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Abstract: Joint inversion is a widely used geophysical method that allows model parameters to be obtained from 
the observed data. Pareto inversion results are a set of solutions that include the Pareto front, which consists of 
non-dominated solutions. All solutions from the Pareto front are considered the most feasible models from which 
a particular one can be chosen as the final solution. In this paper, it is shown that models represented by points 
on the Pareto front do not reflect the shape of the real model. In this contribution, a collective approach is pro-
posed to interpret the geometry of models retrieved in inversion. Instead of choosing single solutions from the 
Pareto front, all obtained solutions were combined in one “heat map”, which is a plot representing the frequency 
of points belonging to all returned objects from the solution set. The conducted experiment showed that this ap-
proach limits the problem of equivalence and is a promising way of representing the geometry of the model that 
was retrieved in the inversion process.
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INTRODUCTION

The inversion problem is generally understood to 
recreate the parameters of a physical system or the 
causes of a phenomenon based on indirect mea-
surements and observations. Inversion is used in 
many different fields and is an indispensable tool 
in situations where it is impossible or unfavour-
able to obtain data directly about the system un-
der study.

In geophysical terms, inversion is the recon-
struction of the parameters of the M model on 
the basis of measurement data d. The relationship 

between the observations (measurement data) 
and the recovered parameters of the model is de-
scribed by the formula d = G(M)T, where:
	 d 	 –	 vector of measurement data with the di-

mension l, d = (d1, ..., dl)T,
	 M	 –	 vector of model parameters with dimen-

sion n, M = (m1, ..., mn)T,
	 G	 –	 operator of the relationship between 

model parameters and measurement data 
(Tarantola 1987).

In order to find the extreme of the objec-
tive function, various types of optimization al-
gorithms can be used: local, global, heuristic or 
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stochastic. In this article, the optimization ap-
proach was used to solve the inverse problem.

In the case of a multiobjective function, where 
more than one component is present, two key 
problems arise. Firstly, the returned summed re-
sults of different methods are very difficult to 
compare and require appropriate, usually arbi-
trary weighting. This operation can be very labo-
rious and significantly affects the results obtained 
for different data sets. The second problem is the 
correct uncertainty analysis of the solution for 
two or more combined objective functions. The 
elimination of the weighting of functions seems to 
be the key issue in the preparation of a fully func-
tional and efficient method of solving the problem 
of joint inversion. 

Data from only one geophysical method used 
in inversion is often insufficient to retrieve infor-
mation about the geological formation, therefore 
combining several methods increases the quali-
ty and usefulness of the models obtained (Vozoff 
& Jupp 1975). In order to ensure the independent 
operation of each of the objective functions and 
to avoid the troublesome modification of them 
(transfer to the same domain in the case of infor-
mation loss), the Pareto approach turns out to be 
helpful (Miernik et  al. 2016). The Pareto meth-
odology enables the simultaneous optimization 
of many different objective functions within one 
domain without the need for scaling or weight-
ing (Kung et al. 1975). The newly found solution 
is only accepted if at least one component of the 
solution vector is better than in the previous step 
and no other component has deteriorated (Zaef-
ferer et al. 2013).

THEORETICAL BACKGROUND

Joint inversion
Joint inversion is used to interpret two or more 
geophysical data sets. The idea of joint inversion 
in geophysics was introduced as late as 1975 (Vo-
zoff & Jupp 1975), about a hundred years after its 
initial conception. Initially, attempts were focused 
on similar methods based on the same physical 
field (Amatyakul et al. 2017), from which one tar-
get function was combined; however, informa-
tion from observations based on different fields 
is more desirable. Unfortunately, joining misfits 

coming from different methods has significant 
drawbacks. Firstly, in regular optimization oper-
ations only one target function is required, which 
implies that misfits from particular methods have 
to be scaled. The second problem concerns the 
correct analysis of uncertainty, something which 
can be challenging for joint objectives with as-
signed weights. A potential strategy for solving 
such issues is the Pareto approach (Kozlovskaya 
et  al. 2007), which allows the synchronous opti-
mization of many miscellaneous functions with-
in one domain omitting a priori assumptions, 
e.g. weighting (Kung et al. 1975). Any new solu-
tion can only be approved if it is not worse than 
the previous one. The final result of one inversion 
process is one point represented in the 2D coordi-
nate system, where each axis represents the value 
of the misfit of one target function. The process 
of inversion conducted in this manner is repeat-
edly executed and the results are collected into 
a set in which the best non-dominated solutions 
are composed into the Pareto front. The defini-
tion of dominance in an N-dimensional solution 
space (here in the context of minimization) states 
that solution A(a1, a2, …, an) dominates solution  
B(b1, b2, ..., bn), which is expressed as:
A  B,
when:
∀i : ai ≤ bi, i ∈ 1, …, N
and: 
∃j: aj < bj, j ∈ 1, …, N.

