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INTRODUCTION

The end of the twentieth century led to the rapid 
development of various information technologies, 
including the creation of mapping documents 
and the implementation of spatial analysis using 
Geographic Information Systems (GIS). The dis-
semination of such research would not be possible 
without enormous resources of high quality ref-
erence data (digital elevation models, topographi-
cal maps, geological maps, sociological maps, soil 
maps, aerial and satellite images and others).

Among the many stages of work involving edit-
ing and spatial analysis of cartographic materials, 
generalization is worth noting (McMaster  1992, 
Weibel & Jones 1998, Chrobak 2005). This term re-
fers to a set of operations aimed at optimizing the 
processed content, depending on its purpose. Gen-
eralization is a complex and multi-threaded issue 

(Beat & Weibel  1999). Regardless of which data 
model one adopts (vector or raster); both models 
are used in the process of creating a composition 
of maps, as well as in various analyses and mod-
elling. In the map edition section, generalization 
should be understood as a process of simplifying 
reference data, whose quality (resolution) is higher 
than necessary for the input materials in a partic-
ular scale (Daley et al. 1997). Generalization can 
be found at all stages of work with digital maps, 
from data collection through proper analysis to 
final processing and generation of results (Mc-
Master 1992). The typical tasks performed during 
work using vector data include: selection of class-
es, reclassification, resymbolisation, simplification 
of lines and boundaries of objects, replacement of 
point objects and small areas (such as buildings) 
with larger area objects (e.g. built-up areas), omit-
ting some information for greater map clarity, and 
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more (McMaster 1992, Harrie & Sarjakoski 2002). 
In terms of raster graphics, the purpose of general-
ization is usually filtering artefacts and highlight-
ing general phenomena. Raster images, which are 
the results of GIS analyses, modelling, or process-
ing of remote sensing data, are often characterized 
by the presence of various bugs and micro-struc-
tures. These are individual pixels or their small 
groups, surrounded by cells with different values 
of the analysed attributes. The processing of con-
tinuous spatial data (e.g. DEM) and the use of pri-
mary and secondary attributes calculated on that 
basis (e.g. topography) often results in the presence 
of groups of pixels of two categories in the charac-
teristic chequerboard pattern. Such situations ob-
scure the image of the analysed phenomena and 
are treated as the so-called noise (McMaster 1992, 
Beat & Weibel 1999). In this case, generalization 
aims at reviewing and deliberately discarding un-
wanted information (Veregin & McMaster 1997). 
This aim can be achieved by increasing the reso-
lution of the raster (increasing basic cell size), or 
by using a variety of filter tools that will remove 
unnecessary parts of information from the images 
in a controlled manner.

Raster analysis, used e.g. in landscape ecology, 
is the study of spatial structures of variations of the 
observed separations. The most important factors 
that describe these structures include: the number, 
size and perimeter of units, their shapes as well as 
the relationships between the units, e.g.: adjacen-
cies, diversity, uniformity, aggregation, isolation 
and fragmentation (McGarigal et al.  1995, 2012). 
The structure can be described at the level of in-
dividual units (patch level), their classes (types) 
meaning groups of pixels with the same values 
as the analysed attribute, or the entire landscape 
(study area level). Changes that are made using the 
processing tools may, to a greater or lesser extent, 
blur the characteristics of the original structures 
and thus hinder or even prevent correct interpre-
tation of the results (Veregin & McMaster 1997).

In modern GIS systems, there are numerous 
tools used to generalize the geometry of lines and 
areas (vector model) as well as patch geometry 
(raster model).

The aim of the analysis was determining the 
impact of selected generalization tools on the 
structure of raster images with particular empha-
sis on the diversity of the observed classes.

DATA

All studies used a single set of data, hereinafter re-
ferred to as raw or primary data. The raster map 
of topoclimatic variability of the Ojców National 
Park (southern Poland) and its immediate buffer 
zone belongs to these data (Fig. 1). The map was 
generated using the J. Paszyński method (1980) 
with modifications by Kicińska et al.  (2001), 
Kot  (2005, 2006) and some solutions by the au-
thor (Bartuś 2014). The map highlights 23 classes 
(topoclimate types). The resolution of rasters has 
been determined at 10 m in accordance with Hen-
gl’s (2006) methodology. 

METHODS

There are many image processing methods ap-
plicable to removing artifacts from raster images. 
Most often they use all kinds of point transforma-
tions (image elements are modified irrespective of 
the state of the neighboring elements), the context 
transformations (convolution, logical, low-pass or 
high-pass, laplacian and median filters), spectral 
transformations (using Fourier transformation) or 
morphological transformations (image elements 
are modified depending on the logical conditions) 
(Tadeusiewicz & Korochoda 1997). The  effective 
noise filtering methods use a variety of interpo-
lation methods in the analysis of continuous vari-
ables. These methods use, for example, inverse 
distance weighting method, geostatistical meth-
ods (in particular factorial kriging) and others.

The preparation of the raw image of the topo-
climatic variation map in the ONP region, as well 
as all generalization operations were performed 
in the ArcGIS environment version 10.1. A raster 
image of the topoclimatic map was processed us-
ing two basic tools available in the Spatial Analyst 
module: Boundary Clean and Majority Filter.

