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Abstract: In this paper, a new and more accurate correlation to predict bubble point pressure (Pb) for Middle East 
crudes by using the genetic alorithm (GA) is attempted. For this purpose, a total of 286 data sets of different crude 
oils from Middle East reservoirs were used as training data for constructing the correlation. The general form of 
the correlation was found by several regressive examinations. To improve the correlation, the genetic algorithm 
was applied. To validate the correlation, 143 data sets of different crudes from Middle East reservoirs which were 
different from the training data were used as test data for calculating mean absolute relative error (MARE) and 
correlation coefficient (R2) between the predicted values from the proposed correlation and the experimental val-
ues. In addition, the MARE and R2 were calculated for previous correlation in the test data. The results show that 
the proposed correlation is more accurate than all of the previous correlations exclusively for Middle East crudes.
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estimate PVT data. This is particularly true during 
the early development phase where fluid properties 
are only available from surface flow tests (Dokla & 
Osman 1992). In addition, the laboratory methods 
are too expensive and time consuming.

The bubble point pressure (Pb) is one of the 
most important PVT properties. Pb evaluation is 
an essential step in reservoir performance calcu-
lations and the design of various stages of oil field 
operations.

Because the laboratory methods are sometimes 
impossible for many reasons, several empirical cor-
relations have been developed for PVT properties. 
Especially in the recent decades, there has been an 
increasing interest in developing new correlations 
for crude oils of different regions of the worlds. 
A review of the published Pb correlations is sum-
marized in Tables 1 and 2. According to Table 1, 

INTRODUCTION

The accurate determination of the PVT properties 
of the reservoir fluids, such as bubble point pres-
sure (Pb), solution gas oil ratio (Rs) and oil formation 
volume factor (Bob), is necessary for the formation 
evaluation of hydrocarbon reserves, reservoir per-
formance, production operations and the design of 
production facilities (Elsharkawy et al. 1995). 

The PVT properties can be obtained by laborato-
ry PVT tests or estimated by using empirical corre-
lations. Although laboratory results provide a better 
accuracy where controlled conditions are imposed, 
the results are heavily dependent on the validity 
of the reservoir fluid samples, especially when the 
reservoir has been depleted below the bubble point 
pressure (Hemmati & Kharrat 2007). In case no flu-
id samples are taken, the correlations can be used to 
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the majority of the current correlations have been 
proposed for specific regions. In addition, Table 2 
shows that the used oil PVT properties of each re-
gion are different from those of the others.

Due to regional changes in crude oil composi-
tions and properties, none of the correlations can 

be applied as an exact universal correlation. In this 
paper, by using the genetic algorithm, which is 
one the most powerful techniques of artificial in-
telligence in optimization, a new and more accu-
rate correlation to predict Pb of Middle East crudes  
has been proposed.

Table 1 
A review of the published Pb correlations

Author Correlation Region

Standing (1947) Pb = 18.2[
RS

gg










0.8310(0.00091TF – 0.0125γo) – 1.4]
California, 
U.S.A.

Vazquez & Beggs (1980)

Pb = [27.64
RS

gg








 10(–11.172 

γo(°API)

TR
)]1.0937. For: γo(°API) ≤ 30 

Pb = [56.06
RS

gg








 10(–10.393 

γo(°API)

TR
)]1.187. For: : γo(°API) > 30 

Worldwide

Glaso (1980)

Pb = 10[1.7669 + 1.7447log(G) – 0.30218(log(G))2] and:

G = 
RS

gg










0.816TF
0.172 γo(°API)

–0.989 North Sea

Al-Marhoun (1988) Pb = 0.00538088Rs
0.715082 γg

–1.877840γo
3.1437TR

1.326570 Middle East

Dokla & Osman (1992)
Al-Marhoun (1988). New calculated constant:

Pb = 0.836386e4Rs
0.724047 γg

–1.01049γo
0.107971TR

–0.952584 U.A.E.

Petrosky & 
Farshad (1993)

Standing (1947). New calculated constants:

Pb = 112.727[
RS

g

0 5774

0 8439

.

