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Abstract: The purpose of this paper is to propose a new method for obtaining tensors expressing certain symme-
tries, called effective elasticity tensors, and their optimal orientation. The generally anisotropic tensor being the 
result of in situ seismic measurements describes the elastic properties of a medium. It can be approximated with 
a tensor of a specific symmetry class. With a known symmetry class and orientation, one can better describe geo-
logical structure elements like layers and fissures. A method used to obtain effective tensor in the previous papers 
(i.e. Danek & Slawinski 2015) is based on minimizing the Frobenius norm between the measured and effective 
tensor of a chosen symmetry class in the same coordinate system. In this paper, we propose a new approach for 
obtaining the effective tensor with the assumption of a certain symmetry class. The entry zeroing method as-
sumes the minimization of the target function, being the measure of similarity with the form of the effective ten-
sor for the specific class. The optimization of orientation is made by means of the Particle Swarm Optimization 
(PSO) algorithm and transformations were parameterised with quaternions. To analyse the obtained results, the 
Monte-Carlo method was used. After thousands of runs of PSO optimization, values of quaternion parts and ten-
sor entries were obtained. Then, thousands of realizations of generally anisotropic tensors described with normal 
distributions of entries were generated. Each of these tensors was the subject of separate PSO optimization, and 
the distributions of rotated tensor entries were obtained. The results obtained were compared with solutions of 
the method based on the Frobenius distances (Danek et al. 2013).
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INTRODUCTION

The elasticity tensor c relates linearly the stress s 
and the strain e tensors, as shown below in the 
constitutional equation of Hookean solids (Slaw-
inski 2010):
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It is the general way of the description of elastic 
properties to provide a more detailed description 
of the medium than elastic moduli commonly 

used by engineers and in seismic exploration. As 
P- and S-wave propagation is dependent on par-
ticular elements of the elasticity tensor, one can 
estimate the elasticity tensor based on seismic 
measurements. Laboratory surveys on the rock 
samples have recently been complemented by in 
situ researches. The anisotropic elasticity tensor, 
containing all 21 independent elements, can be 
estimated based on the results of multiazimuth 
walkaway vertical seismic profiling (VSP) as de-
scribed in Dewangan & Grechka (2003). The es-
sential condition is the sufficient polar and azi-
muthal coverage of the data.
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Inversion for elasticity coefficients in the most 
general case requires slowness and polarization 
vectors for P-waves as well as for S1- and S2-waves. 
The receivers are placed inside the borehole, and 
overburden complexity influences the estimation 
of the horizontal slowness components at the geo-
phone levels. If these values are poorly estimated, 
the inversion for cijkl may not be feasible.

Anisotropic elasticity tensors can usually be 
approximated with an effective tensor belonging 
to one of the eight symmetry classes, according 
to the symmetry planes and axes of the medium. 
The specific class indicates medium complexity, 
while the orientation of the planes and axes shows 
the general direction of layers and fissures. The 
changes of the medium over time caused by frac-
turing may also be visible with the analysis of elas-
ticity tensor symmetries and orientations.

METHODS

Elasticity tensor
As a consequence of symmetries of the strain and 
stress tensors, symmetry of elasticity tensor is ob-
served: cijkl = cjikl = cklij and the number of inde-
pendent entries in a generally anisotropic case is 
limited to 21. Equation (1) can be rewritten as fol-
lows:

The simplest class is general anisotropy, while 
other symmetry classes (described as non-trivial) 
are the following: monoclinic symmetry, trigo-
nal symmetry, orthotropic symmetry, tetragonal 
symmetry, transverse isotropy, cubic symmetry, 
and isotropy. The following symmetry groups cor-
respond to the symmetry classes covered in this 
paper (Bona et al. 2004):
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Rθ,ei describes the rotation by θ around ei, and 
Mv describes the reflection through the plane 
with normal ν. Tensor c is of even-rank; therefore, 
±I belongs to each of its symmetry groups, and as 
a result, if c is invariant under A, it is also invar-
iant under −A. We can consider only rotation for 
Equations (4)–(6) without the loss of generality.