Boundary Clean (hereinafter: BC), is a tool that 
smooths the jagged boundaries by eliminating 
small-surfaces that is less significant groups of pix-
els of the same class (patches), therefore simplifying 
the structure of raster images. The filter uses the ex-
pansion method, followed by shrinking. Perform-
ing operations determine the variables responsible 
for the expansion priority of patches. By default, 
it assumes the value “No sort” (hereinafter: NS). 

http://yadda.icm.edu.pl/yadda/contributor/d10acfbd8e8828e15e27cfbb5a4b9124
http://yadda.icm.edu.pl/yadda/contributor/7a98ae9f640da4f73bb7bc94579b7993
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In such case, the sorting order of patches is only 
determined by the value of the attribute describing 
the pixels. Patches with higher attribute values have 
a higher priority to expand than patches with low-
er values. The process is completely independent 

of patches size. In the case of the “Descend” option 
(hereinafter: Desc), groups of pixels will be sort-
ed by size, in descending order. All patches with 
larger surface areas will have a higher priority to 
expand than patches with smaller surface areas. 

Fig. 1. Topoclimatic raster map of the Ojców National Park (ONP); topoclimates of unwooded-convex areas: 1.1 – with slopes 
5–30° and S, SW or SE exposure; 1.2 – with slopes 5–30° and W or E exposure and with slopes 0–5° and N or S exposure; 
1.3 – with slopes 5–30° and N, NW or NE exposure; 1.4 – areas with highly diverse relief with slopes 0–5° and various exposures: 
NW, NE, SW, SE, W or E; Topoclimates of unwooded-flat areas (except for flat sections of valleys): 2.1 – areas used in agricul-
ture, characterized by a low relative level of total soil porosity; 2.2 – areas used in agriculture, without dense vegetation and 
with an average level of relative total soil porosity; 2.3 – areas used in agriculture characterized by a high relative level of total 
soil porosity and areas with dense vegetation; Topoclimates of unwooded-concave areas: 3.1 – wide and humid valley bottoms; 
3.2 – areas located in upper parts of wide valley bottoms (lower slopes); 3.3 – narrow steep bottoms of valleys and gorges; Topo-
climates of forest areas: 4.1 – with slopes 5–30° and S, SW or SE exposure; 4.2 – with slopes 5–30° and W or E exposure and flat 
areas with slopes 0–5°; 4.3 – with slopes 5–30° and N, NW or NE exposure; 4.4 – with slopes 30–90° and S, SW or SE exposure; 
4.5 – with slopes 30–90° and N, NW or NE exposure; 4.6 – with slopes 30–90° and W or E exposure; 4.7 – humid valley bottoms; 
4.8 – upper parts of wide valley bottoms (lower slopes); Topoclimates of anthropogenically transformed areas: 5.1 – in built-up 
and industrial areas located on convex morphology; 5.2 – built-up and industrial areas in plains; 5.3 – built-up and industrial 
areas located in all types of morphological depressions (valleys, closed depressions and others); Topoclimates of reservoirs: 6.1 – 
areas located in various water bodies and their immediate vicinity; Topoclimates of rock outcrops: 7.1 – areas observed in rock 
outcrops and denudation monadnocks; 8 – surface streams; 9 – the ONP area; 10 – fragment analysed in Figure 7
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Using the “Ascend” option (hereinafter: Asc) will 
result in sorting pixel groups by size in ascending 
order. All patches with smaller surface areas will 
have a higher priority to expand than ones with 
larger surface areas (ESRI 2012).

The BC tool procedure can be performed 
once (One Way) or twice (Two Way). Launching 
the appropriate mode is determined by selecting 
the option “Expansion and shrinking twice”. In 
“Two Way” mode (default option), the expansion 
and contraction of the patches is carried out de-
pending on the particular type of sorting, and 
then an additional expansion and contraction is 
performed with reversed priority. In “One Way” 
mode, the expansion and contraction of patches is 
performed once (ESRI 2012).

Majority Filter (hereinafter MF) is a tool used to 
modify raster images by eliminating selected pixels 
and replacing their values with attributes present in 
the background. The operation of the filter is deter-
mined by the results of observations of the values 
of cells found around the so-called central cell and 
their continuity. MF has two criteria for its sub-
stitution mechanism. Firstly, the number of cells 
adjacent to the central pixel having a certain val-
ue must be sufficient for the mechanism to work. 
Depending on the replacement threshold value, the 
number of neighboring cells allowing the value of 
the central cell to be changed includes the majority 
(“Majority” selected), or at least half (“Half” select-
ed). Selecting the majority options means that three 
of the four neighboring cells or five of the eight 
cells must have the same value. In the second case 
(when set to “Half”), two out of four cells or four 
out of eight cells are necessary. The second crite-
rion conditioning replacements can be reduced to 
stating that the filter should aim at simplifying the 
structure of the map and minimizing the number 
of patches with a small number of pixels. Failure 
to meet any of the criteria will result in the lack of 
substitution of the central pixel (ESRI 2012).

The tool enables two ways to perform filtra-
tion. Procedure selection is carried out by defining 
the number of neighboring pixels involved in the 
analysis (Number of neighbors to use). The vari-
able can have two values: “Four” (“4”) or “Eight” 
(“8”). If set to “4”, this means that the calculations 
will only involve pixels adjacent to the edges of the 
central cell, and the values of pixels located in the 

corners of the neighborhood will not be taken into 
account. Using the “8” variable will apply the anal-
ysis to all eight pixels surrounding the central cell 
(ESRI 2012). The tool can be used repeatedly. Af-
ter a few more iterations, the raster image reaches 
a stable form, which needs no further change.