Any solution that is accepted as better is better 
in at least one dimension and not worse in all oth-
ers (Zaefferer et al. 2013). 

The Pareto approach was successfully applied 
in solving multi-optimization problems (MOP) 
using both local (Jaszkiewicz 2018) and global op-
timization algorithms (Bai et  al. 2019, Mustaffa 
et al. 2019) in recent research.

Gravimetry and magnetometry forward 
solvers
Gravimetry and magnetometric methods are com-
monly used for near-surface investigations. Both 
methods suffer from the equivalence problem and 
are characterized by low resolution. The solution 
of the inversion problem is generally not unequiv-
ocal as many different models can correspond 
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to the same observations, which is known as the 
equivalence or ambiguity problem (Vozoff & Jupp 
1975). The model obtained in the inversion pro-
cess is not necessarily the same as the real model 
which is searched for. Many different variants of 
the model geometry can fit the same set of recov-
ered parameters, which unfortunately reduces the 
credibility and uniqueness of the solutions. It is 
necessary to provide a priori information, e.g. on 
the geological structure of the studied formation 
or borehole data, supporting the decision-mak-
ing process of selecting the final solution (Cervelli 
et al. 2001, Socco 2008).

Gravimetry and magnetometric methods are 
applicable if the physical properties (density and 
magnetic susceptibility) of the anomalous body 
and the background differ enough (Hinze et  al. 
2013). The forward solvers for gravity (Miernik 
et al. 2016) and magnetic methods (Śledź & Mier-
nik 2019) are based on the superposition rule and 
calculate the sum of gravity and magnetic effects 
in every node in a computation grid. 

Each cell is considered a rectangle, to which 
some parameters of magnetic susceptibility and 
density are assigned (Danek et al. 2019). 

Non-dominated sorting genetic algorithm II 
(NSGA-II)
The NSGA-II algorithm, introduced in 2002 (Deb 
et al. 2002) as a multicriteria genetic algorithm, was 
an improvement on NSGA, the original version that 
was proposed in 1994 (Deb & Snirvas 1994). NSGA 
was criticized for its computational complexity, 
which was due to iterative sorting, elitism absence 
and also the necessity of determining a sharing pa-
rameter (Deb et al. 2002).  Elitism in this context 
is understood as the distinction of individuals of 
population in terms of quality. Individuals which 
are found as the best in the process of sorting are 
marked and remembered, creating the so-called 
elite. NSGA-II was supposed to eliminate the prob-
lems of NSGA by the introduction of quick sorting 
of non-dominated results, estimation of density, 
and a mechanism comparing crowding distance. 

The scheme of the NSGA-II is presented in Fig-
ure 1 and is as follows (Deb et al. 2002): 
–	 Step1
	 Random initialization of population Pt in solu-

tion space.

–	 Step 2
	 Creation of offspring Qt of a number the same 

as the number of population Pt in the crossing 
and mutation process.

–	 Step 3
	 Sorting and ranking the members of popula-

tion Rt = Pt ∪ Qt creates the Pareto sets F1 to Fn. 
Set F1 contains the best population’s members, 
F2 to Fn (from best to worst). In the scope of one 
set, all solutions are of the same quality. 

–	 Step 4
	 The creation of a new population Pt+1 of a num-

ber equal to Pt. To the population Pt+1, solutions 
from set F1 first are added, next from F2, and so 
on. If any whole set that is added to the pop-
ulation makes the size of population Pt+1 > Pt, 
like F3 in Figure 1, then some of the solutions 
from this set are rejected after the application 
of crowding distance sorting, in which solu-
tions that are far from the others are preferred 
in the process of selection in order to create the 
differential solution set and avoid cumulation.