A  geological example of the transversely iso-
tropic medium is a set of parallel layers in a sedi-
mentary basin. The orthotropic solid is a TI medi-

um with a perpendicular 
set of parallel fractures. 
The tetragonal medium is 
a special case of an orth-
otropic solid where frac-
tures occur with equal 
density along both hori-
zontal axa.

Practically, tensors ob-
tained from real seismic 

measurements always belong to the generally an-
isotropic symmetry class, since the results are bur-
dened with measurement errors. However, one can 
approximate tensor c by means of another tensor 
csym belonging to the particular symmetry class. 
With the fixed orientation of coordinates, in the 
sense of the Frobenius norm, the best approxima-
tion of csym is the orthogonal projection of tensor c 
onto the linear space of all tensors of specific class 
(Lsym) (Kochetov & Slawinski 2009). 
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Tensor c, representing a  Hookean solid, be-
longs to one of eight material symmetry classes, 
as shown in several works (Forte & Vianello 1996, 
Bona et al. 2004). Symmetry classes are character-
ized by their symmetry groups, which are groups 
of transformations g (subgroups of 3D rotation 
group, SO(3)) leaving tensor c of given symmetry 
class invariant:

c = g(c) (3)
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The operator of the projection  – prsym(c), is given 
with the following formula:

c pr c g c d gsym
sym

Gsym
= = ( )∫( ) ( ) ( )m  (7)

with the integration over symmetry group Gsym 
with respect to the invariant μ normalized to sat-
isfy μ(Gsym) = 1. For classes having finite symme-
try groups (all apart from isotropy and transverse 
isotropy), the integral reduces to a  finite sum. 
Diner et al. (2011) described explicit expressions 
of csym for these symmetries in the coordinate sys-
tem associated with the symmetry group of each 
class. For example, an explicit expression for orth-
otropic symmetry is shown below:

c C M CM M CM M CMortotropic
e
T

e e
T

e e
T

e= + + +( )1
4 1 1 2 2 3 3  (8)

The quality of tensor approximation is evaluat-
ed with the squared distance between c and csym as 
shown below:

d C Csym
sym2 2 2

= -   (9)

The tensor giving the least value of this squared 
distance is referred as an effective tensor (Kochetov 
& Slawinski 2009). For all symmetry groups except 
isotropy, the op-
erator of the pro-
jection prsym(c) as 
well as obtained 
distance (9), are 
dependent on the 
orientation of the 
symmetry group. 
To find the effec-
tive tensor without a priori assumption of orien-
tation, one should minimize the squared distance 
under all orientations, and the tensor obtained 
in the result is referred to as an absolute effective 
(Danek et al. 2013). The problem of the minimiza-
tion of Equation (9) as a function of orientation is 
nonlinear.

Rotations with quaternions
In this contribution, we parameterise rotations 
SO(3) with quaternions of norm equal 1 to car-
ry out computations. Quaternions, which were 

introduced by Hamilton (1844), are structures 
given in the following form:

q a bi cj dk= + + +  (10)

where: a is real part, vector (b, c, d) is imaginary 
part and i, j, k are imaginary units satisfying  
i2 = j2 = k2 = ijk = −1. The unitary quaternion 
(||q|| = 1) can be used to describe rotation in 3D 
and respective orthogonal matrix is given with 
(Kochetov & Slawinski 2009):
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The rotation is about the axis of components  
[b, c, d] by angle θ = 2arccos(a); thus, opposite qua-
ternions correspond to the same matrix. The rota-
tion A(q) gives rise to an orthogonal transforma-
tion of the space of tensor classes r → A(q)rA(q)T,  
where r is a  symmetric 3 × 3 matrix, represent-
ing the stress or the strain tensor. Transformation 
A(q) corresponds to the transformation of tensor C  
given by: C → ÃCÃT, where an orthogonal 6 × 6  
matrix Ã is given by the following expression 
(Kochetov & Slawinski 2009):
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The main advantages of quaternion-based over 
Euler-angles based rotation are that they are sim-
pler functions to minimize (without trigonomet-
ric functions), have improved computational ef-
ficiency, and lack the gimbal lock problem (see 
Shoemake 1985).