LANDSCAPE METRICS

The configuration possibilities of generalization 
tools allow for the generation of ten processed im-
ages (six using the BC tool and four using the MF 
tool). The obtained output images were analysed 
in detail using landscape metrics. The study 
used Fragstats software version 4.1 (McGarigal et 
al. 1995, 2012). Moore’s principle of neighborhood 
was applied using eight pixels surrounding the 
central cell while defining the patches boundaries.

The Fragstats program, which was created 
and is being developed at the University of Or-
egon (McGarigal et al.  1995, 2012), is currently 
the most involved tool for quantitative analysis of 
the structure of raster spatial data (Raines 2002, 
Zwierzchowska et al. 2010). This application al-
lows for the use of several landscape metrics 
(indicators) (McGarigal et al.  1995, 2012, Kot 
&  Leśniak 2006, Urbański  2012). In its current 
version, the program divides available metrics 
into six groups: area and edge metrics, shape 
metrics, core area metrics, contrast metrics, ag-
gregation metrics and diversity metrics. Depend-
ing on their nature, the available metrics may re-
fer to the level of the element (patch), the class, 
or the entire landscape.

Percentage of Landscape (PLAND) is a relative 
area metric which quantifies the proportional 
abundance of each patch type in the landscape 
(eq.  1) (McGarigal et al.  1995, 2012, Urbań-
ski 2012):

	

	
  

	 (1)

where:
	 i	–	class,
	 j	–	 item patch number,
	 n	–	number of patches each class (type),
	aij	–	area of patch ij [m2],
	A	–	 total landscape area [m2].
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Largest Patch Index (LPI) is a simple measure 
of dominance. Calculated at the landscape level, 
it quantifies the percentage of total landscape area 
comprised by the largest patch (eq. 2) (McGarigal 
et al. 1995, 2012):

	

	
  

	 (2)

Symbols as in eq. (1).

Total Edge (TE) is calculated at the class and to-
tal landscape level. At the landscape level, it is an 
absolute measure of total edge length of a whole 
patches (McGarigal et al.  1995, 2012, Urbań-
ski 2012).

Edge Density (ED) is calculated at the class and 
total landscape level. At the landscape level, it 
equals the sum of the lengths of all edge segments 
in the landscape divided by the total landscape 
area and converted to hectares (eq. 3) (McGarigal 
et al. 1995, 2012, Urbański 2012):

	

	
  

	 (3)

where E – total length of edge in landscape [m]. 
Other symbols as in eq. (1).

Shape Index (SHAPE) is a measure of the shape 
complexity. The metric is calculated at the patches 
level as patch perimeter divided by the square root 
of patch area, adjusted by a constant to adjust for 
a square standard (eq. 4). The values of the metric 
can be changed in the range from 1 to infinity. The 
metric can reach minimum value when the patch is 
square. Measure values can increases without limit 
as patch shape becomes more irregular. The advan-
tage of the parameter is the resistance to the size of 
the patch (McGarigal et al. 1995, 2012). At the class 
and total landscape level, the simple descriptive sta-
tistics of the patches level parameter are analyzed:

	

	
  

	 (4)

where pij – perimeter of patch ij [m]. Other sym-
bols as in eq. (1).

Fractal Dimension Index (FRAC) is a metric 
that reflects the complexity of the patches shape. 
The parameter is calculated at the patches level 

(eq. 5). At the class and total landscape level, the 
analysis is based on simple descriptive statistics. 
The values of the metric can be changed in the 
range from 1 to 2. The value parameter reaches 
minimum for shapes with very simple perimeters. 
The gradual increase to the value of 2 indicates 
the increasing complexity of shapes. FRAC re-
flects shape complexity across a range of spatial 
scales (patch sizes) (Milne  1988, McGarigal et 
al. 1995, 2012, Urbański 2012):

	

	
  

	 (5)

Symbols as in eq. (1) and (4).

Patch Richness (PR) is probably the simplest 
landscape composition metric. It is calculated at 
the total landscape level as the number of patch 
types (classes) (McGarigal et al. 1995, 2012).

Shannon’s Diversity Index (SHDI) is a param-
eter which measures the degree of spatial class’s 
diversity (Shannon & Weaver 1949). It is calcu-
lated at the total landscape level (eq. 6). The met-
ric values can be changed in the range from 0 
to lnmmax, where: mmax means a maximum num-
ber of patches types. SHDI value is 0, when the 
landscape contains only one patch (no diversity). 
Metric values increases, with the increasing de-
gree of uniform coverage area by different classes 
and with the increase of the number of different 
patch types. Shannon’s Diversity Index is some-
what more sensitive to rare patch types and small 
patches than Simpson’s diversity index (SIDI) 
(McGarigal et al. 1995, 2012, Kot & Leśniak 2006, 
Urbański 2012):

	

	
  

	 (6)

where:
Pi –	proportion of the landscape occupied by 

patch type (probability of a particular patch 
in the landscape),

m –	number of patch classes present in the land-
scape.

