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Abstract: This paper provides an overview of the paleomagnetic results which constrain the post-Paleogene tec-
tonic development of the Western Carpathians. A group of these results are relevant to the last stage of the Ter-
tiary folding and thrusting of the Silesian, Dukla and Magura nappes of the Outer Western Carpathian and were
obtained from Paleogene-Lower Miocene flysch sediments. Both the pre- and post-folding remanences indicate
about 50° CCW vertical axis rotation with respect to the present orientation. This is about a 60° rotation relative
to stable Europe. It follows that the general orientation of the Silesian and more internal nappes were NW-SE, at
least until the mid-Miocene. The CCW vertical axis rotation was co-ordinated with that of the Central Carpathi-
an Paleogene Basin. The termination of the rotation can be estimated from the paleomagnetic data available from
the Pieniny andesites which intruded the Pieniny Klippen Belt and the southern part of the Magura Nappe as
well as from those obtained for the Neogene intramontane basins which opened up in the Outer and in the Cen-
tral Western Carpathians. The paleomagnetic vectors for the andesites form two groups. The first group suggests
about 45° CCW rotation relative to north, while the second shows no rotation. At the present stage of our knowl-
edge it seems likely that some of the andesite bodies were intruded around 18 Ma, which is the oldest isotope age
for the intrusions of the Wzar Mts, while some other bodies could have been emplaced after the rotation, around
11 Ma, which is the youngest isotope age for the Brijarka quarry. Vertical axis CCW rotation was also observed
on sediments older than 11.6 Ma in the Orava-Nowy Targ Intramontane Basin which saddles the Magura Nappe
and the Central Carpathian Paleogene Basin. However, this rotation was related to fault zone activity and was not
attributed to the general rotation of the Outer Western Carpathian nappe system. Paleomagnetic results from the
Nowy Sacz Intramontane Basin, which opened over the Magura Nappe, and those for the Central Western Car-
pathian Turiec Intramontane Basin do not indicate vertical axis rotation. In the first case, the loosely controlled
age limit of the termination of the rotation is around 12 Ma. Well constrained results from the second basin imply
that the rotation was definitely over by 8 Ma. Based on the above observations, and aware of the problem of often
loose age control on the formation and deformation of the deposits of the intramontane basins, it is tentative-
ly concluded that the large scale CCW rotation of the Central Western Carpathians, together with the Magura,
Dukla and Silesian nappes, must have started after 18 Ma and terminated around 11 Ma.
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INTRODUCTION constraints which are related to the folding and

thrusting of the nappe systems of the Outer West-
This paper intends to deal with the final stage ern Carpathians over the southern margin of
of the large-scale rotations of the Western Car-  the European Platform and those postdating the
pathians (Fig. 1) as reflected in the paleomagnetic  large-scale rotations.
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Fig. 1. Structural scheme of the Western Carpathians and adjacent areas (after Lexa et al. 2000, slightly modified) with the dis-

tribution of paleomagnetic sampling points in Late Cretaceous

and younger rocks. In the upper left corner, a sketch map shows

the position of the Miir-Zilina Fault Zone, below the structural map a generalized cross section is drawn from the Carpathian
foreland to the Central Carpathians between points A and B on the map

The paleomagnetic results, which serve as the
basis for the interpretation, have been published
along with the documentation of their quali-
ty (Marton et al. 1999, 2004, 2009a, 2009b, 2013,
Kiss et al. 2016, Tokarski et al. 2016) or submit-
ted for publication (Turiec Basin, Marton et al. in
prep.). Exceptions are those from the Nowy Sacz
Intramontane Basin, which is a Neogene basin
developed over the Magura Nappe. In this case,
the present paper will provide the necessary back-
ground information. The basic data for each sed-
imentary locality/igneous site will be tabulated
together with statistical parameters and informa-
tion about the acquisition of the magnetization
in relation to the deformation event responsible
for the tilting of the sampled strata (Tab. 1). The

tectonic interpretation will be based on the com-
bination of the results from several geographically
distributed localities/sites of similar ages available
for a particular unit for a certain time (Tab. 2).
The reason is that paleomagnetic directions from
isolated single localities/sites are only valuable
as indications, but not constraints for large scale
movements since they may be handicapped by lo-
cal distorting factors. These factors could be e.g.
non-removable partial overprint on the primary
magnetization, incomplete tilt correction of the
paleomagnetic vector. The latter can cause serious
error in paleomagnetic declination when the tilt
angle exceeds 30° and the tilt axis departs from
the horizontal at the same time (e.g. the plunging
axis of the structure).
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Last scene in the large scale rotations of the Western Carpathians as reflected in paleomagnetic constraints
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GEOLOGICAL BACKGROUND