–	 Step 5
	 Return to step 2 until the maximum number 

of generations is reached. 
–	 Step 6
	 The final solution set is the highest-ranked Pa-

reto set Fi from the last population. 

Fig. 1. NSGA-II scheme, modified after (Deb et  al. 2002), 
where: Pt – initial population; Qt – the offspring made in the 
crossing and mutation process done on Pt; Rt – a population 
consists of Pt and Qt; F1–Fn – Pareto sets created by sorting and 
ranking the members of population R1, where F1 contains the 
best population’s members, F2 to Fn (from best to worst). In the 
scope of one set, all solutions are of the same quality
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The example of genetic algorithm operation – 
random initialization, crossing over and mutation 
is shown in Figure 2. 

After the initialization of population Pt and the 
creation of its offspring Qt, NSGA-II orders the re-
sultant population Rt into non-dominated Pareto 
fronts F1 to Fn using the process of non-dominat-
ed sorting, which covers the principle of elitism; 
this assumes that when an individual finds the 
best solution, the algorithm marks and remem-
bers it (the elite). Unlike NSGA, NSGA-II includes 
the distinction of individuals, assigning them to 
fronts F1 to Fn according to their quality. Subse-
quently, the crowding distance sorting is applied 
in order to maintain diversity and avoid cumu-
lations of final solutions. The main reason for 
choosing NSGA-II was the fact that it is more ef-
ficient at producing Pareto fronts. NSGA-II found 
its application both in geophysical investigations 
(Schwarzbach et  al. 2005, Currenti et  al. 2014, 
Ayani et  al. 2020) and in other fields (Jeyadevi 
et al. 2011, Wang et al. 2017, Martínez et al. 2020). 
It is still developing (Fang et al. 2018) and has even 
been used as the basis to create some new algo-
rithms (Liu et al. 2020).

IMPLEMENTATION

MARIA was originally written for inversion in 
gravimetry (GV) and magnetotellurics (MT) in C 
language (Miernik et al. 2016). For parametriza-
tion, the Sharp Boundary Interfaces approach was 
used (Smith et  al. 1999). Later, a magnetometric 
(MG) forward solver was implemented that re-
placed the MT module (Śledź & Miernik 2019). 
A case study on synthetic data for MARIA 2.0 was 
performed (Danek et  al. 2019). The next step 
was  the integration of the GV and MG forward 

solvers with the R environment (R is a free soft-
ware environment as well as a programming lan-
guage which can be used for statistical computing 
and graphics). The functions that solve forward 
problems were separated from MARIA and trans-
formed into stand-alone programs that could read 
data from a file and have a vector of 16 elements 
and misfits as their parameters as a starting model. 

Subsequently, the main() functions (normally 
main() is the function which is called at the start 
of the program, being its entry point) of these pro-
grams were renamed and the thus prepared func-
tions were compiled into dynamic libraries. 

Next, a wrappers.R file was created. This is a file 
with code written in R and its role was to load the 
dynamic libraries and to create R functions based 
on functions written in C code. It allowed these 
functions to be loaded into the R environment 
and the GV and MG forward solvers to be used in 
combination with packages that implement opti-
mization algorithms as well as many other tools. 

The next step was to use the nsga2 function 
from the mco package for multicriteria optimi-
zation. nsga2 is a function built into the R en-
vironment, which solves the genetic algorithm 
NSGA-II. Mco is the package which is built in 
the R environment. It contains a set of functions 
which can be used for multicriteria optimization. 
An input model with geometry, density and sus-
ceptibility parameters and vectors with upper and 
lower boundaries of variables’ variability during 
the inversion process were introduced into the 
nsga2 function. 

Computations were performed for 100 genera-
tions and parallelized with the parSapply function 
from the parallel package for 63 cores, launching 
16 populations for each core, summing up the re-
sults into one solution set with 1008 points.

Fig. 2. Example of genetic algorithm operation – random initialization, crossing over, and mutation
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EXPERIMENTS

The application of NSGA-II was tested on a syn-
thetic magmatic intrusion model. This model il-
lustrates a mini laccolite which is built of igneous 
rocks and background as sedimentary rocks. In 
Figure 3 the model of the disturbing body from 
which synthetic data were generated is shown. The 
blue area shows the disturbing body composed of 
igneous rocks, while the red area shows the back-
ground composed by sedimentary rocks. The geo-
physical parameters for the synthetic model are 
presented in Table 1. 

