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Modelling Set-up Times Overlapping Two Periods
in the Proportional Lot-Sizing Problem
with Identical Parallel Machines

Waldemar Kaczmarczyk∗

Abstract. This paper presents a new mixed integer programming model for the Proportional
Lot-Sizing Problem (plsp) with identical parallel machines and set-up times overlapping
two periods. The proposed model assumes constant period length and explicitly calculates
the distribution of set-up operations among periods. The presented results of computational
experiments with standard mip methods prove that the untying set-ups from period borders
enables the reduction of the total costs in optimal solutions.
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1. INTRODUCTION

This paper addresses mixed-integer programming (mip) models for the Proportional
Lot-sizing and Scheduling Problem (plsp) proposed by Haase (1994) (see also Drexl
and Haase, 1995). Lot-sizing and scheduling problems describe the scheduling of
production lots for several products with deterministic, dynamic demand, on machines
with limited capacity. The plsp assumes, that at most one set-up operation may be
executed on a single machine within a single period.

In this paper a new model formulation is presented for the plsp with identical
parallel machines (Kaczmarczyk, 2011), which allows set-up operations to overlap
two periods. Increasing the capabilities of computers and mip solvers increases the
possibility of applying standard mip methods to solve real planning problems. It is
however necessary to describe them using appropriate model formulations (Belvaux
and Wolsey, 2001). The aim of this paper is to find formulations of the model which
could be solved using standard mip software.
Set-up times overlapping multiple periods are important for several reasons. In-

creases in the computational capability of enterprise information systems allow for
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more detailed planning, among other things planning based on a more detailed calen-
dar. Thus, in the future, set-up times may become “longer” in relation to the time
buckets used in planning (Suerie, 2006). The assumption, that a set-up operation
can not overlap multiple periods, has two significant disadvantages. First, the time
buckets have to be longer than the largest set-up time, what may prevent detailed
planning. Long periods make it difficult to plan small lots, as they do not preserve
high utilization of period capacity. Second, if the execution of a set-up operations
is limited by period boundaries then some good solutions may be cut off from the
solution space.

There are only a few lot-sizing and scheduling models considering long set-up
times, all of them for the case with a single machine. In Cattrysse et al. (1993) and
Blocher et al. (1999) the Discrete Lot-sizing and Scheduling Problem (dlsp) has been
adapted for the set-up times overlapping multiple periods. The dlsp restricts lot-sizes
and set-up times to multiples of a period’s length. Haase (1994) proposed the first
plsp model formulation which allows that set-up operations overlap multiple periods.
His model uses variables accumulating time assigned in consecutive periods to set-up
operations. Suerie (2006) proved that this model is not correct and proposed two new
models refining the idea from Haase (1994). Finally, Kaczmarczyk (2011) presented
another plsp formulation assuming constant period length.

The plsp with parallel machines can be modelled using separable sets of binary
variables and constraints for all machines (Kimms and Drexl, 1998). Using binary
variables to describe identical parallel machines may lead to many solutions which differ
only in the numbering of machines. These alternative solutions significantly increase
the computational effort of the branch-and-cut algorithm. At a practical level, identical
solutions are examined many times. Therefore, Kaczmarczyk (2011) proposed a new
model, denoted plsp/f, which aggregates the machines and uses integer variables. This
model uses sequence-dependent change-over variables to describe a flow of machines
set-up state between products. General surveys on lot-sizing and scheduling models
can be found in Drexl and Kimms (1997) and Wolsey (2002).

This paper presents a new formulation of the plsp/f model which allows for set-up
operations to be split among two consecutive periods in the case with constant period
length. The next section presents the basic model with identical parallel machines.
Section 3 presents a new model formulation. Section 4 provides computational results.
Finally, Section 5 gives a summary.

2. MODEL WITH IDENTICAL PARALLEL MACHINES

The Proportional Lot-sizing and Scheduling Problem (plsp) (Haase, 1994) is a small
bucket model, i.e. it allows at most one set-up operation within a single period. It is
the most flexible among small bucket models, as it allows for the processing of two
products within a single period, one before and another after the set-up operation.

In Table 1 parameters and variables are presented common to both models
presented in this paper.



Modelling Set-up Times Overlapping Two Periods . . . 45

Table 1. Common parameters and variables

T = (1, . . . , T ) – set of periods, T – number of periods,
N = (1, . . . , n) – set of products, n – number of products,
P = {(j, k) ∈ N 2 : j 6= k} – set of pairs of different products,
M = {1, . . . ,m} – set of identical machines, m – number of machines,
C – length of a single period,

STj – set-up time of product j, where STj ¬ C
SCj – set-up cost of product j,
pj – processing time of product j,
hj – unit holding cost of product j,
djt – demand of product j in period t,
Ij0 – initial inventory of product j,
yj0 – initial number of machines ready to process product j.

xjt – production volume of product j in period t,
fjkt – for j 6= k number of machines changed over in period t from processing product j

to product k,
fjjt – number of machines processing product j in period t−1 whose state (set-up) remains

unchanged in period t,
bjkt – total of relative shares of capacity reserved for product j, before the set-up operation,

on all machines which are changed over in period t from product j to k,
ajkt – total of relative shares of capacity reserved for product k, after the set-up operation,

on all machines which are changed over in period t from product j to k,
Ijt – inventory of product j in period t, Ij0 – initial inventory.

