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How to Interpret AHP/ANP Application Results  
in a Really Meaningful Manner?
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Abstract. Final decision recommendations rely heavily on ranking Decision-Making Units 
(DMUs), often achieved using Saaty’s Analytic Hierarchy/Network Process (AHP/ANP). 
AHP/ANP provides precise overall priority scores which decision-makers commonly treat as 
definitive for ranking purposes. This reliance means that even minimal numerical differences 
between DMUs are used to determine the final selection. However, this strict adherence to 
tiny numerical distinctions – disregarding the actual degree of difference – is problematic. 
Practically, it risks rejecting DMUs whose performance is only slightly inferior; methodologically, 
it contradicts the qualitative nature of the input (pairwise comparisons) with the quantitative 
output. This tension raises the question of achieving an adequate qualitative interpretation of 
the quantitative rankings. To resolve this, the paper proposes clustering approaches to help 
decision-makers reliably group and discriminate among similar DMUs. These methods aim 
to justify more informed choices by avoiding spurious precision. The approaches were tested 
using two diverse decision cases. The results are promising and indicate that these clustering 
techniques can be useful under certain specific circumstances.
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1. INTRODUCTION 

The application of the multi-attribute decision analysis (MADA) methodology pro-
vides decision makers with recommendations that facilitate actual decision making. 
The methodology is implemented by means of diverse techniques. The application of 
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the techniques results in specific outcomes. One of the most popular forms of such 
outcomes is the ranking of considered alternatives (decision making units – DMUs). 
This is because a ranking represents an easily interpretable hierarchy of DMUs.

Analytic Hierarchy/Network Process (AHP/ANP) is one of the most popular 
MADA ranking techniques. It was initially developed by Saaty (1980) in the 1970s as 
the Analytic Hierarchy Process (AHP), and it was later extended to a more general 
approach, namely the Analytic Network Process (Saaty, 1996), in the 1990s. Both 
aforementioned flavors of the technique are based on the application of the same 
notion of pair-wise comparison. However, they differ in the actual character of funda-
mental inquiry regarding the differences between the compared DMUs. It is question-
able how much two DMUs differ concerning their importance for actually achieving 
the fundamental analysis goal in AHP, while it is also queried how much they differ 
according to their influence on achieving that goal in ANP. The flavors also differ in 
applicable forms of relations between components (and component groups) in a mod-
el of a decision making problem.

The application of pair-wise comparison makes AHP/ANP capable of consid-
ering both qualitative and quantitative DMU attributes. The 9-point Saaty’s scale 
is applied to provide the necessary means for the qualitative assessment of differ-
ent DMUs being compared in a  pair-wise manner. Subsequent integer numbers 
from 1 to 9 are utilized to express successive scale levels. A  lack of difference in 
the compared DMUs with regard to their importance/influence corresponds with 
number 1. The following odd numbers: 3, 5, 7, and 9 express a gradual rise in the 
assessment of the difference – from a slight difference to an extreme difference. The 
even numbers: 2, 4, 6, and 8 are used to consider the hesitation regarding which 
adjacent scale level to choose, e.g., 6 instead of 5 or 7. Note that Saaty’s scale levels 
from 2 to 9 directly conform to the advantage of the first compared DMU. Adequate 
reciprocal values, i.e., 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, and 1/9, are applied in the 
case of a need to express the advantage of the second compared DMU.

It is obvious, therefore, that Saaty’s scale application provides the AHP/ANP 
procedure with qualitative assessments that are expressed by numbers. The numbers 
are used directly to derive the overall priorities of DMUs and to construct the final 
hierarchy of DMUs. Unfortunately, despite the generally qualitative character of the 
input data provided by pair-wise comparisons, the outcomes of AHP/ANP technique 
application are commonly analyzed in a strictly numerical way. Therefore, this inter-
pretation of the outcomes of AHP/ANP application seems to be incompatible with 
the actual qualitative nature of the technique.

It ultimately seems that the grouping of DMUs according to their overall priority 
is particularly well suited to provide suitable means for an adequate and meaningful 
interpretation of AHP/ANP application results. This is because it would be capable 
of both distilling sure top DMUs and enriching AHP/ANP use by means of the iden-
tification of close DMUs. 

Note that there is an AHP-based approach, AHP Sort (Ishizaka et al., 2012), avail-
able to group DMUs. The approach also makes use of overall priorities to accomplish 
this. However, it requires the user to provide information about the subjective limiting 
profiles of DMUs classes, which are ultimately applied to group DMUs. It nevertheless 
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seems that, in general, the application of predefined classes is not really necessary. This 
is because the mere application of overall priorities seems to provide all the necessary 
means to group DMUs while avoiding the influence of superfluous subjectivity.

The rest of the paper is structured in the following way, therefore. The second 
section is devoted to the discussion of selected approaches to sorting DMUs. The ef-
fects of their sample applications are discussed in the third section. The last section 
is devoted to some conclusions and final remarks.

2. GROUPING AHP/ANP RESULTS

AHP/ANP provides contextual results as vectors of overall DMU priorities. One-
dimensional grouping could be applied, therefore, to divide DMUs that are close enough 
in terms of their overall priorities into common clusters. There are diverse one- 
dimensional tools available and some of them are presented in the following subsections.

