connectivity of all pore space components. On 
the other hand, the ABPC considers junctions with 
blind pore channels (channels which ends at grain) 
and number of branches. The more junctions with 
blind pore channels, the worse the rock filtration 
abilities. Junctions connecting 3 to 5 branches were 
mainly observed in the analyzed rock samples, 
rarely connecting 6 branches. Even so, samples 
could be observed with 6 branches but no more. 
This fact led to the use of parameters for a maxi-
mum of six branches in formulas (3) and (4). The 
GAPC and ABPC filtration parameters refer to the 
average values for 3 to 6 branches meeting the junc-
tion for each object (connected pores creating one 
network detected as separate object, cracks) to the 
total number of junctions in the sample, averaging 
the obtained result.

The BPC_object takes the following form:

BPC_object blind= n
n

	 (5)

where:
	BPC_object	 –	blind pore coefficient per object, 
	 nblind	 –	the number of pixels at the ends of 

the skeleton, i.e., the blind pores in 
the whole sample, 

	 n	 –	the number of objects in the whole 
sample.

The BPC_branch, on the other hand, takes the 
following form:

BPC_branch blind= n
nb

￼	  (6)

where:
	BPC_branch	 –	blind pores coefficient per branch, 
	 nblind	 –	number of pixels at the ends of 

the skeleton, i.e., blind pores in 
the whole sample, 

	 nb	 –	number of skeleton branches in 
the whole sample.

The blind pores coefficient informs us about 
the filtration properties of the sample. Two sam-
ples with similar total porosity may differ in their 
effective porosity (i.e., pores only connected), as 
well as in the structure of the pore connections. 
The ratio defines the number of blind pores to the 

total number of pores (objects) or branches (pore 
channels). In order to perform the analyses, it is 
necessary to transform the pore space of a given 
sample into a  skeleton and obtain the following 
information: the number of pixels at the ends of 
the pore channels (so-called blind pores), the total 
number of objects (pores) in the sample, the total 
number of branches in the sample (pore channels). 
Pore spaces with a high amount of blind pores and 
branches have relatively low BPC_branch and in-
dicates a low ability of pore connectivity and thus 
also difficulties in fluid migration. Moreover, 
a high amount of blind pores and a low amount of 
objects means a compacted and poorly developed 
pore structure and the BPC_object will be relative-
ly high. If the sample has a lot of blind pores and 
objects, the BPC_object is relatively low but pore 
space is characterized by reduced flow abilities.

An additional measurement was used in the 
analysis to check the reliability of new parame-
ters. Tight rock analysis (TRA) was carried out for 
absolute permeability measurements and was held 
in the Terra Tek Schlumberger Reservoir Labora-
tory (Handwerger et al. 2011, Suarez-Rivera et al. 
2012). The Terra Tek Laboratory applies the pulse 
or pressure decay method in measuring absolute 
permeability depending on lithology.

RESULTS

Pore space description from the computed 
X-ray tomography
Several parameters from CT were significant in 
the pore space analysis: pore volume, pore surface 
area, total porosity, and effective porosity (Tab. 1). 
Permian sample 3dls is characterized by the most 
extensive pore space (pore volume for 3dls_LG 
and 3dls_PD), with the largest volume of identi-
fied pores and cracks. Moreover, Devonian sam-
ple 4lms (4lms_PD and 4lms_LG) also shows pore 
space complexity in the large pore volume. Total 
porosity corresponds with the effective porosity 
and is the highest for 3dls and 4lms samples.

The relation of pore volume and effective po-
rosity for each type of lithology is presented in 
Figure 2. Almost all of the analyzed samples are 
characterized by low effective porosity, below 10%. 
Only two samples (3dls and 4lms) exceed 10% in 
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effective porosity. Pore volume reflects total po-
rosity because it is the sum of all detected pores 
and cracks in the sample. Sandstones and lime-
stones present similar trends in relation to pore 

volume and effective porosity (an increase of pore 
volume with an increase in effective porosity). 
Dolomites slightly deviate from the general trend, 
while mudstones follow the trend.