Entries zeroing method
The common approach to the problem of find-
ing the effective tensor is based on the minimi-
zation of the squared distance (9) as a  function 
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of orientation described with quaternion q as fol-
lows:

min ( ) : ( )D sym sym
effq C pr C2 2 2

= -  (13)

The result of optimization is the value of q giv-
ing the absolute minimum of the Frobenius dis-
tance. The tensor referred to as Ceff is the absolute 
effective tensor, expressed in the coordinate sys-
tem rotated using A(q) matrix. The procedure de-
scribed by several authors (i.e. Kochetov & Slawin-
ski 2009, Danek et al. 2013) includes the selection 
of a particular symmetry class and then the opti-
mization of the target function, which is a Frobe-
nius norm (14), over different orientations of the 
coordinate system. This results in computational 
form of Equation (13):

f q C Ct et sym ij ij
eff
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In this contribution, we propose a  new ap-
proach to the search for the absolute effective 
tensor. In the entries zeroing method we assume 
a particular symmetry group and wish to obtain 
a tensor similar to the effective tensor of this class 
by means of the rotation of the coordinate system 
of the measured tensor using Ã(q). It is a different 
approach to transformation because the coordi-
nate system of the effective tensor is rotated in the 
method described above. The target function, spe-
cific for each particular symmetry class, describes 
the similarity of the rotated measured tensor to 
the form of tensor characteristic for a given class.

Let us analyse the orthotropic symmetry class 
(described also in Gierlach & Danek 2017). In this 
case, the effective tensor Cortotropic has several entries 
equal to zero, if expressed in a  system where co-
ordinate axes are normal to the symmetry planes:
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One can find explicit formulas for other sym-
metry classes in Slawinski 2016.

Optimization aims to find rotation matrix A(q) 
for which the values of respective entries are near-
ly zeroed. If we describe the measured elasticity 
tensor as c and particular entries as cijkl (see Equa-
tion (2)), the target function can be written as fol-
lows:
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In other words, the target function is the sum 
of these 12 independent entries of a tensor squared 
(out of 21 independent entries of generally aniso-
tropic tensor) which are located neither on the di-
agonal nor in first quarter of the tensor (column 
1–3 and row 1–3). After the optimization is com-
pleted, we obtain a quaternion suggesting the ori-
entation of the coordinate system whose axes are 
normal to the symmetry planes. The absolute ef-
fective tensor is the original tensor rotated with 
the obtained rotation matrix and with respective 
entries set to zero (those which were optimized to 
be zeroed).

One can easily modify the target function ac-
cording to the characteristic patterns of the ten-
sor in order to use this method for other symme-
try classes. For a tetragonal tensor, we have to take 
into account following conditions:

c c c c c c1111 2222 1133 2233 2323 1313= = =,   and  (17)

For this symmetry class, we add to the target 
function (16) squared differences of entries which 
are expected to be equal. Conditions for trans-
verse isotropy also contain equality:

2 1212 1111 1122c c c= -  (18)

The target function for the TI symmetry class 
is given with the sum of Formula (16) and the dif-
ferences of left-hand and right-hand sides of all 
equations in (17) and (18). One should remember 
that the obtained orientation is one of an infinite 
number of possibilities; therefore, as in this case, 
one of the coordinate axes is parallel to the axis of 
symmetry and another two axes are arbitrary.

The method described in this contribution can 
also be applied for the cubic symmetry class. In 
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this case, the target function also needs to consid-
er the following equations:

c c c c c c
c c c

1111 2222 3333 1133 1122 2233

2323 1212 13

= = = =
= =

 ,   
and 113

 (19)

Effective isotropic tensor entries are calculat-
ed with explicit formulas, and the values of par-
ticular entries are constant for all orientations of 
an orthonormal coordinate system. In this case, 
searching for the orientation of the effective tensor 
system would obviously be pointless. The method 
of zeroing entries can also be used for monoclinic 
and trigonal symmetry classes after some obvious 
modifications of the target functions.