The properties of the magnetic field assumed 
in examined model are shown in Table 2. These 
values are typical for northern Europe. In or-
der to calculate synthetic gravimetric and mag-
netic data, 200 evenly distributed points were 
placed along the profile.  To simulate real experi-
ment data, white Gaussian noise was added with 
a different signal-to-noise ratio for each method 
(10 dB for magnetometry and 50 dB for gravime-
try).  The data contaminated by the noise is shown 
in Figures 4 and 5 as a blue dashed line. The sol-
id red line shows the magnetic and gravity effect 
of the initial model. In the input model for joint 
inversion (see Fig. 6), geometry and geophysical 

parameters were perturbed. This simple initial 
model was used to check if the geometry of the 
“real” model can be reconstructed well from a ge-
ometry which is very different from the real one.

During inversion, all vertices of the mod-
el could change their coordinates, but the num-
ber of vertices were unchanged. The parameters 
sought, i.e. density and magnetic susceptibility 
for disturbing body and surrounding rocks could 
change their value in the range typical for the oc-
currence of rocks in nature (Hinze et al. 2013). 

Table 1
Physical properties for the “real” model

Intrusion model Density 
[kg/m3]

Magnetic 
susceptibility [–]

Magmatic intrusion 3,200 0.01

Surrounding 2,300 0.00001

Table 2
Properties of magnetic field

Inclination angle [°] 75

Intensity [nT] 58,000

Fig. 3. The model used for generating synthetic data
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Fig. 4. Gravity data for the initial model (red solid line) and “real” data (blue dashed line)

Fig. 5. Magnetic data for the initial model (red solid line) and “real” data (blue dashed line)
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RESULTS AND DISCUSSION

In this example, the NSGA-II engine was applied 
in parallel using 63 populations (one per core) 
of 16 individuals per population, with a limit of 
1,000 generations. Figure 7 shows the magnified 
set of all accepted solutions obtained in the inver-
sion process (63 populations × 16 individuals = 
1,008 points). All solutions belonging to the Pare-
to front (F1) are marked with red dots; the extend-
ed front is marked with green dots, and the other 
ones are marked with blue dots. 

To obtain a more trustworthy comparison 
between the best solutions and the whole set of 
points, an extended front was taken into consid-
eration (not only the Pareto front). To obtain the 
thickened front, the “onion-peeling” method was 
used: first, a Pareto front was defined from the 
whole set of solutions; next, all points belonging 
to the Pareto front that was found were elimi-
nated. The procedure was repeated until the de-
sired number of points on the extended front was 
reached.

In Figure 7 x-axis represents the fitting er-
ror for magnetic method and y-axis for gravi-
ty. These blue dot solutions represent Pareto sets  
F2, ..., Fk, where k is the highest index of the accept-
ed Pareto set from the final population obtained 
by NSGA-II. In order to extend the solution space 

dimensionality and enlarge its interpretational 
potential, we decided to take into account all of 
the obtained solutions.

Fig. 7. A set of solutions found under magnification with Pa-
reto front (red) and thickened front obtained with an “on-
ion-peeling” method (red and green)

As expected, the best solution from the Pareto 
front suffers from problems typical of the GV and 
MG methods, such as equivalence and resolution 
decrease with depth. Even the best of the obtained 

Fig. 6. Geometry of the starting model
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models of the body’s geometry (see Fig. 8) repre-
sented by the optimal solution from the Pareto 
front (a dot that is closest to the origin of coordi-
nates) with an almost perfect curve fit (see Figs. 9 
and 10) is significantly different from the real one 
(marked with black contour). The geophysical 
properties for this model are presented in Table 3. 

Table 3
Physical properties for “the best” model on the Pareto front

Intrusion model Density 
[kg/m3]

Magnetic 
susceptibility

Magmatic intrusion 3,570 0.174159

Surrounding 2,002 0.000045

Fig. 8. The best model on the Pareto front. The contour of the real model is marked in black 

Fig. 9. Curve fitness for GV:  the field data (blue dashed line) and the data after inversion for the best fitting point from Pareto 
front (red solid line) 
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Fig. 11. Solution models from the Pareto front 

Fig. 10. Curve fitness for MG:  the field data (blue dashed line) and the data after inversion for the best fitting point from Pareto 
front (red solid line) 

All solution models from the Pareto front are 
presented in Figure 11 in black. The model on the 
left shown in red represents the real model. 