Table 1
Pore space characterization

Lithology Subsample Age
Pore volume Surface area Total porosity Effective 

porosity

voxels pixels fraction fraction

Sandstones

1sst_LG Cambrian 29 802 079 10 916 998 0.032 0.0059

1sst_PD Cambrian 31 121 522 11 297 676 0.034 0.0057

2sst_LG Cambrian 25 664 641 7 380 463 0.028 0.0055

2sst_PG Cambrian 16 504 747 4 818 097 0.018 0.0044

3sst_LG Ordovician 38 801 185 11 092 402 0.042 0.0110

3sst_PG Ordovician 37 262 911 11 096 782 0.040 0.0127

4sst_LG Cambrian 35 217 827 7 423 275 0.036 0.0111

4sst_PD Cambrian 43 400 665 8 304 052 0.044 0.0201

Mudstones

1mds_PD Silurian 7 088 576 2 863 155 0.019 0.0007

2mds_PD Silurian 11 865 014 4 421 272 0.018 0.0021

3mds_PG Silurian 4 931 346 2 430 744 0.010 0.0002

3mds_LD Silurian 8 291 417 3 859 664 0.018 0.0005

Dolomites

1dls_LG Devonian 3 231 698 799 338 0.004 0.0018

1dls_PD Devonian 5 712 109 1 070 200 0.008 0.0014

2dls_LG Permian 8 753 752 2 563 788 0.009 0.0019

2dls_PD Permian 10 938 338 2 911 933 0.011 0.0008

3dls_LG Permian 135 551 729 18 941 268 0.135 0.1152

3dls_PD Permian 103 743 244 14 502 067 0.103 0.0900

Limestones

1lms_LG Devonian 26 575 087 4 147 340 0.026 0.0010

1lms_PD Devonian 13 792 083 2 764 341 0.014 0.0041

2lms_LG Ordovician 52 142 610 19 033 142 0.071 0.0332

2lms_PD Ordovician 41 150 733 15 062 558 0.056 0.0192

3lms_LG Permian 7 111 359 2 020 606 0.023 0.0025

3lms_PD Permian 15 326 459 4 004 206 0.050 0.0195

4lms_LG Devonian 50 458 898 7 468 743 0.068 0.0176

4lms_PD Devonian 105 675 741 14 082 551 0.142 0.1122
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Fig. 2. Pore volume as a function of effective porosity for dif-
ferent types of lithology

Analysis of the new filtration parameters from 
the computed X-ray tomography

The values of the parameters: GAPC (Fig. 3) 
and ABPC (Fig. 4) were obtained after counting 
the average of the results obtained for the two 
subsamples, if both subsamples were available. 

Otherwise, the value obtained for one sub-
sample was included in the comparison. All 
types of lithology considered are shown in the  
comparison.

The Figures 3 and 4 indicate that the follow-
ing samples: 2ss and 4ss (sandstones), 3dls (dolo-
mite) and 2lms and 4lms (limestones) are char-
acterized by the highest values of the GAPC and 
at the same time the lowest values of the ABPC. 
All mudstones’ samples show the opposite trend, 
with the lowest GAPC parameter and the high-
est ABPC. Samples 3dls and 4lms have the high-
est ratio of the GAPC to ABPC parameters, 1.34 
to 0.02 and 1.31 to 0.03, respectively. The aver-
age value of the GAPC and ABPC in lithological 
groups is 1.08 and 0.06 for sandstones, 0.43 and 
0.14 for mudstones, 1.05 and 0.06 for dolomites 
and 1.14 and 0.06 for limestones, respectively. It 
is clearly visible that the lowest values are detect-
ed in mudstones and the highest in limestones 
for both the GAPC and the ABPC filtration  
parameters.

Similarly, graphs were prepared for the fol-
lowing parameters: the BPC_object (Fig. 5) and  
BPC_branch (Fig. 6).

Fig. 3. Comparison of global average pore connectivity (GAPC) values between individual samples and rock groups
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Fig. 5. Comparison of blind pore coefficient per object (BPC_object) concentration values between individual samples and rock 
groups

Fig. 4. Comparison of average blind pore connectivity (ABPC) values between individual samples and rock groups
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Fig. 6. Comparison of blind pore coefficient per branch (BPC_branch) values between individual samples and rock groups

Analysis of the BPC_object and BPC_branch 
parameters shows very convergent trends ob-
served for the GAPC and ABPC filtration param-
eters. The mudstones samples clearly stand out 
from the others, having the lowest BPC_object 
and highest BPC_branch values. Moreover, sam-
ples 3dls and 4lms have the best ratio of the two 
parameters tested, respectively: 3.55 to 0.66 and 
5.55 to 0.68.

