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How to Interpret AHP/ANP Application Results
in a Really Meaningful Manner?

Grzegorz Ginda’

Abstract. Final decision recommendations rely heavily on ranking Decision-Making Units
(DMUs), often achieved using Saaty’s Analytic Hierarchy/Network Process (AHP/ANP).
AHP/ANP provides precise overall priority scores which decision-makers commonly treat as
definitive for ranking purposes. This reliance means that even minimal numerical differences
between DMUs are used to determine the final selection. However, this strict adherence to
tiny numerical distinctions — disregarding the actual degree of difference — is problematic.
Practically, it risks rejecting DM Us whose performance is only slightly inferior; methodologically,
it contradicts the qualitative nature of the input (pairwise comparisons) with the quantitative
output. This tension raises the question of achieving an adequate qualitative interpretation of
the quantitative rankings. To resolve this, the paper proposes clustering approaches to help
decision-makers reliably group and discriminate among similar DMUs. These methods aim
to justify more informed choices by avoiding spurious precision. The approaches were tested
using two diverse decision cases. The results are promising and indicate that these clustering
techniques can be useful under certain specific circumstances.
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1. INTRODUCTION

The application of the multi-attribute decision analysis (MADA) methodology pro-
vides decision makers with recommendations that facilitate actual decision making.
The methodology is implemented by means of diverse techniques. The application of
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the techniques results in specific outcomes. One of the most popular forms of such
outcomes is the ranking of considered alternatives (decision making units — DMUs).
This is because a ranking represents an easily interpretable hierarchy of DMUs.

Analytic Hierarchy/Network Process (AHP/ANP) is one of the most popular
MADA ranking techniques. It was initially developed by Saaty (1980) in the 1970s as
the Analytic Hierarchy Process (AHP), and it was later extended to a more general
approach, namely the Analytic Network Process (Saaty, 1996), in the 1990s. Both
aforementioned flavors of the technique are based on the application of the same
notion of pair-wise comparison. However, they differ in the actual character of funda-
mental inquiry regarding the differences between the compared DMUs. It is question-
able how much two DMUs differ concerning their importance for actually achieving
the fundamental analysis goal in AHP, while it is also queried how much they differ
according to their influence on achieving that goal in ANP. The flavors also differ in
applicable forms of relations between components (and component groups) in a mod-
el of a decision making problem.

The application of pair-wise comparison makes AHP/ANP capable of consid-
ering both qualitative and quantitative DMU attributes. The 9-point Saaty’s scale
is applied to provide the necessary means for the qualitative assessment of differ-
ent DMUs being compared in a pair-wise manner. Subsequent integer numbers
from 1 to 9 are utilized to express successive scale levels. A lack of difference in
the compared DMUs with regard to their importance/influence corresponds with
number 1. The following odd numbers: 3, 5, 7, and 9 express a gradual rise in the
assessment of the difference — from a slight difference to an extreme difference. The
even numbers: 2, 4, 6, and 8 are used to consider the hesitation regarding which
adjacent scale level to choose, e.g., 6 instead of 5 or 7. Note that Saaty’s scale levels
from 2 to 9 directly conform to the advantage of the first compared DMU. Adequate
reciprocal values, i.e., 1/2,1/3,1/4,1/5,1/6, 1/7, 1/8, and 1/9, are applied in the
case of a need to express the advantage of the second compared DMU.

It is obvious, therefore, that Saaty’s scale application provides the AHP/ANP
procedure with qualitative assessments that are expressed by numbers. The numbers
are used directly to derive the overall priorities of DMUs and to construct the final
hierarchy of DMUs. Unfortunately, despite the generally qualitative character of the
input data provided by pair-wise comparisons, the outcomes of AHP/ANP technique
application are commonly analyzed in a strictly numerical way. Therefore, this inter-
pretation of the outcomes of AHP/ANP application seems to be incompatible with
the actual qualitative nature of the technique.

It ultimately seems that the grouping of DMUs according to their overall priority
is particularly well suited to provide suitable means for an adequate and meaningful
interpretation of AHP/ANP application results. This is because it would be capable
of both distilling sure top DMUs and enriching AHP/ANP use by means of the iden-
tification of close DMUs.