Simpson’s Diversity Index (SIDI) is a parameter, 
which is calculated at the total landscape level. 
It describes the probability of an event in which 
two randomly chosen cells belong to different 
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patch types (eq.  7). The metric values can be 
changed in the range from 0 to 1. The metric can 
reach the minimum value, when the landscape 
contains only one patch (no diversity). Index val-
ues increases with increasing the number of dif-
ferent patch types and with increasing degree of 
uniform coverage area by different classes. Simp-
son’s index is less sensitive to the presence of rare 
types of patches (Simpson  1949, McGarigal et 
al. 1995, 2012, Urbański 2012):

	

	
  

	 (7)

Symbols as in eq. (6).

Shannon’s Evenness Index (SHEI) is a meas-
ure of the proportional distribution of patches 
of different classes in the analyzed area (eq.  8). 
The metric is calculated at the total landscape lev-
el. The metric values can be changed from 0 to 1. 
The metric can reach the minimum value when 
the landscape contains only one patch (no diversi-
ty) or when the distribution of area among the dif-
ferent patch types becomes increasingly uneven 
(i.e., dominated by 1 type). The index can reach 
the maximum value when distribution of area 
among patch types is perfectly even. The differ-
ence between the maximum SHEI value equal to 1 
and the actual indicator level is called dominance 
(McGarigal et al. 1995, 2012, Urbański 2012):

	

	
  

	 (8)

Symbols as in eq. (6).
Number of Patches (NP) is a simple measure, 
which is calculated at the class and the total land-
scape level. It equals to the number of patches in 
the whole analyzed area at the total landscape lev-
el. The metric often has limited interpretive value 
by itself because it conveys no information about 
area, distribution or density of patches (McGari-
gal et al. 1995, 2012, Urbański 2012).

Percentage of Like Adjacencies (PLADJ) can 
be used at the class and total landscape level. At 
the total landscape level, it equals to the sum of 
the number of like adjacencies for each patch 
type divided by the total number of cell adjacen-
cies in the landscape (eq.  9). The index value is 
expressed in percentage and changes in the range 

of 0 to 100%. The metric can reach the minimum 
value when the patch types are maximally dis-
aggregated and there are no like adjacencies. In-
dex value increases with the degree of aggrega-
tion of cells the same classes. The parameter can 
reach the  maximum value when all patch types 
are maximally aggregated (McGarigal et al. 1995, 
2012, Urbański 2012):

	

	
  

	 (9)

where: 
gii –	number of like adjacencies between cells of 

patch type (class) i based on the double-count 
method,

gik –	number of adjacencies between cells of patch 
types (classes) i and k based on the dou-
ble-count method.

Aggregation Index (AI) can be calculated at the 
class and the total landscape level. In the second 
case, the metric is computed as an area-weighted 
average class aggregation index, where each class 
is weighted by its proportional area in the land-
scape (eq. 10). The index value is expressed in per-
centage and changes in the range of 0 to 100%. 
The metric can reach the minimum value when 
the patch types are maximally disaggregated. 
The AI value can be increases as the landscape is 
increasingly aggregated and equals 100 when the 
landscape consists of a single patch (McGarigal et 
al. 1995, 2012, Urbański 2012):

	

	
  

	 (10)

where max → gii – maximum number of like ad-
jacencies between cells of patch type (class) i 
based on the single-count method. Other sym-
bols as in eq. (6) and (9).

Landscape Division Index (DIVISION) is 
used at the class and the total landscape lev-
el. At  the  total landscape level, it describes the 
probability that two randomly chosen cells in 
the landscape are not situated in the same patch 
(eq. 11). The value of the metric can be changed 
in the range from 0 to 1. The metric can reach the 
minimum value when the whole analyzed area 
consists of a single patch. Parameter achieves its 
maximum value when the landscape is maximally 
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subdivided. That is, when every cell is a separate 
patch (McGarigal et al. 1995, 2012, Jaeger 2000, 
Urbański 2012):

	

	
  

	 (11)

Symbols as in eq. (1).

Interspersion and Juxtaposition Index (IJI) is 
calculated at the class and the total landscape lev-
el. It is a measure of the spatial patches variability 
structure. The metric calculates the observed in-
terspersion over the maximum possible intersper-
sion for the given number of patch types (eq. 12). 
The index value is expressed in percentage and 
changes in the range of 0 to 100%. The metric can 
reach the minimum value when the distribution 
of adjacencies among unique patch types becomes 
increasingly uneven. The parameter approaches 
value 100 when all patch types are equally ad-
jacent to all other patch types and the length of 
the borders between all pairs of patches types 
are the same (McGarigal et al. 1995, 2012, Kot & 
Leśniak 2006):

	

	
  

	(12)

where eik – total length of edge in landscape be-
tween patch types (classes) i and k [m]. Other 
symbols as in eq. (3) and (6).

Euclidean Nearest-Neighbor Distance (ENN) 
is landscape parameter which is calculated at 
the patch level. It is a measure of the patches iso-
lation. ENN equals the minimal distance to the 
nearest neighboring patch of the same type, based 
on shortest edge-to-edge distance. In the studies 
based on the total landscape level, the simple de-
scriptive statistics such as measures of an aver-
age and a variability are analyzed (McGarigal et 
al. 1995, 2012, Urbański 2012).