The problem of searching for the absolute effec-
tive tensor is nonlinear. In our contribution, the 
solution is found with a particle-swarm optimiza-
tion method (PSO), proposed by Kennedy & Eber-
hart (1995). The method is a powerful global op-
timization technique which can be applied to the 
wide range of optimization problems without ne-
cessity of its internal parameter tuning (see Poli et 
al. 2007). This algorithm is often used to find the ef-
fective tensor (see Danek et al. 2013, Kozubal 2016). 
PSO is a stochastic method simulating the behav-
iour of animals searching for a  food. Particular 
members of the swarm are described with the par-
ticles placed in the n-dimensional solution space. 
Each particle knows its position (values of solution, 

in this case four parts of quaternion) and evalu-
ates the target function in its current location. The 
movement of a single particle through the search 
space is determined by combining its own cur-
rent (xi) and the personal best location (pi) with the 
global best location (g) and some random pertur-
bation. The swarm can be additionally subdivid-
ed and then g refers to the best location achieved 
by a member of the group (in this work we treat 
a swarm as a fully connected graph). New locations 
are chosen by adding velocity vi to the coordinate xi 
(it can be treated as a step-size). The next iteration is 
calculated after all particles are moved. The initial 
velocity vi is zero, but before first use it is updated.

The algorithm of canonical PSO optimization 
is presented in Figure 1 as a pseudo-code (based 
on Poli et al. 2007).

The update of the particle’s velocity and position 
use vectors 

�
U i( , )0 Φ , which are vectors of random 

numbers uniformly distributed between [0, Φi], 
which are randomly generated at each iteration and 
for each particle. The operator ⊗ means the com-
ponent-wise multiplication. The calculated velocity 
has to be within the range [−vmax, vmax]. The veloci-
ty is usually limited to the highest acceptable value 
of xi (see Eberhart & Shi 2000). Φ1 and Φ2 are con-
striction coefficients limiting particle movements 
related to the best individual and global positions, 
respectively. 

Fig. 1. Simplified algorithm of Particle Swarm Optimization
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In our implementation, we used commonly 
used values of Φi = 2. The algorithm finishes either 
when the maximum number of iterations or when 
sufficiently good fit is achieved.

A single value of the target function arises as 
a  result of the rotation of the coordinate system 
with a  given quaternion and the calculation of 
a specific sum according to the particular symme-
try class. Since we use only unit quaternions to pa-
rameterise the rotations, we have to normalize the 
tested quaternions in each iteration.

RESULTS

All analyses in this paper are conducted using 
the generally anisotropic elasticity tensor (20) 
obtained by Dewangan & Grechka (2003). The 
source of 21 elastic stiffness coefficients cij was 
a  multiazimuth, multicomponent VSP data set 
acquired in New Mexico. The entries are den-
sity-scaled so their unit is square kilometre per 
square second [km2/s2]:

C =

7 8195 3 4495 2 5667 2 0 1374 2 0 0558 2 0 1239
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described in the previous section was applied  
1000 times in order to obtain the orthotropic ef-
fective tensor. Each run produced one quaternion, 
and, since the optimization algorithm is based on 
a random search of the solution space, the obtained 
results differ. However, different quaternions may 
describe the same rotation of a  tensor expressed 
in several coordinate systems and gives an equal 
target function, so there are several global minima 
defining optimal solution for effective tensor (see 
Equations (23) and (25)). A histogram of the target 
function values (Fig. 2A) shows that most of the 
results are close to the global minimum but there 
are several values diverging from the minimum. 
It was decided arbitrarily that values right of the 
vertical line (>0.301) constituting 2.7% of the total 
number of values should be eliminated from the 
solutions set. The single optimization (one run of 
PSO procedure) did not bring a  satisfying result 
and so repeated optimization had to be applied. 
The stopping criterion for the procedure is defined 
as follows: if three identical (to the numerical ac-

curacy) quaternions 
are found, one of them 
is accepted as a  solu-
tion. The histogram of 
values obtained with 
this approach, which 
is shown in the right 
plot of Figure 2, is nar-

rower and all the target function values are less 
than 0.301.