2.1. Clustering tools

Clustering tools are capable of dividing objects that are described by several attrib-
utes into groups – clusters. Individual objects are assigned to the clusters that consist 
of the most similar objects to them. A concrete metric is applied to express the sim-
ilarity of the objects. The metric is usually based on a concept of distance between 
points that represent DMUs in a multi-dimensional space of attributes. The smaller 
the distance between them, the more similar the corresponding DMUs are. Criteria of 
diverse kinds are applied when assigning objects to clusters. The criteria may operate 
on different concepts of cluster similarity provided by appropriate definitions of the 
distance between clusters. It is also possible to use measures involving the application 
of statistical concepts, such as extreme distance and the standard deviation of the 
distance between cluster components, etc. As a result, diverse procedures are availa-
ble to group objects.

The simple gradient technique is based on the concept of the partition approach. 
Therefore, its procedure starts with one large cluster that contains all DMUs. It is 
then divided in a step by-step manner. The actual division deals with a sequence of 
overall priorities that is gradually partitioned at points of the currently largest dif-
ference between the overall priorities. Unfortunately, the stopping criterion depends 
on somewhat subjective information. A predefined number of distinct clusters (k) or 
a threshold of absolute difference (θ) between overall priorities may be applied in 
this regard. Note that the simple gradient procedure follows the idea of partitioning 
a minimum spanning tree (Florek et al., 1951), which is directly expressed by the 
overall ranking of DMUs. 

The Szczotka–Spaeth (Spaeth, 1973; Szczotka, 1972) technique represents anoth-
er concept: the aggregative approach. Its procedure starts with the initial division of 
DMUs into n clusters, where n is the number of DMUs. Hence, each initial cluster 
consists of precisely one DMU. The technique also belongs to optimization approach-
es, as it uses a goal function as a clustering criterion. The goal function addresses the 



48 G. Ginda

minimization of the sum of the average distances between the components of distinct 
clusters. It looks as follows:
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where ni is the cardinality of the i-th consecutive DMU cluster, and dst is distance 
between different DMUs, denoted by indices s, t (s ≠ t), which are components of the 
i-th consecutive cluster.

Initial clusters are then gradually aggregated to compose more complex clusters 
in a step by-step manner. The effects of the integration of adjoining DMU clusters 
on the goal function value (1) is taken into account during each step. Hence, in each 
step, two adjoining clusters are selected to join. The actual choice of joined clusters 
corresponds to the smallest increase in the goal function (1) caused by cluster inte-
gration. As in the case of the simple gradient technique, the stopping criterion deals 
with achieving a DMU partition that contains a predefined number of k clusters. 
However, unlike the simple gradient approach, the technique belongs to aggregation 
methods. Note that the application of the Szczotka–Spaeth technique involves rather 
laborious calculations that require software support.

Both above mentioned techniques belong to hierarchical approaches. They are 
capable, therefore, of providing a cluster hierarchy whose levels define possible DMU 
partitions without the need to provide any stopping criterion. This is because their 
procedure stops just after the full cluster hierarchy is derived. Therefore, they are 
applied in such a way in the paper.

2.2. Other selected approaches

As can be seen from the previous subsection, the applicability of a clustering ap-
proach to identifying DMU groups may depend on additional subjective information 
or relatively complex and time consuming calculations. It seems purposeful, there-
fore, to try to identify a simple yet reliable one-dimensional clustering approach for 
AHP/ANP application results.

Let us first try to take advantage of the common 80/20 Pareto principle. It could 
be readily applied in the case of using AHP/ANP ideals in place of the raw overall 
DMU priorities. The ideal result from the transformation of overall priorities is that 
the highest DMU overall priority becomes equal to one. The priorities of other DMUs 
are then recalculated accordingly. The application of the Pareto rule would allow us 
to identify the closest DMU, i.e., the ones whose current ideals are contained within 
a 20% margin from the ideal for the top DMU, i.e., in the [0.8, 1] interval. As a re-
sult, all such DMUs would also be regarded as the topmost ones. They would also be 
excluded from further analysis due to the reduction of the DMUs set to obtain the set 
of currently active DMUs. Further analysis would involve the step-wise identification 
of top DMU from the currently active DMUs, as well as a step-wise reduction of the 
active DMU set until it becomes empty. Hence, Pareto rule-based procedure would 
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finish without any need for subjective user’s intervention. Note that the ideals for the 
currently active DMU must be updated in the beginning of each step to make the 
ideal for the top active DMU equal to one.

The Pareto rule exploits the constant threshold value θ = 0.80. Note that it 
could nevertheless matter for the sake of the reliability of active DMU discrimination 
whether the threshold is constant or not. For example, Opricovic (1988) proposed 
using a threshold-based rule related to the actual number of DMU set to provide ev-
idence of a significant and necessary advantage of a DMU over another DMU in the 
VIKOR technique (Opricovic & Tzeng, 2004). The evidence is based on the following 
ideal advantage threshold:

		  ς = 1/(N – 1)	 (2)

where: N denotes number of DMUs. 

The threshold could be used in the same way as a 20% margin threshold in the 
case of Pareto rule application, with N denoting the number of current active DMUs. 
Therefore, a certain DMUs would prove to be very close to the topmost one if its 
current ideal were at least equal to:

	 	 θ = 1 – ς	 (3)

The application of θ causes both rule-based procedures to stop immediately after 
the set of currently active DMUs becomes empty. However, the subsequent clusters 
are identified in a sequence from the best down to the worst DMUs. Hence, in the 
case the worst DMU is too far from the adjoining DMUs, what would imply N = 1 
during the last procedure step, no further proceeding is actually needed, as it is ob-
vious that the DMU would comprise a distinct cluster.