Note that there is an AHP-based approach, AHP Sort (Ishizaka et al., 2012), avail-
able to group DMUs. The approach also makes use of overall priorities to accomplish
this. However, it requires the user to provide information about the subjective limiting
profiles of DMUs classes, which are ultimately applied to group DMUs. It nevertheless
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seems that, in general, the application of predefined classes is not really necessary. This
is because the mere application of overall priorities seems to provide all the necessary
means to group DMUs while avoiding the influence of superfluous subjectivity.

The rest of the paper is structured in the following way, therefore. The second
section is devoted to the discussion of selected approaches to sorting DMUs. The ef-
fects of their sample applications are discussed in the third section. The last section
is devoted to some conclusions and final remarks.

2. GROUPING AHP/ANP RESULTS

AHP/ANP provides contextual results as vectors of overall DMU priorities. One-
dimensional grouping could be applied, therefore, to divide DMUs that are close enough
in terms of their overall priorities into common clusters. There are diverse one-
dimensional tools available and some of them are presented in the following subsections.

2.1. Clustering tools

Clustering tools are capable of dividing objects that are described by several attrib-
utes into groups — clusters. Individual objects are assigned to the clusters that consist
of the most similar objects to them. A concrete metric is applied to express the sim-
ilarity of the objects. The metric is usually based on a concept of distance between
points that represent DMUs in a multi-dimensional space of attributes. The smaller
the distance between them, the more similar the corresponding DMUs are. Criteria of
diverse kinds are applied when assigning objects to clusters. The criteria may operate
on different concepts of cluster similarity provided by appropriate definitions of the
distance between clusters. It is also possible to use measures involving the application
of statistical concepts, such as extreme distance and the standard deviation of the
distance between cluster components, etc. As a result, diverse procedures are availa-
ble to group objects.

The simple gradient technique is based on the concept of the partition approach.
Therefore, its procedure starts with one large cluster that contains all DMUs. It is
then divided in a step by-step manner. The actual division deals with a sequence of
overall priorities that is gradually partitioned at points of the currently largest dif-
ference between the overall priorities. Unfortunately, the stopping criterion depends
on somewhat subjective information. A predefined number of distinct clusters (k) or
a threshold of absolute difference (9) between overall priorities may be applied in
this regard. Note that the simple gradient procedure follows the idea of partitioning
a minimum spanning tree (Florek et al., 1951), which is directly expressed by the
overall ranking of DMUs.

The Szczotka—Spaeth (Spaeth, 1973; Szczotka, 1972) technique represents anoth-
er concept: the aggregative approach. Its procedure starts with the initial division of
DMUs into n clusters, where n is the number of DMUs. Hence, each initial cluster
consists of precisely one DMU. The technique also belongs to optimization approach-
es, as it uses a goal function as a clustering criterion. The goal function addresses the
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minimization of the sum of the average distances between the components of distinct
clusters. It looks as follows:

2 Z , (1)

where n, is the cardinality of the ith consecutive DMU cluster, and d, is distance
between different DMUs, denoted by indices s, ¢ (s # t), which are components of the
-th consecutive cluster.

Initial clusters are then gradually aggregated to compose more complex clusters
in a step by-step manner. The effects of the integration of adjoining DMU clusters
on the goal function value (1) is taken into account during each step. Hence, in each
step, two adjoining clusters are selected to join. The actual choice of joined clusters
corresponds to the smallest increase in the goal function (1) caused by cluster inte-
gration. As in the case of the simple gradient technique, the stopping criterion deals
with achieving a DMU partition that contains a predefined number of £ clusters.
However, unlike the simple gradient approach, the technique belongs to aggregation
methods. Note that the application of the Szczotka—Spaeth technique involves rather
laborious calculations that require software support.

Both above mentioned techniques belong to hierarchical approaches. They are
capable, therefore, of providing a cluster hierarchy whose levels define possible DMU
partitions without the need to provide any stopping criterion. This is because their
procedure stops just after the full cluster hierarchy is derived. Therefore, they are
applied in such a way in the paper.

2.2. Other selected approaches

As can be seen from the previous subsection, the applicability of a clustering ap-
proach to identifying DMU groups may depend on additional subjective information
or relatively complex and time consuming calculations. It seems purposeful, there-
fore, to try to identify a simple yet reliable one-dimensional clustering approach for
AHP/ANP application results.