RESULTS

The raw, unprocessed image of the topoclimatic 
map of the ONP region (Fig. 1) included 23 differ-
ent topoclimatic separations, with a total of 13,789 
patches in the analyzed area of approximately 
90 km2 (Tab. 1). Three groups were distinguished 
in the total area occupied by patches of the same 
type, the first characterized by a large spread 
(5.0–25%), second  by a medium spread (2.5–5.0%) 
and third with spread 0–2.5%, rare and covering 
small areas. The first group includes areas with to-
poclimate types: 1.4 (1.4.1 & 1.4.2), 2.2, 2.3, 3.1, 4.2 
(4.2.1 & 4.2.2) (Paszyński 1980) and 4.8 (Kot 2005, 
2006) (Tab. 1), the second: 1.1, 1.2 (1.2.1 & 1.2.2), 
1.3, 2.1, 3.2, 4.1, 4.3, and 5.2. The third group in-
cludes areas with topoclimate types: 3.3, 4.4, 5.1, 
5.3, and 6.1 (Paszyński  1980), 4.5, 4.6, and 4.7 
(Kicińska et al. 2001) and 7.1 (Bartuś 2014).

Fig. 2. Areas of certain type of topoclimate in the ONP region, calculated on the basis of: Raw Data (Raw file), Boundary Clean 
tool (A) and Majority Filter tool (B)

A B
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An analysis of the results of generalization 
made using the BC tool (Tab. 1, Fig. 2), showed 
a strong correlation of the observed effects of 

processing with the method of sorting patches. As 
expected, Asc sorting caused the patches classes 
with larger total surface areas to lose some of their 

Table 1 
The percentage of the study area (PLAND) occupied by various patches types in the raw image and in the images processed using 
the Boundary Clean and Majority Filter tools

Topoclimate 
type ID

PLAND [%]

Raw
file

Boundary Clean Majority Filter

One Way Two Way Half Majority

Asc Desc NS Asc Desc NS 4 8 4 8

1.1 1 3.85 4.39 2.66 3.09 4.37 2.68 3.05 3.89 3.88 3.86 3.86

1.2.1 & 1.2.2 2 4.14 4.67 3.4 3.03 4.54 3.44 3.07 3.99 3.98 4.05 4.05

1.3 3 3.28 3.83 2.91 2.9 3.8 2.92 2.92 3.30 3.31 3.28 3.28

1.4.1 & 1.4.2 4 8.22 8.43 7.87 6.8 8.24 7.92 6.85 7.79 7.76 8.03 7.97

2.1 8 3.77 4.24 3.06 3.53 4.19 3.1 3.55 3.76 3.77 3.79 3.79

2.2 9 10.84 9.63 12.21 11.38 9.77 12.13 11.4 10.96 11.00 10.92 10.95

2.3 10 22.54 20.43 25.25 23.79 20.75 25.08 23.84 22.82 22.90 22.73 22.78

3.1 11 7.27 6.91 7.81 6.93 6.95 7.74 6.96 7.48 7.47 7.27 7.26

3.2 12 4.47 5.24 2.78 5.41 5.2 2.82 5.29 4.33 4.34 4.48 4.5

3.3 13 0.64 0.69 0.03 0.63 0.68 0.03 0.64 0.65 0.65 0.64 0.64

4.1 14 2.58 2.89 2.4 2.46 2.85 2.42 2.48 2.62 2.60 2.58 2.58

4.2.1 & 4.2.2 15 9.25 8.07 10.18 8.88 8.23 10.12 8.96 9.10 9.14 9.29 9.28

4.3 16 2.92 3.3 3.54 3.28 3.26 3.56 3.31 2.94 2.97 2.91 2.92

4.5 17 0.06 0.09 0.61 0.06 0.09 0.62 0.06 0.07 0.06 0.06 0.06

4.6 18 0.05 0.07 0.01 0.05 0.07 0.01 0.05 0.05 0.05 0.05 0.05

4.7 19 0.04 0.06 0.03 0.04 0.06 0.03 0.04 0.04 0.04 0.04 0.04

4.4 20 1.94 2.09 1.94 2.06 2.11 1.97 2.07 1.98 1.99 1.95 1.96

4.8 21 5.8 5.99 5.61 6.31 5.96 5.64 6.26 5.89 5.85 5.79 5.8

5.1 22 1.58 2.04 1.22 1.66 1.98 1.24 1.65 1.58 1.56 1.55 1.55

5.2 23 4.53 4.2 4.92 5.04 4.26 4.95 4.99 4.54 4.53 4.54 4.53

5.3 24 1.59 1.91 1.33 1.84 1.87 1.36 1.8 1.61 1.59 1.58 1.58

6.1 25 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.04

7.1 26 0.58 0.81 0.18 0.82 0.71 0.18 0.73 0.57 0.51 0.54 0.53

In the table: Topoclimate type – topoclimate type number in Paszyński (1980) classification with Kicińska et al. (2001), Kot 
(2005, 2006) and Bartuś (in preparation) modifications; Raw file – raw raster image; Boundary Clean (BC), Majority Filter (MF) 
– raster ArcGis generalization tools; One way – BC tool procedure which performs expansion and shrinking once; Two way – BC 
tool procedure which performs expansion and shrinking once, then performs an additional shrinking and expansion with the pri-
ority reversed; Asc – sorts patches in ascending order by size; Desc – sorts zones in descending order by size; NS – does no sorting 
by size; Half – MF tool option where half of the cells must have the same value and be contiguous; Majority – MF tool option where 
a majority of cells must have the same value and be contiguous; 4 – The kernel of the filter will be the four direct (orthogonal) 
neighbors to the present cell; 8 – The kernel of the filter will be the eight nearest neighbors (a 3-by-3 window) to the present cell.
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space in favor of classes with lower total surface 
areas. Desc sorting resulted in the opposite effect. 
Classes of patches with larger total surface areas 
were expanded at the expense of the classes with 
smaller total surface areas.