Figure 7 presents relation between the GAPC 
and logarithm of absolute permeability (dots) and 
the ABPC and logarithm of absolute permeability 
(triangles). Colors refer to the lithology: orange  – 
sandstones, green  – mudstones, dark blue  – do-
lomites, and light blue  – limestones. It can be 
observed an increase in the absolute permeabili-
ty with an increase in the GAPC for all litholo-
gy types. Only one sample is an outlier  – sand-
stone with very low absolute permeability and 
high GAPC. Consistent trend is observed for the 
ABPC and logarithm of absolute permeability. 
The ABPC decreases with the increase in the log-
arithm of absolute permeability. The relation be-
tween the BPC_object and logarithm of absolute 
permeability and the BPC_branch and logarithm 
of absolute permeability is depicted in Figure 8. It 

can be also noticed a decrease in the BPC_object 
or branch with increasing absolute permeability 
but not in all types of lithology. The BPC_object 
for carbonates did not follow the trend. 

Fig. 7. Relation between the global average pore connectiv-
ity and logarithm of absolute permeability (dots) and the 
average blind pore connectivity and logarithm of absolute 
permeability (triangles). Colors refer to the lithology: orange  – 
sandstones, green  – mudstones, dark blue  – dolomites, light 
blue  – limestones
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Fig. 8. Relation between the blind pore coefficient per object 
and logarithm of absolute permeability (dots) and the blind 
pore coefficient per branch and logarithm of absolute perme-
ability (triangles). Colors refer to the lithology: orange  – sand-
stones, green  – mudstones, dark blue  – dolomites, light blue  – 
limestones

DISCUSSION

Image analysis is a  powerful tool in describing 
rock reservoir potential. One of the first param-
eters connected with rock filtration abilities were 
presented by Toriwaki & Yonekura (2002) and 
Vogel (2002). They presented idea of the Euler 
characteristic (Euler number) in the assessment 
of pore structure by identifying the number of 
isolated pores and the number of connections 
(junctions) in the pore space. The formula for the 
Euler number is simple and is expressed by the 
subtraction of the number of isolated pores and 
the number of connections (junctions) in the pore 
space. Another algorithm for the Euler number, 
in the form of open-source code, is presented in 
Sossa-Azuela et al (2013). Positive values of the 
Euler number mean the pore structure is poorly 
connected, while negative values imply that the 
pore structure is well connected. In this case, el-
ements of the skeletonization process can also be 
used in the determination of the Euler number. 
The GAPC, ABPC, BPC_object and BPC_branch 
are determined based on the elements from the 
pore space skeletonization process and directly 

inform us about the quality of pore space con-
nectivity. Figure 9 shows the GAPC and ABPC 
in comparison to Euler number. A consistent re-
lationship between the parameters is observed. 
Low values of the Euler number, which indicates 
a  well-connected pore space, corresponds with 
the high values of the GAPC and low values of 
the ABPC.

Fig. 9. Relation between the global average pore connectivity 
and Euler characteristic (dots) and the average blind pore con-
nectivity and Euler characteristic (triangles). Colors refer to 
the lithology: orange  – sandstones, green  – mudstones, dark 
blue  – dolomites, light blue  – limestones

Another parameter which is important in po-
rous material analysis is coordination number. 
The coordination number is defined as the num-
ber of pore channels connected to a  single pore 
(Wayne 2008) or as the number of grains sur-
rounding a pore (Ulusay et al. 2016). The paper by 
Hormann et al. (2016) also provides a definition 
of the pore coordination number as the number 
of pores connected by pore channels to the cen-
tral pore. The pore channel coordination number 
defines the number of pores that share one pore 
channel. Two algorithms with formulas are pre-
sented in two papers, by Silin & Patzek (2006) 
and Rabbani et al. (2016). The higher the value of 
the coordination number, the better the filtration 
properties of the rock. Coordination number was 
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matched with the global average pore connectivity 
and the average blind pore connectivity (Fig. 10) 
for clastic rocks (sandstones and mudstones). The 
global average pore connectivity increases with an 
increase in the coordination number. On the oth-
er hand, average blind pore connectivity decreas-
es with an increase in the coordination number. 
A complex pore structure with a net of well-con-
nected pore channels is characterized by a  high 
coordination number, as well as a high GAPC and 
low ABPC.