.g










 10X – 12.340]

X = 0.00004561TF
1.3911 – 7.916e – 4γo(°API)

1.5410

Gulf of 
Mexico

Lasater (1958)

Pb = Pt 
TR

gg

Pt = 0.38418 – 1.20081Yg + 9.64868Yg
2 & Yg = 

R R R
M

S S S

379 3 379 3,
/

,














 +



















M = 725.32143 − 16.03333γo(°API) + 0.09524γo(°API)2

Canada 
West and 
Midcontinent

Omar & Todd (1993)

Standing (1947) correlation with one change:

Pb = 18.2[
RS

gg










X10(0.00091TF – 0.0125γo(°API)) – 1.4]

X = 1.4256 – 0.2608Bob – 0.4596γg + 0.04481Bob
2 + 0.2360γg

2 – 0 1077.
g g obB











Malaysia

Farshad et al. (1996)
(correlation (1))

Standing (1947). New calculated constants:

Pb = 33.22[
RS

gg










0.828310(0.000037TF – 0.0142γo)] Colombia
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Farshad et al. (1996)
(correlation (2))

Glaso (1980). New calculated constants:

Pb = 10[0.3058 + 1.9013logG – 0.26(logG)2]

and: 
G = γg

–1.378RS
1.05310(0.00069TF – 0.0208γo(°API))

Colombia

Macary & El-
Batanoney (1992)

Pb = 204.257K(Rs
0.51 − 4.7927)

K = exp[0.00077TF − 0.0097γo − 0.4003γg]
Gulf of Suez

Almehaideb (1997) Pb = –620.592 +6.23087(RSγo)/(γgBob
1.38559) + 2.89868TF U.A.E.

Kartoatmodjo & 
Schmidt (1994)

Vazquez & Beggs (1980). New calculated constants:

Pb = {RS/[0.05958γg
0.797210(13.1405γo(°API)/TR)]}0.9986. For: γo(°API) ≤ 30 

Pb = {RS/[0.03150γg
0.758910(11.2895γo(°API)/TR)]}0.9143. For: γo(°API) > 30

Worldwide

Al-Shammasi (2001) Pb = γo
5.527215exp(–1.841408γoγg)(RSTRγg)0.783716 Worldwide

Hanafy et al. (2005) Pb = 3.205Rs + 157.27 Egypt

Hemmati & 
Kharrat (2007)

Pb = 10.4566[
RS

gg










X10[0.0008TF – 0.0098γo] − 8.6817]

X =1.5897 − 0.2735Bob − 0.4429γg + 0.04649 Bob
2 + 0.144γg

2 − 0.1596 [1/(γgBob)]

Iran

	 Pb	– bubble point pressure, Psi 
	 Rs	– solution gas oil ratio, SCF/STB
	 TF	– reservoir temperature, Fahrenheit degree 
	 TR	– reservoir temperature, Rankin degree
	 γo	– specific oil gravity 
	 γg	– specific oil gravity, air = 1
	γo(°API)	– specific oil gravity, API degree 
	 Bob	– bubble point oil formation volume factor, bbl/STB

Table 2 
Data used in the development of published Pb correlations

Author Number of 
used data

Bubble point 
pressure 

[Psi]

Reservoir 
temperature 

[°F]

Solution 
gas oil ratio 
[SCF/STB]

Tank oil 
gravity 
[°API]

Gas gravity 
(air = 1)

Standing (1947) 105 130–7000 100–258 20–1425 16.5–63.8 0.59–0.95
Vazquez & Beggs (1980) 6004 15–6055 75–294 0–2199 15.3–59.3 0.51–1.35
Glaso (1980) 41 165–7142 80–280 90–2637 22.3–48.1 0.65–1.28
Al-Marhoun (1988) 160 20–3573 74–240 26–1602 19.4–44.6 0.75–1.37
Dokla & Osman (1992) 51 590–4640 190–275 181–2266 28.2–40.3 0.80–1.29
Farshad et al. (1996) 43 32–4138 95–260 6–1645 18.0–44.9 0.66–1.7
Lasater (1958) 158 48–5780 82–272 3–2905 17.9–51.1 0.57–1.2
Macary &  
El-Batanoney (1992) 90 1200–4600 130–290 200–1200 25–40 0.70–1.00

Petrosky & 
Farshad (1993) 90 1574–6523 114–288 217–1406 16.3–45.0 0.58–0.85

Omar & Todd (1993) 93 790–3851 125–280 142–1440 26.6–53.2 0.612–1.32
Kartoatmodjo & 
Schmidt (1994) 5392 15–6055 75–320 0–2890 14.4–58.9 0.38–1.71