The presented problems are why we decided to 
use a single solution map that combines all mod-
els obtained during inversion, instead of choosing 
single models from the set of obtained solutions. 
This map is a 2D histogram (presented in the form 
of a heat map) in which every bin represents how 
many times certain grid points in the raster be-
long to the disturbing body for all accepted mod-
els. The color variation is caused by the different 
intensity of a given cell’s membership in each of 
the models.  

In this approach, we used all of the obtained 
Pareto sets F1, ..., Fk (see Fig. 12). The occurrence of 
points in the raster was calculated for 1,008 mod-
els in total. 

As expected, in the case of potential fields, sin-
gle solutions with an almost perfect curve fitness 
do not fully depict the geometry as many so-called 
equivalent models produce the same response. The 
proposed method, which is based on the statistical 
averaging of all models, makes it possible to high-
light the dominating pattern of the obtained solu-
tions. Obviously, the upper edge of the disturbing 
body is recovered with better precision than the 
bottom edge (see Fig. 13). 
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To determine whether limiting the amount 
of data taken into consideration can sharpen the 
obtained result, only the points close to the orig-
inal Pareto front were used and aggregated into 

the heatmap (see Fig. 14). It is clearly visible that 
these results are quite similar to the heatmap for 
the whole set of solutions, and yet they do not de-
pict the geometry of the starting model any better.

Fig. 12. Heat map of the occurrence of all models. The light blue color indicates the shape of the “real model” 

Fig. 13. Vertical, central cross-section through the 2D histogram of the disturbing body; the blue line represents all aggregated 
models; the red line represents the real model where the vertical lines represent the upper and lower edges of the disturbing body
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Fig. 14. Heat map of occurrence models from the thickened front. The light blue color indicates the shape of the “real model”

CONCLUSIONS 

The role of the potential method inversion process 
is not to provide the exact geometry of the expect-
ed model, but rather information about its param-
eters and general shape. However, its geometry 
can still play a role in assessing the correctness 
of the retrieving model and in choosing between 
several feasible models (Menke 1989). Generally, 
defining the final model is not a trivial issue as 
many different models can fit the same set of data, 
and this is the problem of equivalency. 

In this contribution, a simple synthetic model 
was used as a proof of concept. The geometry of 
the models of the Pareto front was verified with 
the synthetic model, thus proving that models 
represented by points on the Pareto front do not 
depict the expected geometry. Therefore, a new 
collective approach that takes into account all 
solutions from the solution set was proposed. A 2D 
histogram representing the number of the occur-
rences of the model in the raster for all obtained 
models was introduced. The experiment showed 
that this method could be a promising way to por-
tray the models’ geometry, which is robust and 
independent of additional information about the 

expected model. It was shown that even the best 
single model obtained with use of the presented 
algorithm does not provide sufficient information 
on the model geometry in question. Through the 
aggregation of the information held by the set of 
solutions, the proposed collective approach allows 
the shape of the body to be reconstructed with 
a better resolution.

This research was funded by the AGH Univer-
sity of Science and Technology, Statutory Research 
grant number 16.16.140.315.

COMPUTER CODE AVAILABILITY
The algorithm used in this contribution is called Maria 3.0 

and was developed based on Miernik et al. (2016), Śledź 
& Miernik (2019) by Katarzyna Miernik kmiernik@agh.
edu.pl +48 12 617 3721 and Tomasz Danek tdanek@agh.
edu.pl +48 12 617 4761. 

Hardware required: AMD Opteron 6380 CPU (64 cores to 
launch the provided code), 125 GB RAM. 

Software required: Linux OS (Fedora 29 recommended), gsl, 
gtk+, openMP, R, R packages: parallel and mco. 

Program first availability: 2019.
Program language: C and R.
Program size: dynamic libraries – 253 KB, source codes and 

input data – 159 KB.
Instructions: in file maria_3.0_instruction.
The full code and the instructions can be downloaded at: 

https://github.com/kamiernik/maria_3.0.git.

mailto:kmiernik@agh.edu.pl
mailto:kmiernik@agh.edu.pl
mailto:tdanek@agh.edu.pl
mailto:tdanek@agh.edu.pl
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