Let us first try to take advantage of the common 80/20 Pareto principle. It could
be readily applied in the case of using AHP/ANP ideals in place of the raw overall
DMU priorities. The ideal result from the transformation of overall priorities is that
the highest DMU overall priority becomes equal to one. The priorities of other DMUs
are then recalculated accordingly. The application of the Pareto rule would allow us
to identify the closest DMU, i.e., the ones whose current ideals are contained within
a 20% margin from the ideal for the top DMU, i.e., in the [0.8, 1] interval. As a re-
sult, all such DMUs would also be regarded as the topmost ones. They would also be
excluded from further analysis due to the reduction of the DMUs set to obtain the set
of currently active DMUs. Further analysis would involve the step-wise identification
of top DMU from the currently active DMUs, as well as a step-wise reduction of the
active DMU set until it becomes empty. Hence, Pareto rule-based procedure would
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finish without any need for subjective user’s intervention. Note that the ideals for the
currently active DMU must be updated in the beginning of each step to make the
ideal for the top active DMU equal to one.

The Pareto rule exploits the constant threshold value 9 = 0.80. Note that it
could nevertheless matter for the sake of the reliability of active DMU discrimination
whether the threshold is constant or not. For example, Opricovic (1988) proposed
using a threshold-based rule related to the actual number of DMU set to provide ev-
idence of a significant and necessary advantage of a DMU over another DMU in the
VIKOR technique (Opricovic & Tzeng, 2004). The evidence is based on the following
ideal advantage threshold:

¢c=1/(N-1) (2)
where: N denotes number of DMUs.

The threshold could be used in the same way as a 20% margin threshold in the
case of Pareto rule application, with N denoting the number of current active DMUs.
Therefore, a certain DMUs would prove to be very close to the topmost one if its
current ideal were at least equal to:

=1-c (3)

The application of ¥ causes both rule-based procedures to stop immediately after
the set of currently active DMUs becomes empty. However, the subsequent clusters
are identified in a sequence from the best down to the worst DMUs. Hence, in the
case the worst DMU is too far from the adjoining DMUs, what would imply N = 1
during the last procedure step, no further proceeding is actually needed, as it is ob-
vious that the DMU would comprise a distinct cluster.

2.3. Partition validity

To facilitate the comparison of the effects of applying different DMU grouping approach-
es, additional methods for assessing the obtained DMU partitions should be utilized.
There are many partition quality assessment indices available (Kolenda, 2006). The most
popular means for partition quality checking is provided, however, by the silhouette coef-
ficient s(7) (Kaufman & Rousseeuw, 1990). t is a type of higher is better index. Its value
for the +th consecutive DMU would be described by the following equation:

s(1) = (b, — a)/maz(a, b,), (4)

where: a, denotes average distance between the i-th consecutive DMU and other
DMUs from the same cluster; b, is the smallest average distance of the #-th consec-
utive DMU from DMUs in other clusters i.e. the average distance from the closest
cluster (note that average linkage is applied with this regard in the paper, although
any of possible linkage types maybe applied).

Silhouette coefficient values belong to the interval [-1, +1]. Its negative val-
ues would indicate that the DMU does not fit a given cluster. The better the é-th
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consecutive DMU fits a given cluster, the closer the coefficient s(4) value is to +1.
Note that the coefficient equals zero for a DMU that comprises a cluster itself. For
the sake of simplicity, it is nevertheless assumed in the paper that the existence of
single DMU clusters does not influence the quality of a partition at all.

It is generally accepted that s(i) values above 0.71 indicate very high partition
quality, and levels above 0.51 signify good quality for the partition from the perspec-
tive of the i-th consecutive object. The latter value is therefore ultimately associated
in the paper with a notion of acceptable fit for the i-th consecutive DMU.

3. SAMPLE ANALYSIS

3.1. Sample data

The results of two sample AHP /ANP applications are used to present the potential mer-
its and drawbacks of the aforementioned grouping approaches. The applications differ in
the number of DMUs, making it possible to examine the effects of different conditions.
The first case deals with a rather mean number of DMUs. It pertains to the ranking of
sustainability programs of six Brazilian textile industry companies. The programs are
denoted by the symbols E1-E6. Overall priorities for the programs are given in Table 1.