Image analysis of the results of generalization 
that was carried out using a procedure indepen-
dent of the size of planes (NS) showed a growth 
in the areas of classes with a higher value of the 
analysed attribute (ID > 8) at the expense of the 
classes with lower attribute values (Tab. 1).

For both available procedures (One Way 
and Two Way), generalization carried out with 
the  same priorities (Asc or Desc), gave sim-
ilar results. For both sets of Asc procedures 
(One Way and Two Way) and Desc procedures 
(One Way and  Two Way), the total surface ar-
eas of certain types of topoclimates are almost 
identical (Fig. 2A). A  similar effect can be ob-
served for generalization procedures depen-
dent on the value of the attribute describing the 
patches (ID).

Even a superficial analysis of the effects of gen-
eralizations conducted using the MC tool demon-
strates the different (compared to BC) nature of 
the modifications. In terms of total changes in the 
areas, the processed images are slightly different 
from the raw image (Fig. 2B). The pairs of images 
obtained by modes: Majority (calculated for 4 and 
8 adjacent cells) and Half (calculated for 4 and 8 
adjacent cells), one can observe a similarity in the 
area occupied by each class.

Analyses of the area of the largest patches 
index (LPI), absolute (TE) and the relative (ED) 
length of the edge of the patches indicators, car-
ried out at landscape level, and are among the 
most intuitive measures of the intensity of gen-
eralization processes. A graph of the TE index 
variation (Fig. 3) indicates that using the BC 
tool reduces the length of the plane edge (origi-
nal level 2902.23 km) by 23–30%, and in the case 
of the MF tool – by 13–19%. The highest level of 
reduction was observed while using the BC tool 
with the options: Two Way & Desc. The average 
edge density in this case decreased from about 
324.5 m/ha to 227.3 m/ha.

An interesting insight is provided by observ-
ing the variability of the LPI index. As seen in 
Figure 3, the size of the largest patch is the same, 
typically slightly higher than in raw data, with 

a  value of 4.65–5.10% of the total study area. 
The exception is the low value of the index result-
ing from generalization performed using the BC 
tool (One Way, Asc). The sharp reduction in the 
surface area of the largest patch is forced by the 
increasing sorting priority and development of 
patches with smaller area at the expense of those 
with larger area. The lack of a similar phenome-
non in the case of BC generalization (Two Way, 
Asc) was caused by additional sorting with re-
versed priority, which takes place in the second 
step of the procedure.

Fig. 3. Variability of the TE and LPI metrics

The measures of shape (SHAPE FRAC) are 
usually calculated at the levels of patches or 
classes. At the landscape level, the analysis in-
cludes simple statistical parameters. The anal-
ysis used arithmetic means and standard devi-
ations of both measures of shapes analysed. In 
a similar way, the values of indicators illustrate 
the differences in the shape of patches (Fig. 4). 
All generalized images are characterized by 
slight, relative simplifications of patch shapes 
compared to the raw image. Detailed analysis 
helped to reveal the differences in the effects 
of generalization. The  highest level of sim-
plification in the shapes of separations is ob-
tained using the BC tool combined with sort-
ing by size in descending order (Desc) (Fig. 4). 
For both analysed variants (single and double 
processing) a  similar level of generalization of 
the output images was achieved. Using the MF 
tool (Half,  8) gave only slightly worse results. 
The  weakest effect simplifying the shapes of 
patches can be observed for tools: MF (Majori-
ty, 8) and BC (One Way, Asc).
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Fig. 4. Variability of the SHAPE and FRAC metrics

Landscaping measures of diversity belong to 
the key indicators used in the ecological analyses 
of bio-and geodiversity. Generalization of images, 
which are then subjected to such research, is a po-
tential source of errors and may cause interpreta-
tion problems. The performed analysis showed that 
the use of the BC tool causes changes in the struc-
ture of the image, which may affect diversity as-
sessments (Fig. 5). The results show that the use of 
the Asc parameter causes an increase in the relative 
class variation by about 3%, and that using the Desc 
parameter results in a diversity decline of about 4%. 
The probability of two randomly chosen cells in the 
image belonging to two planes of different classes 
when using the Asc parameter is 0.91, and when us-
ing Desc is 0.89. Using the NS option and general-
ization using the MF tool, did not cause significant 
changes in diversity. High relative uniformity val-
ues of the index indicate a very proportional distri-
bution of the classes of the analysed characteristics.