2.3. Partition validity

To facilitate the comparison of the effects of applying different DMU grouping approach-
es, additional methods for assessing the obtained DMU partitions should be utilized. 
There are many partition quality assessment indices available (Kolenda, 2006). The most 
popular means for partition quality checking is provided, however, by the silhouette coef-
ficient s(i) (Kaufman & Rousseeuw, 1990). t is a type of higher is better index. Its value 
for the i-th consecutive DMU would be described by the following equation:

	 	 s(i) = (bi – ai)/max(ai, bi),	 (4)

where: ai denotes average distance between the i-th consecutive DMU and other 
DMUs from the same cluster; bi is the smallest average distance of the i-th consec-
utive DMU from DMUs in other clusters i.e. the average distance from the closest 
cluster (note that average linkage is applied with this regard in the paper, although 
any of possible linkage types maybe applied).

Silhouette coefficient values belong to the interval [−1, +1]. Its negative val-
ues would indicate that the DMU does not fit a given cluster. The better the i-th 
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consecutive DMU fits a given cluster, the closer the coefficient s(i) value is to +1. 
Note that the coefficient equals zero for a DMU that comprises a cluster itself. For 
the sake of simplicity, it is nevertheless assumed in the paper that the existence of 
single DMU clusters does not influence the quality of a partition at all.

It is generally accepted that s(i) values above 0.71 indicate very high partition 
quality, and levels above 0.51 signify good quality for the partition from the perspec-
tive of the i-th consecutive object. The latter value is therefore ultimately associated 
in the paper with a notion of acceptable fit for the i-th consecutive DMU. 

3. SAMPLE ANALYSIS

3.1. Sample data

The results of two sample AHP/ANP applications are used to present the potential mer-
its and drawbacks of the aforementioned grouping approaches. The applications differ in 
the number of DMUs, making it possible to examine the effects of different conditions. 
The first case deals with a rather mean number of DMUs. It pertains to the ranking of 
sustainability programs of six Brazilian textile industry companies. The programs are 
denoted by the symbols E1–E6. Overall priorities for the programs are given in Table 1.

Table 1. Overall priorities of sustainability programs in textile industry (Netto et al., 2021)

Sustainability program E2 E5 E3 E1 E6 E4

Overall priority 0.64 0.52 0.38 0.36 0.28 0.26

Ideal 1 0.813 0.594 0.563 0.438 0.406

Rank 1 2 3 4 5 6

The second case pertains to the results of a recent AHP application for ranking 16 
Polish voivodships concerning their biogas technology potential (Ginda & Szyba, 2020). 
Overall priorities and ideals obtained for the voivodeships are presented in Table 2.

Table 2. The results of AHP application (Ginda & Szyba, 2020)

Rank DMU Overall priority Ideal Rank DMU Overall priority Ideal

1 B 0.1820 1 2 N 0.1701 0.9346

3 W 0.1648 0.9054 4 L 0.1623 0.8917

5 Z 0.1437 0.7895 6 F 0.1384 0.7604

7 P 0.1019 0.5598 8 T 0.0828 0.4549

9 O 0.0797 0.4379 10 E 0.0681 0.3741

11 C 0.0673 0.3697 12 S 0.0647 0.3554

13 R 0.0624 0.3428 13 G 0.0624 0.3428

15 D 0.0615 0.3379 16 K 0.0524 0.2879
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3.2. The case of six DMUs

Let us use information about priority difference ranks in a  simple gradient ap-
proach. We start from the establishment of a global cluster of all DMUs: {E2 E5 E3 
E1 E4 E6}. The largest priority difference is then applied to define the initial par-
tition point. It is clear from Table 1 that the largest priority difference corresponds 
to the gap between E5 and E3 sustainability programs. We end up, therefore, with 
two second level clusters in the first step. The first cluster consists of E2 and E5 
programs while the second one contains the remaining programs. The application of 
next priority differences in descending order allows us to complete levels of the clus-
ter hierarchy. The hierarchy is presented in Table 3. We can see that there are 6 fi-
nal clusters in the bottommost hierarchy level. Three intermediate hierarchy levels 
correspond to the partitions with two, three, and four distinct clusters, respectively.

Table 3. Cluster level hierarchy for simple gradient technique application 

Cluster hierarchy level Partition

Top {E2 E5 E3 E1 E6 E4}

sg26 {E2 E5}={E3 E1 E6 E4}

sg36 {E2}={E5}={E3 E1 E6 E4}

sg46 {E2}={E5}={E3 E1}={E6 E4}

Bottom {E2}={E5}={E3}={E1}={E6}={E4}

Now is the time to make a decision about which partition expresses the best di-
vision of sustainability programs. For example, we could prefer having no more than 
4 clusters or aim to achieve a similarity measure at a level not higher than an average 
priority difference (0.76 in this case). It proves, therefore, that we could finally be 
happy with the sg46 partition given by the fourth cluster level. The partition deals 
with the division of sustainability programs into four distinct clusters. Two of them 
consist of a single program (E2 or E5), and the two remaining clusters consist of two 
programs each: {E3 E1}, and {E6 E5}. Let’s take a look at the s(i) values to ensure 
the quality of the partitions from Table 3. 

Individual silhouette coefficient values (see Table 4) obtained for sg26 support 
the following conclusions:
1.	E2 sustainable strategy would fit rather well with a  common cluster shared 

with E5 sustainable strategy. However, a rather low s(i) coefficient value for E5 
strategy suggests that it doesn’t fit the cluster well. Therefore, it finally turns 
out that both aforementioned strategies should comprise distinct clusters in their 
own right.