Fig. 10. Relation between the global average pore connectivity 
and coordination number (dots) and the average blind pore 
connectivity and coordination number (triangles). Colors re-
fer to the lithology: orange  – sandstones, green  – mudstones

CONCLUSION

3D X-ray computed tomography images allow 
the identified pore space objects to be parame-
terized: pores, fractures, pore channels. The pa-
rameters developed are closely related to the fil-
tration properties of the rock and are crucial in 
assessing their reservoir potential. The parame-
ters described in this paper were implemented in 
the poROSE software for science and industry. 
The GAPC reflects the degree of pore space de-
velopment in which reservoir fluid can flow with-
out disturbances. On the one hand, the higher 
its value, the greater the filtration capacity of the 

sample. On the other hand, the greater the pa-
rameter of the ABPC, the worse the filtration 
properties of the rock are in relation to the en-
tire pore space, not just the connected pores. The 
knowledge of the number of connected branch-
es and branches that are no longer connected to 
other branches (blind pores) can have a great im-
pact on the assessment of the rock’s capacity for 
hydraulic fracturing. Each fracturing treatment 
opens closed pores, thereby also creating a net-
work of new pores. The blind pores may become 
connected, as they represent a  place where the 
elasticity of the rock is weakened. The higher the 
concentration factor of the blind pores per ob-
ject or branch (BPC_object, BPC_branch), the 
worse the filtration properties of the rock. The 
fluid is retained in the blind pores and is no lon-
ger able to filter the rock. New parameters were 
compared with the Euler number and coordina-
tion number, which are also the product of the 
skeletonization process of 3D pore space. More-
over, all new parameters are in consistency with 
the Euler number and coordination number. The 
potential in new filtration parameters is focused 
on the possibilities of assessing the rock’s abili-
ty to hydraulic fracturing and thus creating new 
paths for fluid to flow. Computed X-ray tomogra-
phy is a powerful method for describing the pore 
network in a three-dimensional space.
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thanks  the Polish Oil and Gas Company for pro-
viding the data.

REFERENCES

Adeleye J.O. & Akanji L.T., 2022. A  quantitative analysis 
of flow properties and heterogeneity in shale rocks us-
ing computed tomography imaging and finite-element 
based simulation. Journal of Natural Gas Science and 
Engineering, 106, 104742. https://doi.org/10.1016/j.jngse. 
2022.104742.

https://doi.org/10.1016/j.jngse.2022.104742
https://doi.org/10.1016/j.jngse.2022.104742


391

Geology, Geophysics and Environment, 2022, 48 (4): 381–392

New filtration parameters from X-ray computed tomography for tight rock images

Al Balushi F. & Taleghani A.D., 2022. Digital rock analysis 
to estimate stress-sensitive rock permeabilities. Comput-
ers and Geotechnics, 151, 104960. https://doi.org/10.1016/ 
j.compgeo.2022.104960.

Arns C.H., Bauget F., Ghous A., Sakellarion A., Senden T.J., 
Sheppard A.P., Sok R.M. et al., 2005. Digital Core Labo-
ratory: Petrophysical analysis from 3D imaging of reser-
voir core fragments. Petrophysics – The SPWLA Journal 
of Formation Evaluation and Reservoir Description, 46(4), 
260–277.

Backeberg N.R., Iacoviello F., Rittner M., Mitchell T.M., 
Jones A.P., Day R., Wheeler J. et al., 2017. Quantifying 
the anisotropy and tortuosity of permeable pathways 
in clay-rich mudstones using models based on X-ray 
tomography. Scientific Reports, 7, 14838. https://doi.
org/10.1038/s41598-017-14810-1.

Burliga S. & Dohnalik M., 2011. Internal structure and or-
igin of modern salt crust of Salar de Uyuni (Blivia) salt 
pan based on tomographic research. Geology, Geophysics 
& Environment, 37(2), 215–229. https://doi.org/10.7494/
geol.2011.37.2.215.

Cnudde V. & Boone M.V., 2013. High‐resolution X‐ray com-
puted tomography in geosciences: a  review of the cur-
rent technology and applications. Earth-Science Reviews, 
123, 1–17. https://doi.org/10.1016/j.earscirev.2013.04.003.