Table 1. Overall priorities of sustainability programs in textile industry (Netto et al., 2021)

Sustainability program E2 E5 E3 E1 E6 E4
Overall priority 0.64 0.52 0.38 0.36 0.28 0.26
Ideal 1 0.813 0.594 0.563 0.438 0.406
Rank 1 2 3 4 5 6

The second case pertains to the results of a recent AHP application for ranking 16
Polish voivodships concerning their biogas technology potential (Ginda & Szyba, 2020).
Overall priorities and ideals obtained for the voivodeships are presented in Table 2.

Table 2. The results of AHP application (Ginda & Szyba, 2020)

Rank | DMU | Overall priority Ideal Rank | DMU | Overall priority Ideal
1 B 0.1820 1 2 N 0.1701 0.9346
3 W 0.1648 0.9054 4 L 0.1623 0.8917
5 Z 0.1437 0.7895 6 F 0.1384 0.7604
7 P 0.1019 0.5598 8 T 0.0828 0.4549
9 (0] 0.0797 0.4379 10 E 0.0681 0.3741
11 C 0.0673 0.3697 12 S 0.0647 0.3554
13 R 0.0624 0.3428 13 G 0.0624 0.3428
15 D 0.0615 0.3379 16 K 0.0524 0.2879
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3.2. The case of six DMUs

Let us use information about priority difference ranks in a simple gradient ap-
proach. We start from the establishment of a global cluster of all DMUs: {E2 E5 E3
E1 E4 E6}. The largest priority difference is then applied to define the initial par-
tition point. It is clear from Table 1 that the largest priority difference corresponds
to the gap between E5 and E3 sustainability programs. We end up, therefore, with
two second level clusters in the first step. The first cluster consists of E2 and E5
programs while the second one contains the remaining programs. The application of
next priority differences in descending order allows us to complete levels of the clus-
ter hierarchy. The hierarchy is presented in Table 3. We can see that there are 6 fi-
nal clusters in the bottommost hierarchy level. Three intermediate hierarchy levels
correspond to the partitions with two, three, and four distinct clusters, respectively.

Table 3. Cluster level hierarchy for simple gradient technique application

Cluster hierarchy level Partition
Top {E2 E5 E3 E1 E6 E4}
sg26 {E2 E5}={E3 E1 E6 E4}
sg36 {E2}={E5}={E3 E1 E6 E4}
sg46 {E2}={E5}={E3 E1}={E6 E4}
Bottom {E2}={E5}={E3}={E1}={E6}={E4}

Now is the time to make a decision about which partition expresses the best di-
vision of sustainability programs. For example, we could prefer having no more than
4 clusters or aim to achieve a similarity measure at a level not higher than an average
priority difference (0.76 in this case). It proves, therefore, that we could finally be
happy with the sgd6 partition given by the fourth cluster level. The partition deals
with the division of sustainability programs into four distinct clusters. Two of them
consist of a single program (E2 or E5), and the two remaining clusters consist of two
programs each: {E3 E1}, and {E6 E5}. Let’s take a look at the s(4) values to ensure
the quality of the partitions from Table 3.

Individual silhouette coefficient values (see Table 4) obtained for sg26 support
the following conclusions:

1. E2 sustainable strategy would fit rather well with a common cluster shared
with E5 sustainable strategy. However, a rather low s(i) coefficient value for E5
strategy suggests that it doesn’t fit the cluster well. Therefore, it finally turns
out that both aforementioned strategies should comprise distinct clusters in their
own right.

2. Coefficient values for the remaining strategies suggest that they either fit very
well (E6, E4) or fit well (E1, E3) within their common cluster.

We can also see a considerable drop in s(i) values for the worst four strategies
after the two top strategies were separated into two distinct clusters (see sg36
partition in Table 3). Such a decrease in the coefficient values suggests that the
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E3, E1, E6, and E4 strategies no longer fit the common cluster well. The consid-
erable increase in the coefficient following their division into two separate clusters
confirms the superiority of the sgd6 partition in the case of the simple gradient
approach application.