2.	Coefficient values for the remaining strategies suggest that they either fit very 
well (E6, E4) or fit well (E1, E3) within their common cluster.
We can also see a considerable drop in s(i) values for the worst four strategies 

after the two top strategies were separated into two distinct clusters (see sg36 
partition in Table 3). Such a decrease in the coefficient values suggests that the 
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E3, E1, E6, and E4 strategies no longer fit the common cluster well. The consid-
erable increase in the coefficient following their division into two separate clusters 
confirms the superiority of the sg46 partition in the case of the simple gradient 
approach application.

Table 4. Silhouette coefficient values s(i) for the partitions –  the simple gradient approach 
application case 

Partition E2 E5 E3 E1 E6 E4

sg26 0.625 0.4 0.6 0.697 0.778 0.75

sg36 – – 0.429 0.583 0.722 0.692

sg46 – – 0.818 0.778 0.778 0.818

Let us now apply the Szczotka–Spaeth technique. The anticipated effects 
of grouping the adjoining distinct sustainability strategies are tested according 
to the goal function Q (1), and a new cluster that minimizes the current goal 
function as much as possible is recorded in each step. Hence, cluster hierarchy 
emerges in a step-wise manner. The results of consecutive steps are presented in 
Tables 5–8. Note that the recommended clusters are expressed there by means 
of boldface. The calculations result in a  cluster hierarchy, one which is finally 
presented in Table 9.

The comparison of cluster hierarchies obtained through the application of the 
simple gradient approach (Table 3) and the application of the Szczotka–Spaeth tech-
nique (Table 9) reveals a difference. The difference is associated with two unique 
partitions. The first one (ss56) corresponds with the second cluster hierarchy level 
and consists of one cluster, which comprises two components {E3 E1}, as well as four 
clusters that contain a  single component each: {E2}, {E5}, {E6}, and {E4}. The 
second partition (ss26) is presented in the fifth cluster hierarchy level and consists 
of a single component cluster {E2} and a cluster that is composed of the remaining 
sustainability programs. We finally use silhouette coefficient values again to justify 
the partition – see Table 10 for details.

Table 5. The effects of possible joining of adjoining sustainability programs  
after the initial step of Szczotka–Spaeth technique

Possible new cluster {E2 E5} {E5 E3} {E3 E1} {E1 E6} {E6 E4}

Q (1) 0.12 0.14 0.02 0.08 0.02

Table 6. The effects of possible joining of adjoining sustainability programs  
after the second step of Szczotka–Spaeth technique

Possible new cluster {E2 E5} {E5 E3 E1} {E3 E1 E6} {E6 E4}

Q (1) 0.14 0.126 0.087 0.04
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Table 7. The effects of possible joining of adjoining sustainability programs  
after the third step of Szczotka–Spaeth technique

Possible new cluster {E2 E5} {E5 E3 E1} {E3 E1 E6 E4}

Q (1) 0.16 0.127 0.073

Table 8. The effects of possible joining of adjoining sustainability programs  
after the fourth step of Szczotka–Spaeth technique 

Possible new cluster {E2 E5} {E5 E3 E1 E6 E4}

Q (1) 0.193 0.124

Table 9. Cluster hierarchy levels – the application of Szczotka–Spaeth technique 

Cluster hierarchy level Partition

Top {E2 E5 E3 E1 E6 E4}

ss26 {E2}={E5 E3 E1 E6 E4}

ss36=sg36 {E2}={E5}={E3 E1 E6 E4}

ss46=sg46 {E2}={E5}={E3 E1}={E6 E4}

ss56 {E2}={E5}={E3 E1}={E6 E4}

Bottom {E2}={E5}={E3}={E1}={E6}={E4}

Table 10. Silhouette coefficient values s(i) for the unique partitions  
according to Szczotka–Spaeth technique 

Cluster hierarchy level E2 E5 E3 E1 E6 E4

ss26 – – 0.8 0.75 – –

ss56 – −0.4 0.635 0.679 0.694 0.671

Hence, it is clear that the use of the partition from the fifth cluster hierarchy 
level ss56 is inefficient due to the negative coefficient value for the E5 sustainability 
program, which indicates a total mismatch for the program. It also turns out that the 
application of a unique partition ss26 would result in lower coefficient values for E3 
and E1 sustainability programs than those obtained for partition sg46 in the case of 
the simple gradient approach – see Tables 3 and 4. It seems, therefore, that it should 
be rejected in favor of the third cluster hierarchy level partition presented in Table 9, 
which is identical to the sg46 partition from Table 3. Hence, his final partition recom-
mendation is the same as in the case of using the simple gradient approach.

The use of the Pareto-based rule is grounded in the application of ideals obtained 
for the sustainability programs (see Table 1). The results of the conducted calculations 
are illustrated in Table 11. We start from core ideals and the fully active DMU set. 
The second best DMUs (E5) has an ideal within a 2% margin of the topmost DMU, 
while the ideals of other DMUs are outside the margin. Hence, the topmost cluster 
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consists of two top sustainability programs, E2 and E5. We remove them from the 
set of active DMUs and proceed with the remaining four sustainability programs. 
The ideal for the best of the remaining programs is then scaled to 1, and the ideals 
of the other active sustainability programs are recalculated accordingly. The current 
ideal for the second most active DMU (E1) fits a 20% margin from the current top 
active DMU (E3). Hence, the second topmost cluster consists of two sustainability 
programs: E3 and E1. The same conclusion pertains to the bottommost cluster, 
which consists of the remaining DMUs: E6 and E4. Hence, the application of the 
Pareto-based rule for clustering results in a unique set of three double sized clusters. 
Individual silhouette coefficient values for the partition are presented in Table 12.