Almehaideb (1997) 62 501–4822 190–306 128–3871 30.9–48.6 0.75–1.12
Al-Shammasi (2001) 1709 0–6613.8 58–341 6–3298 6–63.7 0.511–3.445
Hanafy et al. (2005) 741 36–5003 107–327 7–4272 17.8–47.7 0.633–1.627
Hemmati & 
Kharrat (2007) 287 248–5156 77.5–290 125–2189.25 18.8–48.34 0.523–1.415

Table 1 cont.
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METHODOLOGY

In this study, the genetic algorithm (GA) was used 
as the main tool for developing the correlation. 
The genetic algorithm is one of the powerful tech-
niques of artificial intelligence in terms of optimi-
zation. Optimization is the process of adjusting 
the inputs to or characteristics of a device, math-
ematical process, or experiment to find the mini-
mum or maximum output or results (Alenoghena 
et al. 2013). GA, which is based on the genetic pro-
cess of biological organisms, is used to find a solu-
tion to a problem called objective function. A gen-
erated solution by the GA is called a chromosome 
and a collection of chromosomes is called a popu-
lation. A chromosome is composed of genes. These 
chromosomes will undergo a process, which is 
called fitness function, to measure the suitability 
of the solution generated by GA with the problem. 

in the population, which has a higher fitness val-
ue will have a greater probability of being select-
ed again in the next generation. After several gen-
erations, the chromosomes value will converge to 
a certain value which is the best solution for the 
problem (Mitchell 1999). Figure 1 shows the flow-
chart of the genetic algorithm. 

The GA could be used for solving both con-
strained and unconstrained optimization prob-
lems (Karimnezhad et al. 2014). Furthermore, it 
can be applied to solve a variety of optimizations 
of problems that are not well suited for stand-
ard optimization algorithms (especially, prob-
lems in which the objective function is highly  
nonlinear). 

In this paper, GA is applied to minimize the 
objective function to improve the accuracy of the 
proposed correlation. The proposed correlation is 
described in section “Verification of correlation”.

Fig. 1. Genetic algorithm flowchart (Ravandi et al. 2014)

Some chromosomes in the population will 
mate through a process called crossover thus pro-
ducing new chromosomes named offspring which 
its genes composition is the combination of their 
parent. In a generation, a few chromosomes will 
undergo mutations in their gene. The chromosome 

DEVELOPMENT 
OF THE NEW CORRELATION

Different Middle East oil fields were selected for 
this study. From these oil fields, 429 laboratory 
PVT analyses data were obtained and used. 
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Table 3  
Range of the data used

PVT property
Number of data Range Mean

training 
data test data training 

data test data training 
data test data

Tank oil gravity [°API] 286 143 6.3–56.8 6–52.03 31.78 31.61
Reservoir temperature [°F] 286 143 62.6–297 59–306 143.43 186.64
Solution gas oil ratio [SCF/STB] 286 143 17.21–3020 8.61–3298.66 636.4 633.58
Bubble point pressure [Psi] 286 143 130–6613.82 107.33–6358.55 2126.83 2157.25
Gas gravity (air = 1) 286 143 0.649–1.789 0.624–1.53 1.00 0.982

The data sets were extracted from various pa-
pers (Glaso 1980, Al-Marhoun 1988, Dokla & Os-
man 1992, Ghetto et al. 1994, Gharbi & Elsharkawy 
1997). The data sets were divided into two groups: 
one group including 286 data sets used as training 
data for constructing the correlation, and the oth-
er including 143 data sets used as test data for the 
correlation validation. The training and test data 
were selected randomly. The data consists of the 
reservoir temperature, bubble point pressure, oil 
and gas specific gravity and solution gas oil ratio 
within the ranges as shown in Table 3.

Bubble point pressure (Pb) is a function of solu-
tion gas oil ratio (Rs), temperature (T), oil gravity 
(γo) and gas gravity (γg); in other words: 

Pb = f (T, Rs, γo, γg) 	 (1)

For constructing an appropriate correlation, 
the training data sets were used. Several cases 
were examined to find an appropriate correlation 
between these parameters for Pb prediction. After 
several regressive examinations, it was found that 
there is a powerful relationship between the inde-
pendent parameters (T, Rs, γo, γg) and Pb as equa-
tion (2) (Fig. 2):

Pb = 7.9522[Rs ∙ (γo/γg) + TR ∙ (γg/γo(°API)]0.8747 	 (2)

The correlation between experimental values 
and predicted values from equation (2) in the test 
data has been shown in Figure 3.