Table 4. Silhouette coefficient values s(i) for the partitions — the simple gradient approach
application case

Partition E2 E5 E3 E1l E6 E4
sg26 0.625 0.4 0.6 0.697 0.778 0.75
sg36 - - 0.429 0.583 0.722 0.692
sg46 - - 0.818 0.778 0.778 0.818

Let us now apply the Szczotka—Spaeth technique. The anticipated effects
of grouping the adjoining distinct sustainability strategies are tested according
to the goal function @ (1), and a new cluster that minimizes the current goal
function as much as possible is recorded in each step. Hence, cluster hierarchy
emerges in a step-wise manner. The results of consecutive steps are presented in
Tables 5-8. Note that the recommended clusters are expressed there by means
of boldface. The calculations result in a cluster hierarchy, one which is finally
presented in Table 9.

The comparison of cluster hierarchies obtained through the application of the
simple gradient approach (Table 3) and the application of the Szczotka—Spaeth tech-
nique (Table 9) reveals a difference. The difference is associated with two unique
partitions. The first one (ssb6) corresponds with the second cluster hierarchy level
and consists of one cluster, which comprises two components {E3 E1}, as well as four
clusters that contain a single component each: {E2}, {E5}, {E6}, and {E4}. The
second partition (ss26) is presented in the fifth cluster hierarchy level and consists
of a single component cluster {E2} and a cluster that is composed of the remaining
sustainability programs. We finally use silhouette coefficient values again to justify
the partition — see Table 10 for details.

Table 5. The effects of possible joining of adjoining sustainability programs
after the initial step of Szczotka—Spaeth technique

Possible new cluster | {E2 E5} {E5 E3} {E3 E1} {E1 E6} {E6 E4}
Q1) 0.12 0.14 0.02 0.08 0.02

Table 6. The effects of possible joining of adjoining sustainability programs
after the second step of Szczotka—Spaeth technique

Possible new cluster {E2 E5} {E5 E3 E1} {E3 E1 E6} {E6 E4}
Q (1) 0.14 0.126 0.087 0.04
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Table 7. The effects of possible joining of adjoining sustainability programs
after the third step of Szczotka—Spaeth technique

Possible new cluster {E2 E5} {E5 E3 E1} {E3 E1 E6 E4}
Q (1) 0.16 0.127 0.073

Table 8. The effects of possible joining of adjoining sustainability programs
after the fourth step of Szczotka—Spaeth technique

Possible new cluster {E2 E5} {E5 E3 E1 E6 E4}
Q (1) 0.193 0.124

Table 9. Cluster hierarchy levels — the application of Szczotka—Spaeth technique

Cluster hierarchy level Partition

Top {E2 E5 E3 E1 E6 E4}

5526 {E2}—{E5 E3 E1 E6 E4}
5536—5g36 {E2}—{E5}—{E3 E1 E6 E4}
ss46—sg46 {E2}—{E5}—{E3 E1}—{E6 E4}

ss56 {E2}={E5}={E3 E1}={E6 E4}

Bottom {E2}={ES}={E3}={E1}={EG}={E4}

Table 10. Silhouette coefficient values s(i) for the unique partitions
according to Szczotka—Spaeth technique

Cluster hierarchy level E2 E5 E3 E1 E6 E4
s526 - - 0.8 0.75 - -
ss56 - -0.4 0.635 0.679 0.694 0.671

Hence, it is clear that the use of the partition from the fifth cluster hierarchy
level ss56 is inefficient due to the negative coefficient value for the E5 sustainability
program, which indicates a total mismatch for the program. It also turns out that the
application of a unique partition ss26 would result in lower coefficient values for E3
and E1 sustainability programs than those obtained for partition sg46 in the case of
the simple gradient approach — see Tables 3 and 4. It seems, therefore, that it should
be rejected in favor of the third cluster hierarchy level partition presented in Table 9,
which is identical to the sg46 partition from Table 3. Hence, his final partition recom-
mendation is the same as in the case of using the simple gradient approach.