Table 11. Pareto rule-based approach illustration (θ = 0.80) for the six DMUs case 

Step I Step II Step III

Sustainability 
program Ideal Sustainability 

program Ideal Sustainability 
program Ideal

E2 1 – – – –

E5 0.81 – – – –

E3 0.59 E3 1 – –

E1 0.56 E1 0.94 – –

E6 0.43 E6 0.73 E6 1

E4 0.40 E4 0.68 E4 0.92

Table 12. Silhouette coefficient values s(i) for the unique partition {E2 E5} {E3 E1} {E6 E4}

E2 E5 E3 E1 E6 E4

0.555 0.2 0.8 0.6 0.778 0.818

The contents of Table 12 confirm that the final partition provided by the appli-
cation of the Pareto rule-based approach is slightly better than some other partitions 
obtained through the application of different clustering approaches (e.g., the sg26 
partition in Table 3) from the perspective of clearly less preferred sustainability pro-
grams E3, E1, E6, and E4. It is, nevertheless, unacceptable because the sustainability 
program E5 does not fit the partition at all.

Let us finally use a VIKOR-like marginal approach. The results of the calculations 
are illustrated in Table 13. The first step deals with all sustainable programs and their 
original ideals again. This time, however, the margin from the topmost DMU depends 
on the current cardinality of the initial active DMU set. The cardinality is equal to 
N = 6. Hence, according to (2) the initial threshold yields: θ = 0.80. he application 
of the threshold results in the same topmost cluster structure as in the case of apply-
ing the Pareto-rule {E2 E5}. The second step deals with a reduced set of four active 
DMUs. The current margin from the topmost active DMU is therefore calculated for 
N = 4, therefore. It yields θ = 0.67, now. The ideals of all four active DMUs qualify 
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them for the second highest cluster {E3 E1 E6 E4}. The procedure stops, therefore, all 
DMUs have been distributed among clusters. Note that the obtained partition is the 
same as the inefficient sg26 partition in the second cluster hierarchy level (Table 3).

Table 13. VIKOR-like rule-based approach illustration

Step I Step II
N θ N θ
6 0.80 4 0.67

Sustainability 
program Ideal Sustainability 

program Ideal

E2 1 E2 –
E5 0.81 E5 –
E3 0.59 E3 1
E1 0.56 E1 0.94
E6 0.43 E6 0.73
E4 0.40 E4 0.68

The best partitions identified by means of the core application of all used ap-
proaches are presented in Table 14. Partitions delivered by the Pareto rule and 
VIKOR-like rule are unacceptable from the E5 sustainability program’s point of 
view. It seems, therefore, that only clustering approaches may be capable of provid-
ing partitions in which all the sustainability programs fit well.

Table 14. The best outcomes for use of applied approaches for the six DMUs case 

Approach Partition
E2 E5 E3 E1 E6 E4

s(i)
Simple gradient

{E2}={E5}={E3 E1}={E6 E4} – – 0.82 0.78 0.78 0.82
Szczotka–Spaeth
Pareto rule {E2 E5}={E3 E1}={E6+E4} 0.56 0.20 0.80 0.60 0.78 0.82
VIKOR-like rule {E2 E5}={E3 E1 E6 E4} 0.63 0.40 0.60 0.70 0.78 0.75

3.3. The case of sixteen DMUs

Cluster hierarchy levels that result from the application of a simple gradient tech-
nique in the case of biogas potential analysis are presented in Table 15. A statistical 
summary of the corresponding silhouette coefficient values s(i) for all meaningful 
partitions is presented in Table 16.

Note that the partitions that make up the highest levels in the cluster hierarchy 
(sg2–sg7) correspond to minimal values of silhouette coefficients, which testify that 
some sustainability programs do not fit the partitions well. These are the eighth and 
ninth cluster hierarchy levels that define partitions (sg8, sg9) which guaranty a good 
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fit for all sustainability programs. The advantage in mean and maximum silhouette 
coefficient values makes sg8 the final recommendation for the partition; however, 
Note that excellent silhouette coefficient values are obtained in the case of partitions 
from the twelfth and thirteenth cluster hierarchy levels. These partitions, neverthe-
less, seem to be unsuitable because they are extremely fragmented.

Table 15. Cluster hierarchy – the simple gradient technique application case  
for sixteen DMUs case 

Name Partition
Top B+N+W+L+Z+F+P+T+O+E+C+S+G+R+D+K
sg2 B+N+W+L+Z+F  P+T+O+E+C+S+G+R+D+K
sg3 B+N+W+L+Z+F  P  T+O+E+C+S+G+R+D+K
sg4 B+N+W+L  Z+F  P  T+O+E+C+S+G+R+D+K
sg5 B  N+W+L  Z+F  P  T+O+E+C+S+G+R+D+K
sg6 B  N+W+L  Z+F  P  T+O  E+C+S+G+R+D+K
sg7 B  N+W+L  Z+F  P  T+O  E+C+S+G+R+D  K
sg8 B  N  W+L  Z  F  P  T+O  E+C+S+G+R+D  K
sg9 B  N  W+L  Z  F  P  T  O  E+C+S+G+R+D  K
sg10 B  N  W+L  Z  F  P  T  O  E+C  S+G+R+D  K
sg11 B  N  W  L  Z  F  P  T  O  E+C  S+G+R+D  K
sg12 B  N  W  L  Z  F  P  T  O  E+C  S  G+R+D  K
sg13 B  N  W  L  Z  F  P  T  O  E  C  S  G+R+D  K

Bottom B  N  W  L  Z  F  P  T  O  E  C  S  G+R  D  K

Table 16. Silhouette coefficient statistics for unique partitions  
for simple gradient technique application case for sixteen DMUs case 