All variables with period index t ¬ 0 are assumed to be to equal 0. There are
two exceptions from this rule, the initial inventories Ij0 and the initial state of the
machines yj0. It is assumed that

∑
j∈N yj0 = m, i.e. the initial set-up of machines is

feasible. The plsp/f model (Kaczmarczyk, 2011) may be stated as follows:

min
∑
t∈T

∑
j∈N

(hjtIjt + SCj
∑

k∈N : k 6=j

fkjt) (1a)

Ij,t−1 + xjt = djt + Ijt, t ∈ T , j ∈ N (1b)

fjjt +
∑

k∈N : k 6=j

(bjkt + akjt)  (pj/C) xjt, t ∈ T , j ∈ N (1c)

fjkt(1− STk/C) = bjkt + ajkt, t ∈ T , (j, k) ∈ P (1d)

fjj0 = yj0, j ∈ N (1e)

fjk0 = 0, (j, k) ∈ P (1f)∑
k∈N

fkj,t−1 =
∑
k∈N

fjkt, t ∈ T , j ∈ N (1g)∑
(j,k)∈N 2

fjkT = m, t ∈ T , j ∈ N (1h)

xjt, Ijt  0, t ∈ T , j ∈ N (1i)
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bjkt, ajkt ∈ [0,m], t ∈ T , (j, k) ∈ P (1j)

fjkt, ∈ {0, . . . ,m}, t ∈ T , (j, k) ∈ N 2 (1k)

The objective (1a) is to minimize the set-up and inventory holding costs. The con-
straints (1b) preserve a feasible balance of inventory, production and demand. The
constraints (1c) limit the production volume: variable fjjt describe the number of
machines which continue to process product j and expression

∑
k∈N : k 6=j(bjkt + akjt)

determine the share of capacity reserved for product j on all machines which are
changed over in this period. The constraints (1d) ensure that the sum of bjkt and ajkt
variables does not exceed the capacity of all machines changed over from product j to
k after the subtraction of set-up times.

Variables fjkt are the only integer variables in this model. Equations (1e-h) ensure
that fjkt take feasible values, i.e. they preserve the flow of machine set-up units from
product j to product k over time (Karmarkar and Schrage, 1985; Wolsey, 1989). Here,
the variable fjkt is the flow from node (j, t− 1) to (k, t), indicating that a number of
machines have changed over from the set-up of item j in period t− 1 to the set-up
of item k in period t.

3. MODEL WITH SET-UPS OVERLAPPING TWO PERIODS

In this paper a new plsp model formulation for identical parallel machines and set-up
operations overlapping two periods is presented, denoted further as plsp/f-lst. In
Table 2 additional variables are presented, specific to the new model.

Table 2. Additional variables

s1jkt – total of relative shares of capacity used in period t to start the set-up operations for
product k, on all machines which are changed over in period t from product j to k,

s2jkt – total of relative shares of capacity used in period t to finish the set-up operations for
product k on all machines which have been changed over in the previous period t− 1
from product j to k,

vjkt = 1, if the set-up operation started up in period t is finished within a single period,
0 otherwise.

The plsp/f-lst model for identical parallel machines and set-up operations
overlapping two periods may be stated as follows:

min
∑
t∈T

∑
j∈N

(hjtIjt + SCj
∑

k∈N : k 6=j

fkjt) (2a)

Ij,t−1 + xjt = djt + Ijt, t ∈ T , j ∈ N (2b)

fjjt +
∑

k∈N : k 6=j

(bjkt + akjt − s1
kjt − s2

kjt) 

 (pj/C) xjt, t ∈ T , j ∈ N (2c)
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bjkt + ajkt = fjkt, t ∈ T , (j, k) ∈ P (2d)

fjj0 = yj0, j ∈ N (2e)

fjk0 = 0, (j, k) ∈ P (2f)∑
k∈N

fkj,t−1 =
∑
k∈N

fjkt, t ∈ T , j ∈ N (2g)∑
(j,k)∈N 2

fjkT = m, t ∈ T , j ∈ N (2h)

xjt, Ijt  0, t ∈ T , j ∈ N (2i)

bjkt, ajkt ∈ [0,m], t ∈ T , (j, k) ∈ P (2j)

fjkt, ∈ {0, . . . ,m}, t ∈ T , (j, k) ∈ N 2 (2k)

ajkt − (STk/C)fjkt ¬ m vjkt, t ∈ T , (j, k) ∈ P (2l)

fjkT ¬ m vjkT , (j, k) ∈ P (2m)