During the Cenozoic, the Western Carpathians
are subdivided into the Inner and the Outer West-
ern Carpathians respectively, separated by the
Pieniny Klippen Belt (Fig. 1), a highly tectonized
narrow zone (e.g. Plasienka 2018 and references
therein). The northern part of the Inner Western
Carpathians is known as the Central Western Car-
pathians, which comprises three thick- and thin-
skinned nappe systems emplaced during the Late
Cretaceous, namely the Tatric thick sheet overlain
by the thin-skinned Fatric and Hronic units (e.g.
Plasienka 2018). The nappe emplacement was fol-
lowed by the deposition of an overstep sequence of
flysch sediments in the Central Carpathian Paleo-
gene Basin during the Late Eocene-Eearliest Mio-
cene (e.g. Sotdk et al. 2001).

The Pieniny Klippen Belt belongs to a 3-5 km
wide flower structure, limited by a fault zone cut-
ting through the sediments of the Central Car-
pathian Paleogene basin in the south and the
Magura Nappe in the north (Golonka et al. 2019). It
is built up of Jurassic and Cretaceous sediments of
extremely variable lithology. They were deposited
in a paleogeographic realm comprising two basins
separated by the Czorstyn ridge which was overrid-
den by the accretionary prism of the Outer Western
Carpathians during Late Cretaceous-Paleocene
(Golonka et al. 2018). The destruction of this ridge
led to the formation of submarine slumps and ol-
istoliths in the Pieniny Klippen Belt and along the
southern margin of the Magura Nappe (Golon-
ka et al. 2015, Marzec et al. 2020), the innermost
of the Outer Western Carpathian nappes (Fig. 1).
The Jurassic and Lower Cretaceous sediments form
the characteristic rigid blocks (klippen) which are
embedded in the klippen mantle of Upper Creta-
ceous-Palogene marlstones, claystones and flysch
(Birkenmajer 1986, Plasienka 2012). In the Mio-
cene, the belt was intruded by andesites during two
successive phases. The older set of intrusions in Po-
land is subparallel to the belt, while the younger one
is NNW-SSE striking (Birkenmajer 1986). Some of
the intrusions penetrate the Paleogene sediments
of the Magura Nappe.

The fold and thrust belt of the Outer Western
Carpathians is emplaced over the Miocene sedi-
ments of the Carpathian Foredeep which were de-
posited on the southern margin of stable Europe

(North European plate). The trust belt compris-
es the Magura, Dukla, Silesian, Subsilesian and
Skole rootless nappes (Fig. 1), which are mainly
composed of Upper Cretaceous-Paleogene flysch
(e.g. Rakus 1998, Oszczypko 2006, Oszczypko
& Oszczypko-Clowes 2009a, Kovac et al. 2016).
The nappe pile started to form during the Eocene
(e.g. Swierczewska & Tokarski 1998, Nemcok et
al. 2006) and the deformation progressed from
the hinterland towards north (in present coordi-
nates). Two main phases of nappe stacking were
recognized. The tectonic transport was direct-
ed towards NW (in present co-ordinates) during
the first phase and towards NE during the second
phase while the folds from the first phase were
partly re-folded (Aleksandrowski 1985).

In the Miocene, several basins opened up in
both the Outer and Inner Carpathians (for a com-
prehensive review see Kovac¢ et al. 2017, 2018)
such as the Rzeszow (not discussed in this paper
to obtain paleomagnetic results from this basin),
the Nowy Sacz (e.g. Oszczypko 1973, Oszczyp-
ko-Clowes et al. 2009b), the Orava-Nowy Targ
(e.g. Baumgart-Kotarba et al. 2004, Tokarski et al.
2012, 2016, Lozinski et al. 2015, Ludwiniak et al.
2019) and the Turiec intramontane basins (e.g.
Kovac¢ et al. 2011, Pipik et al. 2012). The intra-
montane depressions were filled by Neogene and
Quaternary sediments of different character (con-
glomerates, sandstones, siltstones, marlstones)
that deposited on land, in fresh or brackish water.