The use of the Pareto-based rule is grounded in the application of ideals obtained
for the sustainability programs (see Table 1). The results of the conducted calculations
are illustrated in Table 11. We start from core ideals and the fully active DMU set.
The second best DMUs (E5) has an ideal within a 2% margin of the topmost DMU,
while the ideals of other DMUs are outside the margin. Hence, the topmost cluster
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consists of two top sustainability programs, E2 and E5. We remove them from the
set of active DMUs and proceed with the remaining four sustainability programs.
The ideal for the best of the remaining programs is then scaled to 1, and the ideals
of the other active sustainability programs are recalculated accordingly. The current
ideal for the second most active DMU (E1) fits a 20% margin from the current top
active DMU (E3). Hence, the second topmost cluster consists of two sustainability
programs: E3 and El1. The same conclusion pertains to the bottommost cluster,
which consists of the remaining DMUs: E6 and E4. Hence, the application of the
Pareto-based rule for clustering results in a unique set of three double sized clusters.
Individual silhouette coefficient values for the partition are presented in Table 12.

Table 11. Pareto rule-based approach illustration (¢ = 0.80) for the sit DMUs case

Step I Step II Step 111
Sustainability Ideal Sustainability Tdeal Sustainability Tdeal

program program program

E2 1 - - - —

E5 0.81 - - - —

E3 0.59 E3 1 — -

El 0.56 El 0.94 - —

E6 0.43 E6 0.73 E6 1

E4 0.40 E4 0.68 E4 0.92

Table 12. Silhouette coefficient values s(i) for the unique partition {E2 E5} {E3 E1} {E6 E4}
E2 E5 E3 E1l E6 E4
0.555 0.2 0.8 0.6 0.778 0.818

The contents of Table 12 confirm that the final partition provided by the appli-
cation of the Pareto rule-based approach is slightly better than some other partitions
obtained through the application of different clustering approaches (e.g., the sg26
partition in Table 3) from the perspective of clearly less preferred sustainability pro-
grams E3, E1, E6, and E4. It is, nevertheless, unacceptable because the sustainability
program E5 does not fit the partition at all.

Let us finally use a VIKOR-like marginal approach. The results of the calculations
are illustrated in Table 13. The first step deals with all sustainable programs and their
original ideals again. This time, however, the margin from the topmost DMU depends
on the current cardinality of the initial active DMU set. The cardinality is equal to
N = 6. Hence, according to (2) the initial threshold yields: 4 = 0.80. he application
of the threshold results in the same topmost cluster structure as in the case of apply-
ing the Pareto-rule {E2 E5}. The second step deals with a reduced set of four active
DMUs. The current margin from the topmost active DMU is therefore calculated for
N = 4, therefore. It yields O = 0.67, now. The ideals of all four active DMUs qualify
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them for the second highest cluster {E3 E1 E6 E4}. The procedure stops, therefore, all
DMUs have been distributed among clusters. Note that the obtained partition is the
same as the inefficient sg26 partition in the second cluster hierarchy level (Table 3).

Table 13. VIKOR-like rule-based approach illustration

Step I Step 11
N 9 N i
6 0.80 4 0.67
Sustainability Tdeal Sustainability Tdeal
program prograim
E2 1 E2 -
E5 0.81 E5 -
E3 0.59 E3 1
El 0.56 El 0.94
E6 0.43 E6 0.73
F4 0.40 E4 0.68

The best partitions identified by means of the core application of all used ap-
proaches are presented in Table 14. Partitions delivered by the Pareto rule and
VIKOR-like rule are unacceptable from the E5 sustainability program’s point of
view. It seems, therefore, that only clustering approaches may be capable of provid-
ing partitions in which all the sustainability programs fit well.

Table 14. The best outcomes for use of applied approaches for the six DMUs case

B2 | BE5 | B3 | B1 | B6 | B4

Approach Partition
(1)
Simple gradient
{E2}={E5}={E3 E1}={E6 E4} | — - 10.82|0.78{0.78 | 0.82
Szczotka—Spaeth
Pareto rule {E2 E5}={E3 E1}={E6+E4} 0.56 | 0.20 | 0.80 | 0.60 | 0.78 | 0.82
VIKOR-like rule |{E2 E5}={E3 E1 E6 E4} 0.63 [ 0.40 [ 0.60 | 0.70 | 0.78 | 0.75

3.3. The case of sixteen DMUs

Cluster hierarchy levels that result from the application of a simple gradient tech-
nique in the case of biogas potential analysis are presented in Table 15. A statistical
summary of the corresponding silhouette coefficient values s(i) for all meaningful
partitions is presented in Table 16.