Dohnalik M. & Jarzyna J., 2015. Determination of reser-
voir properties through the use of computed X-ray mi-
crotomography  – eolian sandstone examples. Geology, 
Geophysics & Environment, 41(3), 223–248. https://doi.
org/10.7494/geol.2015.41.3.223.

Golab A., Ward C.R., Permana A., Lennox P. & Botha P., 
2013. High-resolution three-dimensional imaging of 
coal using microfocus X-ray computed tomography, 
with special reference to modes of mineral occurrence. 
International Journal of Coal Geology, 113, 97–108. 
https://doi.org/10.1016/j.coal.2012.04.011.

Handwerger D., Suarez-Rivera R., Vaughn K. & Keller J., 
2011. Improved petrophysical core measurements on tight 
shale reservoirs using retort and crushed samples. Paper 
presented at the SPE Annual Technical Conference and 
Exhibition, Denver, Colorado, USA, October 2011, SPE-
147456-MS. https://doi.org/10.2118/147456-MS.

Hormann K., Baranau V., Hlushkou D., Höltzel A. & Tal-
larek U., 2016. Topological analysis of non-granular, disor-
dered porous media: determination of pore connectivity, 
pore coordination, and geometric tortuosity in physically 
reconstructed silica monoliths. New Journal of Chemis-
try, 40, 4187–4199. https://doi.org/10.1039/C5NJ02814K.

Karpyn Z.T., Alajmi A., Radaelli F., Halleck P.M. & Grad-
er A.S., 2009. X-ray CT and hydraulic evidence for a re-
lationship between fracture conductivity and adjacent 
matrix porosity. Engineering Geology, 103(3–4), 139–145. 
https://doi.org/10.1016/j.enggeo.2008.06.017.

Krakowska P., 2019. Detailed parametrization of the pore 
space in tight clastic rocks from Poland based on lab-
oratory measurement results. Acta Geophysica, 67(6), 
1765–1776. https://doi.org/10.1007/s11600-019-00331-0.

Krakowska P. & Madejski P., 2019. Research on fluid flow 
and permeability in low porous rock sample using lab-
oratory and computational techniques. Energies, 12(24), 
4684. https://doi.org/10.3390/en12244684.

Krakowska P., Puskarczyk E., Jędrychowski M., Habrat M., 
Madejski P. & Dohnalik M., 2018. Innovative charac-
terization of tight sandstones from Paleozoic basins in 
Poland using X-ray computed tomography supported 
by nuclear magnetic resonance and mercury porosim-
etry. Journal Petroleum Science and Engineering, 166, 
389–405. https://doi.org/10.1016/j.petrol.2018.03.052.

Liu S., Sang S., Wang G., Ma J., Wang X., Wang W., Du Y. & 
Wang T., 2017. FIB-SEM and X-ray CT characterization of 
interconnected pores in high-rank coal formed from re-
gional metamorphism. Journal of Petroleum Science and 
Engineering, 148, 21–31. https://doi.org/10.1016/j.petrol. 
2016.10.006.

Lu X., Armstrong R.T. & Mostaghimi P., 2018. High-pres-
sure X-ray imaging to interpret coal permeability. Fuel, 
226, 573–582. https://doi.org/10.1016/j.fuel.2018.03.172.

Osher J. & Schladitz K., 2009. 3D Images of Material Struc-
tures: Processing and Analysis. Wiley-VCH Verlag GmbH 
& Co. KGaA, Weinheim.

Rabbani A., Ayatollahi S., Kharrat R. & Dashti N., 2016. Es-
timation of 3-D pore network coordination number of 
rocks from watershed segmentation of a single 2-D im-
age. Advances in Water Resources, 94, 264–277. https://
doi.org/10.1016/j.advwatres.2016.05.020.

Silin D. & Patzek T., 2006. Pore space morphology analysis 
using maximal inscribed spheres. Physica A: Statistical 
Mechanics and its Applications, 371(2), 336–360. https://
doi.org/10.1016/j.physa.2006.04.048.

Sossa-Azuela J.H., Santiago-Montero R., Perez-Cisneros M. 
& Rubio-Espino E., 2013. Computing the Euler number 
of a binary image based on a vertex codification. Jour-
nal of Applied Research and Technology, 11(3), 360–370. 
https:// doi.org/10.1016/S1665-6423(13)71546-3.