MATERIALS AND METHODS

As mentioned earlier, the majority of the paleo-
magnetic results reviewed here were published
and the original papers documented the methods
of field collecting and laboratory processing of the
oriented samples as well as the statistical methods
of evaluation, which permitted us to define the
locality mean paleomagnetic directions (Tab. 1).
The exception is the more recently studied the
Nowy Sacz Basin, for which the documentation
necessary to support the reliability of the data will
be presented as follows.

Miocene sediments were collected from the
Nowy Sacz Basin during two short field campaigns.
In 2000, the samples were drilled from an active
brickyard. In 2016, when both of the formerly ex-
isting brickyards were found abandoned and the
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sediments weathered, fresh samples were drilled
from natural outcrops along the Kamenica River.
The samples were oriented in situ with a magnetic
compass, wrapped in aluminium and vacuum foil
and kept in refrigerator in order to protect them
from chemical alteration and disintegration.

In the laboratory, just before the paleomag-
netic processing, standard-size specimens were
cut from each sample. It was followed by the mea-
surements of the natural remanent magnetization
(NRM) in the natural state and that of the anisot-
ropy of the magnetic susceptibility (AMS). The
NRM was measured with JR-4 and JR-5A mag-
netometers, the AMS with a KLY-2 kappabridge.
The specimens were subjected to stepwise thermal
demagnetization until the NRM was completely
demagnetized or the signal was lost due to insta-
bility. After each step, the NRM and the magnet-
ic susceptibility was re-measured. The NRM was
completely or near-completely demagnetized by
400°C, while the magnetic susceptibility in most

cases indicated the formation of magnetite sug-
gesting that the original magnetic mineral in the
studied sediments was greigite (Fig. 2). The de-
magnetization curves were analyzed for linear
segments and the component decaying towards
the origin of the Zijderveld diagrams (Fig. 2) was
considered as the characteristic remanent magne-
tization. These components were used to compute
the mean paleomagnetic directions for localities
97, and 99-101 (Tab. 1). For locality 98, statistical
parameters were not tabulated. At this locality, the
directions of the individual samples form a great
circle and the locality mean paleomagnetic direc-
tion was obtained with the method proposed by
McFadden & McElhinney (1988). Nevertheless it
is extremely useful in cases where stable magneti-
zation characterizes some samples/localities while
others exhibit great circle movement of the vector
between the stable component of the first group
and another component acquired at a different
time and/or in different position of the strata.
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The age of the magnetization with respect to
the stratigraphic age were constrained with a tilt
test, using the local azimuth and dip of the sam-
pled strata in the procedure. As the sediments were
poorly indurated, the values measured in the field
were compared to the orientation of the well-de-
fined AMS foliation planes, which justified the
tilt corrections for localities 97, 100 and 101, being
sub-parallel to the bedding planes measured in the
field. For the other localities, a comparison was not
possible as the AMS fabric was chaotic.

The database of Table 1 contains 102 entries.
For all of them, the relationship between the age of
the source rock and its magnetization is indicated
(pre or post-folding/tilting). The paleomagnetic
directions to be considered in the tectonic inter-
pretation are in bold, which in the case of sedi-
ments are either before (magnetization acquired
after tilting) or after tilt correction (magnetization

acquired before tilting). For most of the Pieniny
andesites, two components of the NRM were iden-
tified. They are considered as reflecting the orien-
tation of the area at different times.

Based on the entries of Table 1, overall mean
paleomagnetic results were computed (Tab. 2)
from quasi-coeval and geographically distributed
localities representing a certain unit. These over-
all-mean paleomagnetic directions are used as
constraints for large-scale displacements.