In the crossplots of particular parts of quater-
nions obtained with single optimization (Fig. 3), 
one can see that values are concentrated around 
certain points. 

Circles are black or grey, depending on the tar-
get function value. It is clearly visible that in case 
of some points we do not observe values of target 

function lower than 
0.301. It suggests that 
these points represent 
local minima. 

For example, by run- 
ning our procedure, we 
obtained the following 
quaternion:

q i j k= - + + -0 00636 0 81548 0 57795 0 03050. . . .   (22)

The values are obtained as a result of the meas-
urement and inversion of slowness and polariza-
tion vectors for the elasticity tensor. Thus, one 
should treat the tensor as a  set of normal dis-
tributions of entries, not just their strict values, 
because the entries are burdened with measure-
ment errors. The matrix of standard deviations of 
tensor entries is given below (Danek & Slawin-
ski 2015):

The first tests of our method were conduct-
ed using the single tensor (20). The procedure 
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Fig. 2. Histograms of the final values of the target function. The described procedure was performed 1000 times to produce the 
orthotropic effective tensor: A) with a single optimization; B) with the optimization repeated to eliminate diverging values

Fig. 3. Solutions of the procedure for orthotropic class with single optimization (1000 runs). Scatterplot matrix contains all the 
pairwise crossplots of the particular quaternion parts (Q1–Q4). The tone of points depends on the value of the target function 
for the solution

A B
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The target function for this rotation is equal to 
0.30046, and the tensor expressed in transformed 
coordinate system is as follows:

For the non-zero entries (grey bars), one can 
clearly see that each entry has three possible 
values.

Solutions di-
vided into three 
groups, depend-
ing on the value 
of c11 entry, show 
easily noticeable 
patterns in the 
crossplots of part 
values (Fig.  5).  

c11 was used to distinguish 3  forms in which re-
sulting tensor is observed (compare Fig. 4) If the 
values of quaternions are recalculated to Euler an-
gles, one can also notice the clear division of the 
points (Fig. 6). The number of point groups in the 
quaternion crossplot is doubled, compared to Euler 

angle crossplots, 
as two opposite 
quaternions de-
scribe the same 
set of angles. So- 
lutions divided 
with respect to 
other non-zero 
entries also give 

clear patterns but sets of point groups are not al-
ways the same.

Since the tensor entries should be treated as 
distributions, further analyses were conducted 
with a  statistical approach. This means that ten-
sors being subject of inversion and rotation were 
realizations of normal distributions having mean 
values given with Equation (20) and standard de-
viations given with Equation (21) for particular 
tensor entries.

Three specific tensors from among those 50,000 
obtained were additionally marked with a  circle, 
square, or triangle in Figure 7. It confirms the ear-
lier observation about the swapping of some entries 
for tensors in different coordinate systems (e.g. c11, 
c22, c33 or c12, c13, c23). The tensors were chosen such 
that each one is contained in one of three separate 
groups of solutions shown in Figures 5 and 6. While 
for non-zero entries pattern of values is clearly visi-
ble, we cannot see any rule in zeroed entries.

C =
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 (23)

The same value of target function was obtained 
with different quaternion (24) giving tensor (25) 
as a result of rotation: 

q i j k= - + -0 01708 0 98520 0 16850 0 02621. . . .   (24)

C =

-7 7744 3 3622 2 4262 2 0 0800 2 0 0690 2 0 0248

3 3622 8 37

. . . ( . ) ( . ) ( . )

. . 883 2 4893 2 0 0201 2 01142 2 0 1541

2 4262 2 4893 7 0809 2 0

. ( . ) ( ) ( . )

. . . ( .

-
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) ( . ) ( . )

( . ) ( . ) ( . ) ( .