(STk/C)fjkt −m(1− vjkt) ¬ s1
jkt, t ∈ T , (j, k) ∈ P (2n)

ajkt −m vjkt ¬ s1
jkt, t ∈ T , (j, k) ∈ P (2o)

(STk/C)fjkt − ajkt ¬ s2
jkt, t ∈ T , (j, k) ∈ P (2p)

fjkt  vjkt, t ∈ T , (j, k) ∈ P (2q)

(STk/C)fjkt = s1
jkt + s2

jk,t+1, t ∈ T , (j, k) ∈ P (2r)

s1
jkt, s

2
jkt ∈ [0,m], t ∈ T , (j, k) ∈ P (2s)

vjkt ∈ {0, 1}, t ∈ T , (j, k) ∈ N 2 (2t)

The new model is an extension of the plsp/f model (1). In the plsp/f-lst
the objective function (1a) and constraints (2e-k) remain unchanged. The plsp/f
constraints (1c) and (1d) are replaced by constraints (2c) and (2d). In model (1), the
variable ajkt does not contain the set-up time. In constraint (2c) of the new model,
the time devoted to the execution of set-up operations s1

jkt is subtracted from the
capacity reserved for production, therefore does not have to be excluded in (2d) from
variable ajkt.

To ensure proper values of new variables some new constraints are necessary.
Constraint (2l) determines if the set-up operation can be finished within a single period
or if it has to be continued in the next period. According to inequality (2m), set-up
operations started in the last period must be finished within a single period. The
constraints (2n–o) ensure the proper values of the setup execution time in the period, in
which it begins, (2n) when the whole operation is executed within a single period and
(2o) when it has to overlap two periods. The constraints (2p) determine the time
necessary to finish the set-up operations overlapping the two periods.

Two valid inequalities make the model easier to solve with standard mip methods.
Constraint (2q) sets value of variable vjkt to zero if there is no changeover. Con-
straint (2r) forces the sum of set-up execution variables s1

jkt and s1
jk,t+1 to be equal

to the set-up length.
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4. EXPERIMENTS AND DATA SETS

To verify the complexity of the new model 15 instances of the problem have been
randomly generated. Every instance has 5 products and 30 periods. The design of
the instances is based on experience with lot-sizing and scheduling in the electronics
industry. All the following parameters were randomly generated as integer numbers
from a uniform distribution.

At first, demand djt was drawn from the range [1, 100] and next with probability
0.4 set equal to 0. To preserve the existence of a feasible solution, the demand during
the first five periods for all products was set equal to 0. The constant capacity C of
a single machine has been chosen in a way that preserves the utilisation of all machines
in the range [80%, 90%]. In the calculation of utilisation, 3 start-up times per product
were added to the total workload. The actual number of start-ups per machine in
the calculated solutions was in the range [1.4, 6.7]. The parameters: processing times
pj , unit holding costs hj , set-up times STj and costs SCj , were randomly chosen
from ranges [1, 5], [1, 5], [0.2C, 0.8C], [0.1Hj , 1.5Hj ] respectively, where C is the period
length and Hj = hj/C/pj is the holding cost of the maximal single period production.

It turned out that it is not possible to solve the plsp/f-lst model from scratch
in a reasonable time with standard mip procedures. Therefore, a simple warm start
heuristic was applied. Firstly, the plsp/f model with a 10 minute time limit was
solved and then values of the set-up variables from its solution were passed to the
plsp/f-lst model. The time limit was again set to 10 minutes.

Table 3. Results

Number of machines

Model 5 10 15

Relative decrement of total cost [%]
in plsp/f-lst relative to plsp/f 3.4 1.3 0.8

mip gap [%] plsp/f 0.0 0.0 0.0
plsp/f-lst 4.0 1.6 1.2

Computation time [s] plsp/f 33.6 21.8 33.9
plsp/f-lst 573.2 515.9 493.2

The results of the experiments are presented in Table 3. The largest average cost
reduction 3.4% has been achieved for 5 machines and decreases with the increment of
machine number. The plsp/f model was always solved to optimality within the time
limit, as well as most instances of the plsp/f-lst.

In Figure 1 the number of set-up operations per machine in final solutions and
the relative decrement of total costs in the plsp/f-lst model for various demand
instances are presented. Instances are sorted in order of increasing set-up numbers.
Cost decrement is closely related to the number of set-ups. The plsp/f-lst model
allows to decrease total costs in average by 0.2% for every changeover.
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Fig. 1. Cost decrement for various demand instances

5. SUMMARY

In this paper a new model formulation for Proportional Lot-sizing and Scheduling
Problem (plsp) with identical parallel machines is presented which allows that the
set-up times split among two periods. The results of the computational experiments
prove that the presented model makes it possible to find better schedules than with
a model with set-up operations executed within a single period, especially for problems
with many changeovers in optimal solutions.
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