DISCUSSION OF THE AVAILABLE
PALEOMAGNETIC DATA

Asitis widely known, a paleo-inclination is a func-
tion of the latitude at which the magnetization was
acquired (Fig. 3A). In contrast, a paleo-declination
is the resultant of the rotations which took place af-
ter theacquisition of the magnetization (Fig. 3B, C).
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Fig. 3. Interpretation of paleomagnetic inclinations which constrain the latitude where the rocks acquired magnetizations
(Fig. 3A) and the pattern of paleomagnetic declinations obtained on rocks of different ages suggesting CCW (Fig. 3B) and CW
(Fig. 3C) rotations, respectively. The examples represent paleomagnetic results obtained from the northern part of stable Adria
(Adriatic microplate, Mdrton et al. 2017). Figure 3A shows that Adria must have been at about 16°N at 155 Ma and about 25°N
at 135-75 Ma. Figure 3B represents the steps of CCW rotation, which led to the maximum angle of the measured CCW rotation
on rocks about 155 Ma old. Figure 3C shows how the more moderate CCW rotations measured on rocks older than 155 Ma,
which compared to the maximum angle of CCW rotation suggests CW rotations predating 155 Ma
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It follows that the correct interpretation of
a paleo-declination is easier for younger than old-
er rocks from the same tectonic unit. That is why
paleomagnetic data are particularly reliable con-
straints for the subject of the present paper.

A paleomagnetic result is generally considered
valuable when the age of the source rock and its
magnetization is the same, i.e. the latter can be re-
lated to the stratigraphic or isotope age of a rock
unit. However, consistent secondary magnetiza-
tions e.g. during chemical alteration and/or elevat-
ed temperature, can also provide important paleo-
magnetic constraints, as it will be discussed below.

Large scale rotations

during the emplacement of

the Outer Western Carpathian nappes
over the European margin

The flysch of Cenozoic age was studied at geo-
graphically distributed localities from the Out-
er Carpathian nappes (Fig. 1). No positive results
were acquired from the Skola Nappe, although
several points were tested. Concerning the other
nappes, good results were obtained from the West-
ern, Central and Eastern segments, respectively of
the Silesian Nappe (Marton et al. 2009a), the Duk-
la Nappe (Korab et al. 1981, Kiss et al. 2016), and
the Magura Nappe (Marton et al. 2009a).

The paleomagnetic results suggest large-scale
Miocene CCW rotation of the Silesian Nappe
(Tab. 1). This vertical axis rotation must have
post-dated the folding of the Paleogene (Lower Mi-
ocene) strata, since it is exhibited by all localities
with pre- as well as localities with post-folding re-
manence (Tab. 2). The angle of the rotation is about
50° (with respect to north) in the Central and East-
ern segments and somewhat larger in the West-
ern segment, probably due to post-nappe emplace-
ment rotations within a left lateral wrench corridor
(Fodor at al. 1995, Marton et al. 2009a). The 50° ro-
tation relative to north is about 60° with respect to
stable Europe, as the reference declination comput-
ed from the APW (Torsvik et al. 2012) for the time
interval between 30 and 20 Ma is 9.4-10.8°.

At this point it is worth mentioning that the
Miocene sediments of the Carpathian Foredeep
exhibit the expected stable European declination
only as secondary with respect to their deforma-
tion. Meanwhile the magnetic signal predating

the deformation, and measured (with a single ex-
ception) older than around 10 Ma strata suggest
about 20° CCW rotation with respect to the stable
European reference declination (Scholger & Stingl
2004, Marton et al. 2011). This result implies that
the southern margin of stable Europe must have
been affected by forces generated by the over-
thrusting nappe piles but does not invalidate the
reference declinations computed from the Euro-
pean APW of Torsvik et al. (2012).

The paleomagnetic results from the Duk-
la Nappe represent both the Slovak (Korab et al.
1981) and the Polish (Kiss et al. 2016) parts. Only
tilt corrected paleomagnetic directions are avail-
able from the which lend themselves to a combi-
nation with tilt corrected ones from the second
(Fig. 4). The individual paleomagnetic directions
exhibit a smeared distribution in declination. This
can be attributed, at least partly, to the melange
character of the Oligocene sediments in the Polish
sector of the Dukla Nappe (Sieminska et al. 2020).
The distribution of the vectors prohibits the defi-
nition of an overall-mean paleomagnetic direc-
tion for the Dukla Nappe, yet the picture obvious-
ly suggests a general CCW rotation.

Two sets of paleomagnetic results are available
from the Paleogene flysch of the Magura Nappe.

Fig. 4. Dukla Nappe. Tilt corrected paleomagnetic directions
with a,, on an equal angle projection. Diamonds: Kordb et al.
(1981), Squares: Kiss et al. (2016)
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The statistically loosely defined locality mean pa-
leomagnetic directions by Krs et al. (1991) sug-
gest large CCW rotation. Those by Marton et al.
(2009a) are of sufficiently high statistical preci-
sion, thus permit the conclusion that the rotation
took place after the folding of the strata (Tab. 2).