By the trial and error method, it was found that 
the accuracy of the equation (2) can improve if it is 
rewritten as equation:

Pb = a1[RS
a2(γo/ γg)a3 + TR

a4(γg/ γo(°API))a5]a6 	  (3)

Fig. 2. Relationship between the independent parameters (T, 
Rs, γo , γg) and Pb (training data)

Fig. 3. The correlation between experimental Pb values and 
predicted Pb values from equation (2) (test data)

It is obvious that the accuracy of correlation (3) 
will be maximized if the constants a1 through a6 

are optimal. To determine the constants a1 through 
a6 optimally, GA was applied. GA is one of the ar-
tificial intelligence techniques which can be used 
for both linear and nonlinear optimizations. GA 
minimizes the objective function. Objective func-
tion (or fitness function) is the function that must 
be optimized. 
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Table 4 
Parameters used in the GA

GA parameter GA parameters that used for prediction of Pb

Population Population type: double vector; population size: 55; initial range: [0;1]
Fitness scaling Scaling function: rank
Selection Selection function: roulette
Reproduction Elite count: 3; crossover fraction: 0.85
Mutation Mutation function: Gussian; shrink value: 1; scale: 0.1
Crossover Crossover function: scattered
Migration Direction: forward; fraction: 0.8; interval: 40
Hybrid function Hybrid function: fminsearch
Algorithm setting Initial penalty: 100; penalty factor: 980
Stopping criteria Generation: 1000; time limit: inf; fitness limit: inf; stall generation: 1000; stall time limit: inf

To determine the constants a1 to a6 using GA, 
the fitness function is defined as equation:

Fitness function = 
Mean Absolute  
Relative Error (MARE) = 

ARE

n
i

n

=
∑

1  	 (4)

where:

ARE
abs P P

P

abs

b_experimental b predicted

b_experimental

=
−

=

=

( )

(

_

PP a R T
P

b_experimental S
a

o g
a

R
a

g o( API )
a a− +1

2 3 4 5 6[ ( / ) ( / ) ] )g g g g �

bb_experimental

In equation (4), Pb_experimental and Pb_predicted are 
the experimental Pb and the predicted Pb by equa-
tion (3), respectively. Moreover, n is the number of 
the used data, a1 to a6 are the constants which are 
predicted by the GA.

Parameters used to perform genetic algorithm 
are listed in Table 4.

The constants a1 to a6 were defined as vec-
tors in order to accelerate the algorithm perfor-
mance. In this case, the fitness function is called 
once instead of being called for each member and, 
therefore, its performance accelerates. The “fmin-
search” which is a hybrid function was used to im-
prove results obtained from the GA. After the end 
of the GA, the “fminsearch” which is an optimizer 
function uses genetic algorithm end point as its 
own starting point and is executed. This function 
improves the results.

Training data were used as input of GA to deter-
mine the constants a1 through a6. After adjusting 

the algorithm, it was run and the parameters were 
obtained as follows:

a1 = 6.15, a2 = 1.015, a3 = 1.05, a4 = 1, a5 = 1.5, a6 = 1. 

Figure 4 shows the experimental and predict-
ed Pb from correlation (3) versus oil gravity in the 
training data. According to Figure 4, performance 
of the correlation (3) is not acceptable when the 
oil gravity is more than 27°API. To solve this 
problem, the training data were divided into two 
groups based on the value of the oil gravity; one 
group included the training data sets with an oil 
gravity less than 27°API, and the other included 
the training data sets with oil gravity more than 
27°API. Then, the GA were reused to determine 
the constants a1 through a6 for training data sets 
with oil gravity more than 27°API. The final re-
sults are listed in Table 5.

Fig. 4. Experimental and predicted Pb from equation (3) ver-
sus oil gravity (training data)
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Table 5 
The final proposed correlation and its constants

Constant
Pb = a1[RS

a2(γo/γg)a3 + TR
a4(γg/γo(°API))a5]a6 

API ≤ 27 API > 27

a1 6.15 17.8

a2 1.015 0.735

a3 1.05 1.25

a4 1 0.9

a5 1.5 2

a6 1 1.01

Figure 5 shows the experimental and predict-
ed Pb from the proposed correlation (based on the 
constants a1 through a6 which are listed in Table 5) 
versus oil gravity in the training data.