The most intuitive parameter illustrating the 
possibilities of generalization of each of the anal-
ysed tools is the total number of patches (NP). The 
original image had a total of 13,789 units. Modifi-
cation of the spatial structure of images carried out 
with the use of the BC tool resulted in a decrease 
to a minimum level of 8,162 planes (Two Way, NS) 
and a maximum of 9,392 planes (One Way, Asc) 
(Fig. 6). This corresponded to a total reduction of 
the number of planes of around 32–41%. An anal-
ysis of NP variability observed for the MF tool 
showed a much lower relative level of reduction. 
The greatest simplification was observed in the 
image obtained by MF (Half, 4). The total number 
of planes in this case was 10,084 units. MF reduced 
the total number of units by about 10–27% (Fig. 6).

Fig. 5. Variability of the SHDI, SIDI and SHEI metrics

Fig. 6. Variability of the NP, PLADJ, AI, DIVISION, IJI and 
ENE metrics

The indicators that best reflect generalization 
performance are also the group of parameters 
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that use information about the cells adjacent to 
each other. Pixels may be adjacent to cells of the 
same class or other classes. Generalization should 
always cause an increase in the number of adja-
cent cells of the same type. PLADJ and AI are the 
parameters that illustrate this dependence most 
explicitly (Fig. 6). For all analysed variants of cal-
culations, significant increases in homogeneous 
neighborhoods were observed. Two levels of gen-
eralization were also clearly visible. The raw im-
age was characterized by cells neighboring other 
cells of the same class at approximately 84%. All 
variants of calculations using the BC tool caused 
an increase in the value of this parameter to about 
88%, and in the case of MF tool, to about 86%.

The DIVISION fragmentation ratio analysis 
(Fig. 6), carried out for all output images analysed, 
indicated a very high probability of two random-
ly selected cells not belonging to the same patch. 
A  slight increase in the probability observed in 
images generated using the BC tool with the Asc 
option, may be associated with a higher level of ob-
served diversity compared to other options (Fig. 5).

IJI ratio analysis (Fig. 6) revealed that for all test-
ed variants of generalization, there was a change in 
the ratios of the plane boundaries. In the raw image, 
the value of the IJI index, which measures the degree 
of sustainability of the common length of boundar-
ies between the classes, was 69.3%. Using the BC tool 
resulted in obtaining a relatively higher uniformity 
in the length of boundaries than using the MF tool. 
Changing the tool options resulted in further diversi-
fication of the results. The highest degree of boundary 
sustainability of characterized images obtained using 
the tools were: BC with the Asc option (about 74%) 
and BC with the NS option (about 73%). The analy-
ses performed for the MF tool showed a correlation 
between the observed IJI values and the  assumed 
number of neighboring cells, allowing for the change 
of the value of the central cell. Selecting the Majority 
option resulted in a lower degree of homogeneity in 
boundary length of separations (about 70%) than se-
lecting the Half option (about 72%).

The final analysed structural indicator was the 
distance to the nearest element of the class (ENN) 
(Fig. 6). The interpretation used arithmetic aver-
age values of distances calculated for each class of 
elements. Studies have shown that in all variants 
analysed, there was a significant increase in the 
isolation of elements. In the original image, the 

average distance between the boundaries of the 
elements of one class was about 58 m. Regardless 
of the options used, generalization made with BC 
resulted in an increase in the distance to about 
80 m, which corresponds to a growth of over 30%. 
The highest distance value between patches of the 
same class (about 84 m) was observed in an im-
age created by the tools Two Way, and NS. Using 
MF provided a significantly lower level of element 
isolation growth. Using the MF resulted in an in-
crease in the distance to approximately 65–75 m. 
Among the different computational variants of the 
MF tool, the highest growth was characterized by 
an image generated using the options Half and 4.

SUMMARY

Boundary Clean (BC) is a powerful tool that pro-
vides a high degree of reduction of the number of 
items and the total length of the patch boundaries 
(Fig. 7, Tab. 2). The most characteristic structur-
al features of the images processed with the help 
of this tool include: a relatively large increase in 
the isolation of elements and a clear increase in 
cell aggregation under the same class. The lack 
of a clear impact of the tool on changing the size 
of the largest element of the image is fairly typi-
cal. The exception is the One Way, Asc procedure, 
which results in a rapid decrease in its size. The in-
creased focus of pixels of the same type results in a 
change of shapes of patches that are more regular. 
The highest level of change in the shape of these 
elements is consistently observed in images gener-
ated with the Desc priority. Structural changes of 
images are also reflected in the level of landscape 
fragmentation. Research has shown that choosing 
ASC sorting caused an increase in the level of patch 
fragmentation, while Desc sorting caused the op-
posite effect and resulted in the greater focus. The 
described changes result also in increased level of 
sustainability of common boundary lengths be-
tween elements of successive classes. The highest 
level of homogenization was observed in images 
created with the Asc priority. Interesting results 
were observed by analyzing the level of landscape 
diversity. It turns out that this may be influenced 
by the type of sorting method used. The analysis 
showed that choosing Asc sorting caused a signif-
icant increase in the level of diversity, while Desc 
sorting resulted in decreased diversity.
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Using the Majority Filter (MF) tool causes 
changes in the output images, which are less 
pronounced in the values of the analysed land-
scape indicators (Fig. 7, Tab. 2). The property 
that can be seen is a clear consequence of the re-
sults obtained, which to a small extent depends 
on the adopted analysis variant. Even though 
the tool reduces the number of patches and their 
boundary lengths, as well as causing a slight 

simplification of their shape, it practically does 
not change the size of the largest element or the 
degree of landscape fragmentation. Its diversity 
also remains unchanged. However, one can ob-
serve a slight increase in the level of pixel aggre-
gation, a slight increase in the distance between 
the elements of the same type, and a slight in-
crease in boundary sustainability between suc-
cessive image classes.