- -

5502 2 0 0720 2 0 0264

2 0 0690 2 01142 2 0 0390 2 0

) ( . ) ( . )

( . ) ( ) ( . ) ( .

- -

- - - 00720 2 2 0779 2 0 1477

2 0 0248 2 0 1541 2 0 2068 2 0

) ( . ) ( . )

( . ) ( . ) ( . ) (

-

- - - .. ) ( . ) ( . )0264 2 0 1477 2 2 3311-





























 (25)

Please note, that this is the same tensor de-
scribing the same medium but in a different coor-
dinate system.

All of the accepted results for many different 
quaternions (1000) are shown in Figure 4. Please 
note that when a  tensor is expressed in a  differ-
ent coordinate system, its entries can have differ-
ent values. Nevertheless, this is still exactly the 
same tensor corresponding with the optimized 
target function. For entries that were to be zeroed 
according to the form of the orthotropic tensor 
(black bars), the distributions of values are ap-
proximately symmetrical with the central part 
about zero. However, none of these entries is equal 
to zero for any tensor. Additionally, in this exam-
ple, the measurement errors of the original ten-
sor were not applied in the optimization process. 
It is also visible that values can be divided into 
several groups, because the distributions are not 
continuous. 
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Fig. 4. Distribution matrix of the tensor entries. Values obtained with the described procedure for one specific orthotropic tensor. 
Plots represent respective entries in the 6 × 6 matrix (black bars  – zeroed entries, grey bars  – non-zero entries)

Fig. 5. Scatterplot matrix containing values of particular parts of quaternions for orthotropic class. Points are divided into three 
groups depending on the value of c11 entry obtained from rotation with specific quaternion
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Fig. 6. Scatterplot matrix containing values of Euler angles for orthotropic class. Points are divided into three groups depending 
on the value of c11 entry obtained through rotation with specific set of angles

Fig. 7. Distribution matrix of the tensor entries for the orthotropic class. 50,000 realizations of tensor generated randomly with 
normal distributions (instead of exact values of entries) were rotated with quaternions obtained as results of separate optimiza-
tions. Entries of three chosen tensors are marked respectively with a circle, triangle and square
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The next analyses were conducted for the tetrag-
onal symmetry class. In the distributions of the 
entries obtained as a result of the procedure with 
the target function specific for tetragonal symme-
try (Fig. 8), which were repeated 1000 times, one 
can notice that the zeroing of respective entries 
was not as effective as for the orthotropic class. 
This is visible especially for c45, c46 and c56 entries, 
where the obtained values are at quite a large dis-
tance from zero. The non-zero entries do not show 
that characteristic pattern known from the orth-
otropic class. The pairs of entries expected to be 
equal have very similar distributions (in respective 
pairs) and comprise two peaks, each one constitut-
ing about half of the values. The other entries have 
unimodal pseudonormal distributions (differenc-
es less than 0.01). The values of obtained quatern-
ions (Fig. 9) comprise fewer point groups than for 
the orthotropic class. One group is omitted, be-
cause it does not satisfy the criteria to be treated as 
a global minimum. Here, we can also see the equal 
partition of quaternions with respect to the c11 en-
try value. In the crossplots of Euler angles calcu-
lated from mentioned quaternions (Fig.  10), one 
can see an even more distinct partition for the two 

groups. There are only eight sets of angles giving 
a minimum of the target function.

The distributions obtained as a result of a sepa-
rate procedure for 50,000 randomly generated ten-
sors (Fig. 11) confirm what we expected after the 
analysis of the distributions for one specific tensor. 
Even though we operate with normal distributions 
(not exact values of entries), there is nearly a zero 
probability to have c45 entry zeroed. Some entries 
are apparently unimodal, but it is an effect of the 
merging of two normal distributions with means 
differing about 0.1 (c44, c55, c66  – compare Figs. 8 
and 11). While entries expected to be equal appear 
to have nearly identical distributions, we cannot 
say that entries expected to be zeroed can be equal 
to zero.