Name Number  
of clusters

min s(i)
(DMU) mean s(i) max 

s(i) (DMU)
std.dev. s(i) 

(DMU)
sg2 2 0.398 (P) 0.793 0.888 (D) 0.126
sg3 3 0.058 (T) 0.634 0.805 (R) 0.229
sg4 4 0.058 (T) 0.661 0.831 (F) 0.210
sg5 5 0.058 (T) 0.665 0.806 (F) 0.221
sg6 6 0.450 (N) 0.712 0.838 (T) 0.118
sg7 7 0.450 (N) 0.722 0.832 (T) 0.096
sg8 9 0.528 (W) 0.707 0.832 (T) 0.085
sg9 10 0.528 (W) 0.670 0.776 (S) 0.074
sg10 11 0.133 (S) 0.668 0.850 (E) 0.224
sg11 12 0.133 (S) 0.689 0.850 (S) 0.251
sg12 13 0.719 (D) 0.776 0.804 (G,R) 0.040
sg13 14 0.719 (D) 0.776 0.804 (G,R) 0.040
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Table 17 presents the cluster hierarchy obtained through the application of the 
Szczotka–Spaeth technique. The technique provides 5 partitions, which also appear 
in the simple gradient approach to the use-related cluster hierarchy. They include the 
most notable ones with regard to individual silhouette coefficient values as well. How-
ever, the majority of partitions provided by the technique are unique. The unique 
partitions are expressed in Table 17 by boldface. Silhouette coefficient statistics for 
them are given in Table 18.

Table 17. Cluster hierarchy – Szczotka–Spaeth technique application case  
for sixteen DMUs case

Name Partition
Top B+N+W+L+Z+F+P+T+O+E+C+S+G+R+D+K
sg2 B+N+W+L+Z+F  P+T+O+E+C+S+G+R+D+K
ss3 B+N+W+L  Z+F  P+T+O+E+C+S+G+R+D+K
ss4 B  N+W+L  Z+F  P+T+O+E+C+S+G+R+D+K
ss5 B  N+W+L  Z  F  P+T+O+E+C+S+G+R+D+K
ss6 B  N+W+L  Z  F  P   T+O+E+C+S+G+R+D+K
ss7 B  N+W+L  Z  F  P  T  O+E+C+S+G+R+D+K
ss8 B  N+W+L  Z  F  P  T  O  E+C+S+G+R+D+K
ss9 B  N  W+L  Z  F  P  T  O  E+C+S+G+R+D+K
ss10 B  N  W  L  Z  F  P  T  O  E+C+S+G+R+D+K
ss11 B  N  W  L  Z  F  P  T  O  E+C+S+G+R+D  K
sg11 B  N  W  L  Z  F  P  T  O  E+C  S+G+R+D  K
sg12 B  N  W  L  Z  F  P  T  O  E+C  S  G+R+D  K
sg13 B  N  W  L  Z  F  P  T  O  E  C  S  G+R+D  K

Bottom B  N  W  L  Z  F  P  T  O  E  C  S  G+R  D  K

Table 18. Silhouette coefficient statistics for unique partitions  
for Szczotka–Spaeth technique application case for sixteen DMUs case

Name Number  
of clusters

min s(i) 
(DMU) mean s(i) max s(i)

(DMU)
std.dev. s(i) 

(DMU)
ss3 3 0.104 (P) 0.723 0.860 (S) 0.188
ss4 4 0.104 (P) 0.731 0.860 (S) 0.196
ss5 5 0.039 (P) 0.712 0.855 (S) 0.223
ss6 6 0.058 (T) 0.645 0.805 (G, R) 0.232
ss7 7 −0.818 (O) 0.505 0.773 (W) 0.430
ss8 8 0.450 (E) 0.651 0.773 (W) 0.127
ss9 9 0.455 (E) 0.642 0.771 (G, R) 0.114
ss10 10 0.455 (E) 0.653 0.771 (G,R) 0.120
ss11 11 0.617 (E) 0.692 0.776 (S) 0.058



58 G. Ginda

It appears that almost all unique partitions derived from the application of the 
Szczotka–Spaeth technique deal with rather unacceptable silhouette coefficient val-
ues for individual DMUs. The only unique partition that provides acceptable values 
for the coefficient consists of a single cluster {E C S G R D} and 10 clusters made 
up of distinct DMUs. Coefficient values for individual DMUs seem, nevertheless, to 
suggest that the partition is slightly worse than the best partitions provided by the 
gradient approach application (see Table 16).

The sequence of the Pareto rule-based procedure steps is illustrated in Table 19. 
The boldfaced ideals in the table correspond to the current cluster composition. Note 
that the application of the procedure finally gives the partition, which consists of 
5 clusters: {B N W L}, {Z F}, {P T}, {O E C S}, and {G R D K}. The silhouette 
coefficient values for individual DMUs, which are presented in the last column of 
Table 19, show, however, that the partition is inefficient (see the boldfaced entries in 
the last column). This is because some DMUs generally misfit the partition (T, S, O), 
while others show a rather poor fit (C, E, P, K).