In the hinterland of the Outer Western Car-
pathians (Fig. 1), large post-Cretaceous CCW rota-
tion was documented for the Pieniny Klippen Belt
(Mérton et al. 2013). The Late Eocene-Earliest Mi-
ocene flysch sediments (Filo & Siranova 1996, Gedl
1998, Janocko & Jacko 1998, Janocko et al. 1998,
Sotak et al. 2001, Janocko 2002) of the Central Car-
pathian Paleogene Basin also show about 50° CCW
vertical axis rotation with respect to the north (Mar-
ton et al. 1999, 2009b). The magnetizations in both
units were acquired prior to folding/tilting (Tab. 2).

The similar magnitude and timing of the CCW
rotation in the Outer and Central Western Car-
pathians (Marton etal. 2016) suggest that these units
rotated in co-ordination and the movements natu-
rally involved the Pieniny Klippen Belt (Fig. 5). This
justifies the search for evidence for the termination
of the large-scale CCW rotation in all three units.

Pieniny:
PKB andesites  gjlegian
Magura % 5 Central+Eastern
57— —Silesian
2 Eastern postfolding

Fig. 5. Overall mean paleomagnetic directions with o, (data
from Table 2) are shown on equal angle projection. Note the
extremely high consistency of the paleomagnetic declina-
tions/inclinations, except the western segment of the Silesian
Nappe, where the extra CCW rotation might be due to the left
lateral shear affecting the area (Mdrton et al. 2009a). Key:
PKB, Pieniny Klippen Belt; CCPB: Central Carpathian Pale-
ogene Basin
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Fig. 6. Paleo-latitudes for the Central and Outer Western Carpathian flysch, the Pieniny andesites, and the sedimentary fills of
the intramontane basins (error angles are shown as thin lines) in comparison to expected paleo-latitudes in a stable European
framework. The latter is represented by a heavy line showing expected paleolatitudes for 20.45E, 49.57N, calculated from refer-
ence poles of Stable Europe for 5 Ma (Panaiotu et al. 2012), 10 Ma, 20 Ma and 30 Ma (Torsvik et al. 2012). The pale brown area
shows the statistical error of stable European paleolatitudes, which are extremely large around 30 Ma, due to the scarcity of the
paleomagnetic data. The errors for the paleolatitudes were computed with the method by Butler (1992)
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To date, the paleomagnetic results have been
discussed from the point of view of large-scale
rotation as reflected in the paleomagnetic decli-
nations. It is important, however, that the paleo-
magnetic inclinations tell us about latitudes at the
time of the acquisition of the paleomagnetic sig-
nal. As Figure 6 shows, the paleo-latitudes com-
puted from the Western Carpathian paleomag-
netic data, as well as the reference paleo-latitudes,
have considerable errors and it is therefore hard
to estimate the exact distance of the respective ar-
eas from the European margin. Nevertheless, the
mean paleo-latitudes for the studied Carpathian
areas follow closely the reference paleo-latitude
curve for stable Europe, thus enhancing the re-
liability of the paleomagnetic data interpreted in
terms of vertical axis rotation.
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Pieniny Andesites

The tectonic significance of
the paleomagnetic results
from the Pieniny andesites
and from the sediments of
the intramontane basins

Pieniny andesites

An obvious candidate for a rock unit which is
younger than the folding in the Magura Nappe
is the Pieniny andesite (Birkenmajer 1986) in-
truding both the Pieniny Klippen Belt and the
southern part of the Magura Nappe (Figs. 1, 7).
A pioneering paleomagnetic study, based on al-
ternating field demagnetization (Birkenmajer &
Nairn 1968), concluded that the andesites belong-
ing to two phases of intrusion do not exhibit any
rotation.
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Fig. 7. Pieniny andesites. Paleomagnetic directions with a,,; on equal angle projection. Figure 7A (Tab. 1, items 71-77): paleo-
magnetic directions showing CCW rotation. They are interpreted as predating those in Figure 7B (items 78-83). Results tab-
ulated in entries 79-83 exhibit extremely high inclinations, probably “contaminated” due to the superposition of normal and
reversed polarity remanences (Mdrton et al. 2004). Simplified geological map (Fig. 7C) of the sampling area after Birkenmajer
(1986), Tokarski & Swierczewska (1998), and Swierczewska & Tokarski (1998)
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In a more recent publication (Marton et al.
2004), two paleomagnetic directions were rec-
ognized in the laboratory in the course of the
more efficient stepwise thermal demagnetization.
The one showing no rotation appears as an over-
print in most cases, except the Bryjarka quarry in
Szczawnica, where the primary remanence seems
to have been preserved (Tab. 1, site 78). The other
NRM component exhibiting moderate CCW rota-
tion was isolated after the removal of the overprint
(Tab. 1, sites 71-77). The timing of this rotation
is critical from the point of view of the termina-
tion of the large-scale co-ordinated rotation of the
Outer Western Carpathian nappes, and in this re-
spect the ages of the andesite intrusions are also
critical.