Soulaine C., Gjetvaj F., Garing C., Roman S., Russian A., 
Gouze P. & Tchelepi H.A., 2016. The impact of sub- 
resolution porosity of X-ray microtomography imag-
es on the permeability. Transport of Porous Media, 113, 
227–243. https://doi.org/10.1007/s11242-016-0690-2.

Suarez-Rivera R., Chertov M., Willberg D., Green S. & 
Keller  J., 2012. Understanding permeability measure-
ments in tight shales promotes enhanced determination 
of reservoir quality. Paper presented at the SPE Canadian 
Unconventional Resources Conference, Calgary, Alber-
ta, Canada, October 2012, SPE-162816-MS. https://doi.
org/10.2118/162816-MS.

Toriwaki J. & Yonekura T., 2002. Euler number and connec-
tivity indexes of a three dimensional digital picture. For-
ma, 17, 183–209.

Tsakiroglu Ch.D. & Payatakes A.C., 2000. Characterization 
of the pore structure of reservoir rocks with the aid of 
serial sectioning analysis, mercury porosimetry and net-
work simulation. Advances in Water Resources, 23(7), 
773–789. https://doi.org/10.1016/S0309-1708(00)00002-6.

Ulusay R., Aydan O., Gerçek H., Ali Hindistan M. & Tun-
cay  E., 2016. Rock Mechanics and Rock Engineering: 
From the Past to the Future. CRC Press, Taylor & Francis 
Group, London.

Vásárhelyi L., Kónya Z., Kukovecz A. & Vajtai R., 2020. Mi-
crocomputed tomography-based characterization of ad-
vanced materials: a review. Materials Today Advances, 8, 
100084. https://doi.org/10.1016/j.mtadv.2020.100084.

https://doi.org/10.1016/j.compgeo.2022.104960
https://doi.org/10.1016/j.compgeo.2022.104960
https://doi.org/10.1038/s41598-017-14810-1
https://doi.org/10.1038/s41598-017-14810-1
https://doi.org/10.7494/geol.2011.37.2.215
https://doi.org/10.7494/geol.2011.37.2.215
https://doi.org/10.7494/geol.2015.41.3.223
https://doi.org/10.7494/geol.2015.41.3.223
https://doi.org/10.1039/C5NJ02814K
https://doi.org/10.1016/j.petrol.2016.10.006
https://doi.org/10.1016/j.petrol.2016.10.006
https://doi.org/10.1016/j.advwatres.2016.05.020
https://doi.org/10.1016/j.advwatres.2016.05.020
https://doi.org/10.1016/j.physa.2006.04.048
https://doi.org/10.1016/j.physa.2006.04.048
https://doi.org/10.2118/162816-MS
https://doi.org/10.2118/162816-MS


392

https://journals.agh.edu.pl/geol

Krakowska-Madejska P.

Vogel H.-J., 2002. Topological Characterization of Porous 
Media. [in:] Mecke K. & Stoyan D. (eds.), Morphology 
of Condensed Matter: Physics and Geometry of Spatially 
Complex Systems, Lecture Notes in Physics, 600, Spring-
er, Berlin, Heidelberg, 75–92.

Wang J., Zhao J., Zhang Y., Wang D., Li Y. & Song Y., 2016. 
Analysis of the effect of particle size on permeability 
in hydrate-bearing porous media using pore network 
models combined with CT. Fuel, 163, 34–40. https://doi.
org/10.1016/j.fuel.2015.09.044.

Wayne M.A., 2008. Geology of Carbonate Reservoirs: The 
Identification, Description, and Characterization of Hy-
drocarbon Reservoirs in Carbonate Rocks. Willey & Sons 
Inc., Hoboken.

Yu X., Butler S.K., Kong L., Mibeck B., Barajas-Olalde  C., 
Burton-Kelly M.E. & Azzolina N.A., 2022. Machine 
learning-assisted upscaling analysis of reservoir rock 
core properties based on micro-computed tomography 
imagery. Journal of Petroleum Science and Engineering, 
219, 11108. https://doi.org/10.1016/j.petrol.2022.111087.

https://doi.org/10.1016/j.fuel.2015.09.044
https://doi.org/10.1016/j.fuel.2015.09.044