RESULTS AND DISCUSSION

In this study, a new emprical correlation was pro-
posed to predict the bubble point pressure (Pb) 
for Middle East crude oils. The genetic algorithm 
(GA) is the dominant tool used for developing the 
correlation. GA is a tool, which can be used for 
both linear and nonlinear optimizations. The in-
itial form of the correlation was obtained by re-
gressive examinations (Fig. 2). To improve the ac-
curacy of the proposed correlation, training data 
were divided into two groups based on their oil 
gravity (one group included the training data sets 
with oil gravity less than 27°API, and the other in-
cluded the training data sets with oil gravity more 
than 27°API) and the GA was used for optimiza-
tion the constants of the correlation (constants a1 
through a6). The proposed correlation and its ob-
tained constants are listed in Table 5.

The correlation coefficient (R2) between the ex-
perimental values and the predicted values from 

Fig. 5. Experimental and predicted Pb from correlation (3) 
(based on the constantsa1 through a6 which are listed in Ta-
ble 5) versus oil gravity (training data)

VERIFICATION OF CORRELATION 

For the verification of the proposed correla-
tion, test data including 143 data sets were used.  
Figure 5 shows the experimental and predicted Pb 
from the proposed correlation (based on the con-
stants a1 through a6 which are listed in Table 5) 
versus oil gravity in the test data. In addition, the 
correlation between experimental values and pre-
dicted values from the correlation in the test data 
is shown by Figure 6. According to the results pre-
sented in Figures 6 and 7, it seems that there is an 
acceptable agreement between predicted Pb val-
ues from the proposed correlation and the experi-
mental Pb values.

Fig. 6. Experimental and predicted Pb from correlation (3) 
(based on the constants a1 through a6, (listed in Table 5) ver-
sus oil gravity (the test data)

Fig. 7. The correlation between experimental values and pre-
dicted values from correlation 3 (based on the constants a1 
through a6 listed in Table 5 (test data))
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the proposed correlation in the test data was 0.874, 
which reveals an acceptable agreement between 
the predicted and experimental values (Fig.  7). 
To evaluate the accuracy of the proposed correla-
tion, Mean Absolute Relative Error (MARE) was 
also calculated. The MARE of the correlation in 
the test data was 0.1624. In addition, the MARE 
and R2 were calculated for previous correlation 
in the test data (Tab.  6). A comparison between 
the MARE and R2 of the proposed correlation and 
previous correlations shows that the proposed 
correlation is much more accurate than all of the 
previous correlations.

The proposed correlation was developed for 
Middle East crudes. However, because it is more 
accurate than all of the previous correlations, it 
could be used as a universal correlation for the 
prediction of bubble point pressure.

Table 6 
Mean Absolute Relative Error (MARE) and correlation coef-
ficient (R2) for different correlations

Author Year MARE R2

Standing 1947 0.5366 0.7375
Petrosky & Farshad 1993 0.24095 0.8245
Lasater 1958 0.3978 0.8131
Vazquez & Beggs 1980 0.946 0.7440
Glaso 1980 0.3445 0.7616
Al-Marhoun 1988 0.382 0.7778
Dokla & Osman 1992 0.301 0.7858
Farshad et al. 
(correlation (1)) 1996 0.2329 0.8467

Farshad et al. 
(correlation (2)) 1996 0.3802 0.8052

Macary & El-Batanoney 1992 0.2335 0.812
Omar & Todd 1993 0.9497 0.7907
Kartoatmodjo 
& Schmidt 1994 0.27 0.7687

Almehaideb 1997 1.703 0.7778
Al-Shammasi 2001 0.2623 0.8172
Hanafy et al. 2005 0.3327 0.71843
Hemmati & Kharrat 2007 0.4438 0.7718

CONCLUSIONS 

1.	 In this study, a new empirical correlation has 
been proposed to predict the bubble point 
pressure (Pb) for Middle East crude oils. The 
genetic algorithm (GA), which is one of the 

most powerful techniques of the artificial in-
telligence in optimization, has been used to de-
velop the correlation.

2.	 The proposed correlation is a nonlinear func-
tion of temperature, solution gas oil ratio, and 
oil and gas gravity. To evaluate its accuracy, 
the Mean Absolute Relative Error (MARE) and 
correlation coefficient (R2) between predicted 
values from the proposed correlation and ex-
perimental values in the test data were calcu-
lated. The MARE and R2 in the test data were 
0.1624 and 0.874, respectively. 

3.	 The comparison between the MARE and R2 of 
the proposed correlation and previous corre-
lations shows that the proposed correlation is 
more accurate than all of the previous correla-
tions.

4.	 The correlation was developed exclusively for 
Middle East crudes. However, because it is 
more accurate than all of the previous corre-
lations, it could be used as a universal correla-
tion for the prediction of Pb.
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