Prior to isotope age studies, the andesite was
thought to be of Early Miocene age. However,
dating with K-Ar method (Birkenmajer & Pécs-
kay 1999, 2000) yielded ages spreading from 3.3
to 22.5 Ma, with the most reproducible results of
13.5-10.8 Ma. Apatite fission track data (AFT)
from the Wzar Mts yielded 18.8 Ma (Anczkiewicz
et al. 2005) and 15.8 Ma (Anczkiewicz et al. 2013),
respectively. More recent U-Pb zircon datings are
available from the Jarmuta, Bryjarka and Kru-
pianka streams (11.2-12.1 Ma). However, Ancz-
kiewicz & Anczkiewicz (2016) do not exclude the
possibility that the Wzar intrusions belong to an
older phase.

More recent paleomagnetic investigations
(Mérton et al. 2004) have been concentrated on
the Czorsztyn area and particularly on the prod-
ucts of the two phases of intrusions present on the
Wzar Mts (Tab. 1, localities 71-74, 76 and 77). In
both phases, after the removal of the substantial
overprint magnetization by employing the ther-
mal method, CCW rotated magnetizations were
isolated (Fig. 7). The andesites near Kroscienko
behaved similarly and only those in the Bryjar-
ka quarry showeda non-rotated paleomagnetic
direction. The above summarized paleomagnet-
ic results, in light of isotope datings, lend them-
selves to a tentative interpretation concerning
the age of about 45° CCW rotation, placing it be-
tween 18.8 Ma (the oldest AFT age at Wzar Mts,
Anczkiewicz et al. 2005) and 11.2 Ma (the young-
est U-Pb zircon age at Bryjarka, Anczkiewicz &
Anczkiewicz 2016).

The Orava-Nowy Targ Intramontane Basin

The Orava-Nowy Targ Intramontane Basin de-
veloped at the contact between the Central and
Outer Western Carpathians (e.g. Gross et al.
1993, Nagy et al. 1996). It is filled by poorly in-
durated freshwater Neogene sediments (Fig. 8) up
to 1300 m thick (e.g. Watycha 1976). The young-
est rocks underlying the freshwater sequence are
the uppermost strata of the Magura Nappe which
are around 18 Ma old (Kaczmarek et al. 2016). The
freshwater sequence was interpreted as of Late
Miocene or Late Miocene-Pliocene age (Tokarski
et al. 2016 and references therein). More recent-
ly, the uppermost part of the sequence was dated
with the U-Pb method as 11.9 Ma at Mietustwo
(Wysocka et al. 2018, locality 90 in Fig. 8). It is
discordantly covered by Quaternary fluvial sedi-
ments. The paleomagnetic directions of post-tilt-
ing age from six localities (Tab. 1, localities 84-89)
suggest about 30° CCW rotation (Fig. 8). This ro-
tation was interpreted as connected to the sinis-
tral strike-slip movement along the Mur-Zilina
Fault Zone (Fig. 1, Tokarski et al. 2016, cf. Lud-
winiak et al. 2019), which was active mainly be-
tween 17 and 8 Ma and then again from the Mid-
dle Pleistocene on (Decker et al. 2005; see also
Baumgart-Kotarba et al. 2004). According to the
paleomagnetic results, the CCW rotation must be
older than 11.9 Ma, since the paleo-declination for
localities 90 and 91 (Tab. 1) are close to the north,
i.e. postdates the rotation.