The same analysis conducted for the procedure 
with the target function specified for the trans-
verse isotropic symmetry class shows very similar 
results (Fig. 12), since a  TI class is the subgroup 
of tetragonal class. The c45 value cannot be zero-
ed while different conditions describing the TI 
class seems to be satisfied. The non-zero entries 
all seems to be unimodal or bimodal with nearly 
equal modes.

Fig. 8. Distribution matrix of the tensor entries. One specific tensor was rotated with quaternions obtained with 1000 runs of 
procedure for tetragonal symmetry class (black bars  – zeroed, grey bars  – non-zero entries)
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Fig. 9. Scatterplot matrix containing values of particular parts of quaternions for tetragonal class. Points are divided into three 
groups depending on the value of the entry obtained from rotation with a specific quaternion

Fig. 10. Scatterplot matrix containing values of Euler angles for tetragonal class. Points are divided into three groups depending 
on the value of c11 entry obtained through rotation with specific set of angles



271

Geology, Geophysics and Environment, 2018, 44 (2): 259–274

On obtaining effective elasticity tensors with entries zeroing method 

Fig. 11. Distribution matrix of the tensor entries for the tetragonal class. 50,000 realizations of tensor generated randomly with 
normal distributions were rotated with quaternions obtained as results of separate optimizations

Fig. 12. Distribution matrix of the tensor entries for the transverse isotropic class. 50,000 realizations of tensor generated ran-
domly with normal distributions were rotated with quaternions obtained as results of separate optimizations
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DISCUSSION AND CONCLUSIONS

The described entries zeroing method is a tool to 
obtain an effective tensor of a certain symmetry 
from measured generally anisotropic tensor. In 
this contribution, the orthotropic, tetragonal, and 
transverse isotropy classes were analysed. Ob-
viously, applying the proposed method for other 
classes is trivial and require only target function 
modifications similar to the ones used in present-
ed examples. Comparison of the obtained results 
strongly suggests that this tensor belongs to the 
orthotropic symmetry class. This conclusion is 
supported by the fact that entry c45 cannot be ze-
roed for tetragonal and TI symmetry class (com-
pare Figs. 11 and 12). Please note, that in error-free 
case original tensor cannot be considered as an 
orthotropic (see Fig. 4).

In this work, an algorithm was tested for three 
symmetry classes. The choice of the classes was 
based on a priori information about the medium 
being measured in the original field experiment. 
As the isotropic effective tensor is calculated ana-
lytically and is independent of the orientation, the 
described method does not apply to this class.

For the orthotropic class, there are the same 
possible values of the respective entries (i.e. c11, 
c22, c33), but recorded with a  different frequency. 
The interpretation of this phenomenon is that the 
same tensor is expressed in three different coordi-
nate systems rotated by π/2 (please see Fig. 6 and 
compare Danek et al. 2013).

The obtained results can be compared with 
the effects of previous methods based on the op-
timization of the Frobenius distance. A compari-
son of the respective entries of the effective tensor 
belonging to a  given class can be performed in-
stantaneously. When comparing the orientations 
described with the quaternion or set of Euler an-
gles, one should remember that in distance-based 
methods the coordinate system of the effective ten-
sor is rotated to the coordinate system of the meas-
ured tensor, while in the entries zeroing method 
the transformation is done in reverse direction.

In general, the obtained results are in agree-
ment with those obtained by Danek et al. (2013). 
In all analysed cases, very similar solutions can 
be found for both methods. In some cases, e.g. 
tetragonal class, the entry zeroing method is not 

sensitive enough to provide all expected solutions 
(only two possible values of the bank angle with π 
step, while Danek et al. have found eight possible 
orientations with π/4 step). Nevertheless, we con-
sider this result satisfactory.

The proposed method may be used to replace 
or complement the existing method of describing 
the symmetry class and orientation of the medi-
um based on the elasticity tensor measured in situ 
with vertical seismic profiling, with its less com-
plex target function and process of optimization 
being an advantage of the described method.
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