Table 19. Pareto rule-based approach use illustration (θ = 0.80) for the sixteen DMUs case 

DMU I II III IV V s(i)
B 1 – – – – 0.603
N 0.934 – – – – 0.713
W 0.905 – – – – 0.649
L 0.891 – – – – 0.529
Z 0.789 1 – – – 0.797
F 0.760 0.963 – – – 0.831
P 0.559 0.709 1 – – 0.402
T 0.454 0.576 0.812 – – –0.327
O 0.437 0.554 0.782 1 – –0.027
E 0.374 0.473 0.668 0.854 – 0.375
C 0.369 0.468 0.660 0.844 – 0.309
S 0.355 0.450 0.634 0.811 – –0.282
G 0.342 0.434 0.612 0.782 1 0.519
R 0.342 0.434 0.612 0.782 1 0.519
D 0.337 0.428 0.603 0.771 0.985 0.570
K 0.287 0.364 0.514 0.657 0.839 0.447

The sequence of steps for the VIKOR-like rule-based application is presented in 
Table 20. The obtained results suggest a partition that consists of 7 clusters: {B N}, 
{W L}, {Z F}, {P}, {T O}, {E C S G R D}, and {K}. Although the partition is 
much better, in terms of the silhouette coefficient, than the partition resulting from 
the application of the Szczotka–Spaeth technique, it is still ineffective. This is due to 
an unacceptable coefficient value for the second best DMU and a rather poor value 
for the top DMU. It is truly a pity, as fairly high silhouette coefficient values are 
registered for the majority of the remaining DMUs.
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The comparison of final results for the sixteen DMUs case is presented in Ta-
ble 21. It transpires that the application of different approaches results in the iden-
tification of partitions that differ in the structure of DMU clusters. The number of 
clusters ranges from 5 in the case of the Pareto rule, application to 11 in the case 
of the Szczotka–Spaeth technique. Almost all the approaches proved capable of iden-
tifying partitions where more than half of the DMUs form clusters consisting of at 
least two DMUs. Szczotka–Spaeth is a notable exception in this regard.

Table 20. VIKOR-like rule approach rule-based use illustration for the sixteen DMUs case

DMU I II III IV V VI VII
N 16 14 12 10 9 7 1 s(i)
θ 0.067 0.077 0.091 0.111 0.125 0.167 –
B 1 – – – – – – 0.355
N 0.934 – – – – – – –0.450
W 0.905 1 – – – – – 0.778
L 0.891 0.984 – – – – – 0.818
Z 0.789 0.872 1 – – – – 0.733
F 0.760 0.839 0.963 – – – – 0.789
P 0.559 0.618 0.709 1 – – – –
T 0.454 0.502 0.576 0.812 1 – – 0.832
O 0.437 0.483 0.554 0.782 0.962 – – 0.797
E 0.374 0.413 0.473 0.668 0.822 1 – 0.662
C 0.369 0.408 0.468 0.660 0.812 0.988 – 0.728
S 0.355 0.392 0.450 0.634 0.781 0.950 – 0.776
G 0.342 0.378 0.434 0.612 0.753 0.916 – 0.724
R 0.342 0.378 0.434 0.612 0.753 0.916 – 0.724
D 0.337 0.373 0.428 0.603 0.742 0.903 – 0.618
K 0.287 0.318 0.364 0.514 0.632 0.769 1 –

Table 21. Final results for the sixteen DMUs case

Approach
(number of 

clusters)

Partition
min s(i)
(DMU) mean s(i) max s(i)

(DMU) std.dev. s(i)

Simple gradient
(9) 

{B}={N}={W L}={Z}={F}={P}={T O}={E C S G R D K}
0.528 (W) 0.707 0.832 (T) 0.085

Szczotka–Spaeth
(11)

{B}={N}={W}={L}={Z}={F}={P}={T}={O}={E C S G R D}={K}
0.617 (E) 0.692 0.776 (S) 0.058

Pareto rule
(5)

{B N W L}={Z F}={P T}={O E C S}={G R D K}
−0.327 (T) 0.414 0.831 (F) 0.336

VIKOR-like rule
(7)

{B}={N}={W L}={Z F}={P}={T O}={E C S G R D}={K}
−0.450 (N) 0.635 0.854 (G, R) 0.322
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4. DISCUSSION

Results of the presented analysis show that traditional clustering approaches seem 
capable of indicating partitions that provide a good fit for individual DMUs. On the 
other hand, both proposed rule-based approaches seem to lack such a  capability. 
A closer look at the results of the application of distinct techniques (see Table 14 and 
Table 21) nevertheless provides some hints regarding possible improvements in the 
results. For example, there is only a single E5 sustainability program that doesn’t 
fit the final partition suggestion provided by the application of both rule-based ap-
proaches for the six DMUs case (see Table 14). Hence, we could try to break its 
common cluster with the E2 program (VIKOR rule-based partition only) or even 
merge it with the cluster of worse sustainability programs. The anticipated effects 
of these actions are presented in Table 22. The effects nonetheless confirm that the 
corrections result in unsatisfactory outcomes.

Table 22. Anticipated effects of partition corrections for the six DMUs case

Approach Partition
s(i)

E2 E5 E3 E1 E6 E4
Pareto rule {E2}={E5 E3 E1}={E6 E4} – −0.20 0.27 0 0.52 0.50

VIKOR- 
like rule

{E2}={E5}={E3 E1 E6 E4} – – 0.42 0.58 0.72 0.69
{E2}={E5 E3 E1 E6 E4} – −0.40 0.63 0.67 0.69 0.67

Let us see if it is possible to improve the results of the application of rule-based 
approaches in the sixteen DMUs case. The contents of Table 19 suggest that the main 
problem with the inefficiency of the partition resulting from the application of the Pareto 
rule clearly pertains to the cluster {P T O E C S}. The somewhat poor, although not 
very bad, silhouette coefficient values for P, E, and C suggest that it could be advanta-
geous to separate them into distinct clusters: {P} and {E C}. By the way, conducting 
the same action regarding the least preferable DMU, namely K, may also help improve 
individual silhouette coefficient values. Note that negative values for the coefficient in the 
cases of T and O also suggest that these DMUs could benefit from a common, distinct 
cluster. On the other hand, the negative silhouette coefficient value for S suggests that it 
would fit better into a common cluster with slightly better DMUs (C and E) and slightly 
worse DMUs (G, R, and D). Hence, we could finally obtain the corrected partition, which 
would consist of 6 clusters: {B N W L}, {Z F}, {P}, {T O}, {E C S G R D}, and {K}. 
The quality of the derived partition is confirmed by the contents of Table 23.