Nowy Sgcz Intramontane Basin

The Nowy Sacz Intramontane Basin is a piggy-back
basin opened up within the Magura Nappe
(e.g. Oszczypko 1973). Its Neogene to Quarter-
nary sedimentary fill rests upon folded and erod-
ed sediments of the Magura Nappe (Oszczyp-
ko 1973; Oszczypko et al. 1999). In the Magura
Nappe, where a large CCW rotation was observed
(Marton et al. 2009a), the youngest strata are late
Oligocene-Miocene age (around 23 Ma, Oszczyp-
ko-Clowes et al. 2018). The oldest part of the poor-
ly indurated the Nowy Sacz Basin (Fig. 9) fill is
considered to be about 14 Ma, whereas its young-
est part is around 12 Ma (Oszczypko-Clowes et al.
2009). The Neogene strata are open folded and the
deformation must have post-dated 12 Ma.
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Fig. 8. Orava-Nowy Targ Intramontane Basin. Paleomagnetic directions (Tab. 1, items 84-89) with a,; on equal angle projec-
tion before (Fig. 8A) and after (Fig. 8B) tilt corrections accompanied by syn-folding diagram (Fig. 8C). Simplified geological map
(Fig. 8D) and simplified cross section (Fig. 8E) of the basin after Watycha (1977a, 1977b), Lexa et al. (2000), Pomianowski (2003)

and Tokarski et al. (2016)

The paleomagnetic results represent the bottom
part of the basin filling. Some samples (in 2000)
were collected from an active brickyard (Tab. 1, lo-
cality 97), others from natural outcrops (Tab. 1, 98-
102) along the Kamienica River (Fig. 9D).

As Figure 9C documents, the tilt test is inde-
terminate, with considerably less scatter before
than after tilt corrections. The exact age of the ac-
quisition of the magnetizations is not critical from
the viewpoint of tectonic interpretation, since
the overall-mean paleomagnetic declinations are
very similar both before and after tilt corrections.

A remarkable aspect of the results is the reversed
polarity magnetization at all the studied locali-
ties. This rules out the possibility of recent remag-
netization and at the same time, suggests that the
magnetizations at the different localities were most
likely acquired within the same polarity zone.

In summary, the results document that the
Neogene sequence filling the Nowy Sacz Intra-
montane Basin did not experience any rotation af-
ter the magnetization of the Miocene sediments.
However, it is impossible to pinpoint the age of the
acquisition of remanence for two reasons.
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Fig. 9. Nowy Sgcz Intramontane Basin. Paleomagnetic locality mean directions with a,, on equal angle projection before
(Fig. 9A) and after (Fig. 9B) tilt correction, accompanied by syn-tilting diagram (Fig. 9C). The locality mean paleomagnetic direc-
tion for locality 98 is without a,, as it was determined from a great circle defined by the individual specimens (pole of the circle
D = 143.0°% I = 21.9° a,, = 7.6° length = 153°) as the vector, which was at the minimum distance from the cluster of the locality
mean directions for localities 97 and 99-101 (method by McFadden & McElhinney 1988). Simplified geological map (Fig. 9D)
and simplified cross section (Fig. 9E) of the basin after Oszczypko et al. (1999) and Oszczypko-Clowes et al. (2009)

One is the indeterminate tilt tests and the oth-
er is the uncertain age of the tectonic process re-
sponsible for the tilting of the strata. Therefore,
the results represent a loose control on the ter-
mination of the large-scale rotation of the West-
ern Carpathians, permitting it to be placed to any
time period after 14 Ma.

Turiec Intramontane Basin

The Turiec Intramontane Basin, a westward dip-
ping half-graben (Kovac et al. 2011), is the largest
one in the Central Western Carpathians (Fig. 1)
which existed during the Middle and Late Mi-
ocene (e.g. Hok et al. 1998, Kovac et al. 2011). It
is surrounded by uplifted Paleozoic crystalline
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basement with its Mesozoic sedimentary cover
overlain by nappe units composed mostly of car-
bonate rocks (Fig. 10). Erosive remnants of Cen-
tral Carpathian Paleogene Basin are found in the
northeast margin of the basin (Gasparik et al.
1995). The sedimentary fill of the basin, reaching
up to 1250 m, was episodically connected with
the Pannonian Basin (Kova¢ & Hok 1993, Pipik
etal. 2012).