Fig. 7. Comparison of fragment of the raw raster image (A) and effects of generalization obtained using the Boundary Clean; 
B) One Way, Asc; C) One Way, Desc; D) One Way, NS; E) Two Way, Asc; F) Two Way, Desc; G) Two Way, NS and Majority Filter: 
H) Majority, 4; I) Majority, 8; J) Half, 4; K) Half, 8
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CONCLUSIONS

Generalization is one of the most important stag-
es of work with cartographic data. Every modern 
GIS system has a variety of tools for generalization 
procedures of raster and vector images. In the case 
of ArcGIS software developed by ESRI, which is 
a world leader in the processing of spatial data, the 
most important tools for generalization of raster 
images include: Boundary Clean and Majority 
Filter. All changes resulting from their operations 
are irreversible and cause the loss of the origi-
nal information. The operation of generalization 
tools is reflected in changes in the raster structure. 
Generalization tools should therefore be used in 
a conscious way, taking into account the conse-
quences stemming from their use.

Fragstat software was used analyzing the 
structural modifications of the output images and 
assessing the effects of generalization. A variety of 
landscape metrics allowed a very efficient and in-
depth analysis of the results.

Generalization of raster images, understood 
in a conventional way, involves modifying the 
structure of the image, while maintaining its gen-
eral characteristics. In practice, depending on the 
quality of the source image, it requires the use 
of more or less complex processing procedures. 
These procedures most often involve simplifying 
patch boundaries, removing non-essential “is-
lands” and some narrow but elongated elements. 

If we only wish to introduce subtle modifications 
in the output image, involving removal of indi-
vidual strange pixels or their groups, i.e. so-called 
noise, then using one of the variants of the MF 
tool (e.g.  Half, 4) is the most suitable. The im-
age after modifications made using this tool was 
slightly different from the raw image. The reduc-
tion of the total length of all edges was approxi-
mately 13–19% and the reduction in the number 
of patches was about 10% (up to 27%). If, howev-
er, we expect a greater level of interference in the 
structure of the source image, e.g. simplification 
of a group of patches that form a chequerboard 
pattern, using the BC tool becomes necessary.

BC interferes with the structure of imag-
es to a  much greater extent than MF. Analyses 
show that, depending on the options used, it al-
lows the reduction of the total length of all edg-
es by 23–30% and a reduction of the number of 
planes by 32–41%. While using BC, the key is to 
choose the type of sorting (Asc or Desc). Choos-
ing the right option will respectively result in an 
increase or  decrease in the importance (size) of 
patches with small surface areas and a decrease 
or increase in the importance of patches with rel-
atively large sizes. The  total size of space added 
or removed depends on the size of the patches. 
Patches that are frequent in a given area, or oc-
cupy more space, gain or lose more surface area 
than rare classes with low total surface areas. The 
type of sorting selected is important for assessing 

Table 2 
Relative landscape metrics variability for each variant analysis

Generalisation type
Landscape metrics variability relative to the raw image

NP TE LPI FRAC/SHAPE SHDI/
SIDI ENN PLADJ/

AI DIVISION IJI

Boundary 
Clean

One Way

Asc ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
Desc ↓ ↓ — ↓ ↓ ↑ ↑ ↓ ↑

NS ↓ ↓ — ↓ ↓ ↑ ↑ — ↑

Two Way

Asc ↓ ↓ — ↓ ↑ ↑ ↑ ↑ ↑
Desc ↓ ↓ — ↓ ↓ ↑ ↑ ↓ ↑

NS ↓ ↓ — ↓ ↓ ↑ ↑ — ↑

Majority 
Filter

Majority
4 ↓ ↓ — ↓ — ↑ ↑ — ↑

8 ↓ ↓ — ↓ — ↑ ↑ — ↑

Half
4 ↓ ↓ — ↓ — ↑ ↑ — ↑

8 ↓ ↓ — ↓ — ↑ ↑ — ↑

The arrows indicates the relative (high/medium/low) level of increase/decrease values of the landscape metrics.
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diversity. Using Asc sorting consistently result-
ed in a 3% increase in diversity indicators, while 
Desc sorting caused their 4% decrease. The results 
should be taken into account in future assess-
ments of bio- and geodiversity.

Studies have shown little effect from a BC tool 
procedure being performed once or twice. The re-
sults obtained for both variants were not signifi-
cantly different from each other. An exception is 
the clear effect of BC generalization (One Way, 
Asc) on the size of the patches.

In some situations, using the NS tool option in 
the BC tool may be more beneficial than a gen-
eralization that uses sorting, whose criteria are 
based on the size of the separations. For example, 
it may be necessary to use a more subtle type of 
sorting, one that can be declared by the user using 
the ID value.

Execution of this work was possible due to the fi-
nancial support provided by the Polish Scientific 
Research Committee, as part of the statutory works 
No 11.11.140.173.
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