Table 23. Recommended corrected partition for sixteen DMUs case –  
Pareto rule approach application

Partition min 
s(i)

mean 
s(i)

max
s(i)

std.dev.
s(i)

{B N W L}={Z F}={P}={T O}={E C S G R D}={K} 0.529
(L) 0.713 0.832

(T) 0.088
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In the case of the VIKOR-like rule application (see Table 20), the presence of only 
two unsatisfactory values for individual silhouette coefficient values for adjacent top 
DMUs, B and N, seems to suggest a rather obvious and simple solution for improving 
the partition. The solution would address the final division of two top DMUs into 
two separate clusters or the final integration of N into the adjoining cluster {W L}. 
Note that the latter partition is identical to the sg7 partition from the seventh level 
of the cluster hierarchy obtained for the simple gradient approach application (see 
Table 15). Nevertheless, the descriptive statistics for individual silhouette coefficient 
values for the partition presented in Table 16 show that N fits rather poorly with the 
common cluster of W and L. The division of the two top DMUs among two distinct 
clusters is finally recommended. Therefore, the final recommended partition consists 
of 8 clusters. Note that the corrected partition is only slightly worse than the best 
partitions derived from the application of both clustering approaches, as its core dis-
advantage results from a lower silhouette coefficient for W only.

All in all, both clustering approaches and both rule-based approaches proved 
to be capable of recommending diverse partitions to which DMUs fit well, at least. 
The diversity of the partitions results in a different number of clusters (ranging 
from 6 in the case of the Pareto rule to 11 in the case of the Szczotka–Spaeth 
technique) and differences in silhouette coefficient values for individual DMUs. 
The results of the calculations conducted show that very good partitions – in 
terms of both average and maximum silhouette coefficients (values over 0.71) – are 
provided by the corrected results of the application of the VIKOR-like and Pare-
to rule-based approaches. Note, however, that the results provided by the use of 
both clustering approaches and the simple gradient approach, in particular, do not 
prove to be significantly worse in this regard. Moreover, the partitions provided by 
correcting the direct VIKOR-like rule and using a simple gradient technique are 
almost the same, with only two DMUs – Z and F – being treated differently by 
these methods. Note that balanced partitions are ultimately recommended by the 
application of all four approaches, as the standard deviation level for individual 
silhouette coefficient values is relatively low. Almost all the approaches proved to 
be capable of recommending partitions in which more than half of the DMUs form 
clusters consisting of at least two DMUs Szczotka–Spaeth is, nevertheless, a nota-
ble exception in this regard.

5. CONCLUSIONS

Some possible ways to interpret the results of qualitative AHP/ANP technique appli-
cations in a more adequate manner were discussed in the paper. The application of 
both common hierarchical clustering approaches (the simple gradient approach and 
the Szczotka–Spaeth technique), as well as simplified approaches based on discrimi-
nation rules (the Pareto rule and the VIKOR-like rule), is considered in this regard. 
Two distinct real case studies, which differed in the number of DMUs, were used to 
initially assess the suitability of the approaches for an adequate analysis of AHP/
ANP results.
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It turns out that common clustering approaches seem to be generally capable 
of providing adequate means for expressing qualitative differences between DMUs, 
thanks to their reliable division among distinct groups, regardless of how many DMUs 
are actually considered. Their use, particularly the use of a less tedious and simpler 
gradient approach, is therefore recommended.

The considered simplified rule-based approaches are generally less tedious but do 
not seem to directly succeed in recommending partitions in which all DMUs fit well, at 
least. However, the quality of the corrected results from their application, obtained for 
a considerable number of DMUs, seems to suggest that they may, nevertheless, prove 
to be useful in peculiar circumstances, at least. This is because they seem to be capable 
of providing a reliable basis for the identification of unique competitive partitions that 
common clustering approaches were not aware of at all. Hence, although they do not 
seem to directly derive reliable DMUs partitions, they should not be disregarded.

It is obvious that the rather limited scope of the conducted analysis does not 
allow for the formation of reliable general conclusions. Further research is recom-
mended; therefore, a comprehensive investigation into the effects of using considered 
approaches for grouping AHP/ANP application results is necessary to facilitate their 
qualitative interpretation. For instance, simulating the influence of the number of 
DMUs and other parameters of decision analysis problems on the effects of using 
the approaches could prove advantageous in this regard. The verification of the suit-
ability of other approaches is also welcome. For example, the application of diverse 
metrics for cluster separation quality assessment (Bezdek & Pal, 1998; Dunn, 1973; 
Pakhira et al., 2004; Tibshirani et al., 2001) and various clustering techniques (Ism-
khan, 2017; Mankowski & Moshkov, 2021; Szkaliczki, 2016; Wang & Song, 2011). The 
influence of the use of different priority estimation techniques and assessment scales 
in AHP/ANP, as well as similarity metrics, may also be considered in this regard. 
All in all, it is nonetheless hoped that the paper will foster a serious discussion about 
the adequate way to interpret the results provided by AHP/ANP applications in 
a meaningful and consistent manner, at least. 
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