One of the time constraints on the otherwise
loose age control on the sedimentary fill of the ba-
sin is a rhyolite volcanic complex (radiometric age
12.4 £2.2 to 10.7 £0.3 Ma, Gasparik et al. 1974,
Konecny et al. 1983). This is situated in the lower
part of the sedimentary sequence, well below the
lake sediments. The subsidence of the Turiec Basin
reached a maximum when connections towards
the Pannonian Basin were cut by the rapid uplift

of the surrounding mountains and the arising
strato-volcanoes (Kralikova et al. 2014) and when
deepwater lacustrine sediments and littoral mud-
stone and sand intercalated with bodies of fresh-
water limestone and coal seams were deposited.
These sediments were the subjects of a paleomag-
netic study. Correlation to the world-wide polari-
ty time scale combined with the development of
the rich Ostracode population assigned an age of
8.1-7.7 Ma (Marton et al. in prep.) to the lake sed-
iments studied for paleomagnetism (Tab. 1, local-
ities 92-96). These sediments have magnetizations
of pre-tilting age (Fig. 10D) and show practically
no rotation with respect to the present orientation
(Marton et al. in prep.). This result is the most re-
liable evidence to date that the large-scale rotation
of the Central and Outer Western Carpathians
was definitely over around 8 Ma.
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CONCLUSIONS

The paleomagnetic results from the Silesian, the
Dukla and the Magura nappes outline the fol-
lowing scenario. The Paleogene-Lower Miocene
flysch deposited in the different basins of the Out-
er Western Carpathians acquired remanent mag-
netization before folding. This remanence was
preserved at most localities of the Silesian Nappe,
while at some others and at all the studied local-
ities in the Magura Nappe, the flysch was remag-
netized after folding, most probably in the Mio-
cene after the deposition of the youngest members
of the Krosno beds in the Silesian Nappe (Tab. 1,
locality 22). The magnetizations of pre-folding as
well as of post-folding ages suggest about 50° gen-
eral CCW rotation of the nappes, with respect to
north, which is about 60° with respect to stable
Europe (Fig. 11). The implication is that the gener-
al orientation of the Magura, the Dukla and Sile-
sian nappes during folding was NW-SE, making
an angle of about 50° with their present orienta-
tion. Concerning the pre-rotation orientation, it is
comparable with the reconstruction e.g. by Rakus

(1998), Oszczypko (2006) for the Maastrichtian, or
by Picha et al. (2006) for the Oligocene. The paleo-
magnetic data constrain the necessary CCW rota-
tion for the emplacement of the nappe systems to
the Miocene, as also suggested by the reconstruc-
tion of Kovac et al. (2016) for 26-22 Ma.

Some of the Pieniny andesite intrusions, most-
ly in the Wzar Mts area, have two components of
the natural remanent magnetization. The more
stable one, interpreted as primary, suggest about
45° CCW vertical axis rotation with respect to
north (Fig. 11). The less stable components indi-
cate no vertical axis rotation, similarly to a sin-
gle component paleomagnetic direction charac-
terizing the andesite from the Bryjarka quarry in
Szczawnica. The oldest apatite fission track age at
Wzar is around 18.8 Ma (Anczkiewicz et al. 2005)
and the youngest zircon U-Pb age at Bryjarka is
around 11.2 Ma (Anczkiewicz & Anczkiewicz
2016). Relying on these isotope ages, and the pa-
leomagnetic results from the Pieniny andesites,
the large scale CCW vertical axis rotation of the
Outer Western Carpathian nappes can be tenta-
tively placed between 18 and 11 Ma.
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The above age estimation is corroborated, or
at least not contradicted, by the paleomagnetic re-
sults from the intramontane basins. The most relia-
ble evidence for the absence of vertical axis rotation
of the Western Carpathians is from the Turiec In-
tramontane Basin, where the magnetizations of the
sediments are of pre-tilting age. The results suggest
that the rotation was definitely over by around 8 Ma.

The CCW rotation observed for the sedimen-
tary fill of the Orava-Nowy Targ Intramontane
Basin predates 11.9 Ma, thus it would fit the time
period outlined by the Pieniny andesites. Howev-
er, this rotation was not connected to the CCW
rotation related to the emplacement of the Out-
er Western Carpathian nappes over the sedi-
ments of the Carpathian Foredeep, but rather to
the strike-slip displacement along the left lateral
shear zone of the Mur-Zilina Fault Zone (Tokar-
ski et al. 2016).

The results from the Nowy Sacz Intramontane
Basin are in harmony with those for the Turiec In-
tramontane Basin, although their power to con-
strain the termination of the rotation is less due to
the post-tilting age of the magnetization.
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