Note that the partitions that make up the highest levels in the cluster hierarchy
(sg2-sg7) correspond to minimal values of silhouette coefficients, which testify that
some sustainability programs do not fit the partitions well. These are the eighth and
ninth cluster hierarchy levels that define partitions (sg8, sg9) which guaranty a good



56

G. Ginda

fit for all sustainability programs. The advantage in mean and maximum silhouette
coefficient values makes sg8 the final recommendation for the partition; however,
Note that excellent silhouette coefficient values are obtained in the case of partitions
from the twelfth and thirteenth cluster hierarchy levels. These partitions, neverthe-
less, seem to be unsuitable because they are extremely fragmented.

Table 15. Cluster hierarchy — the simple gradient technique application case

for sizteen DMUs case

Name Partition
Top B4+N+W+L+Z+F+P+T+0O+E+C+S+G+R+D+K
sg2 B+N+W+L4Z+F P+T+O+E+C+S+G+R+D+K
sg3 B+N+W+L+Z+F P T+O+E+C+S+G+R+D+K
sgd B+N+W+L Z+F P T+O+E+C+S+G+R+D+K
Sgo B N+W+L Z+F P T+O+E+C+S5+G+R+D+K
sgb B N+W+L Z+F P T4+0O E+C+S+G+R+D+K
sg7 B N+W+L Z+F P T+O E+C+S+G+R+D K
sg8 BN W+L Z F P T+O E+C+S+G+R+D K
sg9 BNW+L Z F P T O E+C+S+G+R+D K
sgl0 BNW+L Z F P T O E+C S+G+R+D K
sgll BNWLZFPT O E+C S+G+R+D K
sgl2 BNWILZFPTOE+CS G+R+D K
sgl3 BNWILZFPTOETCS G+R+D K
Bottom BNWLZFPTOETCSGHIR DK

Table 16. Silhouette coefficient statistics for unique partitions

for simple gradient technique application case for sixteen DMUs case

Name Number min s(%) mean s(i) _max std.dev. s(i)
of clusters (DMU) s(i) (DMU) (DMU)
sg2 2 0.398 (P) 0.793 0.888 (D) 0.126
sg3 3 0.058 (T) 0.634 0.805 (R) 0.229
sgd 4 0.058 (T) 0.661 0.831 (F) 0.210
sgb 5 0.058 (T) 0.665 0.806 (F) 0.221
sg6 6 0.450 (N) 0.712 0.838 (T) 0.118
sg7 7 0.450 (N) 0.722 0.832 (T) 0.096
sg8 9 0.528 (W) |  0.707 0.832 (T) 0.085
sg9 10 0.528 (W) |  0.670 0.776 (S) 0.074
sg10 11 0.133 (S) 0.668 0.850 (E) 0.224
sgll 12 0.133 (S) 0.689 0.850 (S) 0.251
sgl2 13 0.719 (D) 0.776 | 0.804 (G,R) 0.040
sgl3 14 0.719 (D) 0.776 | 0.804 (G,R) 0.040
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Table 17 presents the cluster hierarchy obtained through the application of the

Szczotka—Spaeth technique. The technique provides 5 partitions, which also appear

in the simple gradient approach to the use-related cluster hierarchy. They include the
most notable ones with regard to individual silhouette coefficient values as well. How-

ever, the majority of partitions provided by the technique are unique. The unique

partitions are expressed in Table 17 by boldface. Silhouette coefficient statistics for

them are given in Table 18.

Table 17. Cluster hierarchy — Szczotka—Spaeth technique application case
for sizteen DMUs case

Name Partition
Top B4+N+W+L+Z+F+P+T+0O+E+C+S+G+R+D+K
sg2 B+N+W+L+Z+F P4+T+0+E4+C+S+G+R+D+K
ss3 B+N+W+L Z+F P+T+O+E+C+S+G+R+D+K
ss4 B N+W+L Z+F P+T+O+E4CHS4+G+R+D+K
ssb B N+W+L Z F P+T4+O+E+C+S+G+R+D+K
ss6 B N+W+L Z F P T+O+E+4+C+S+G+R+D+K
ss7 B N+W+L Z F P T O+E+4+C+S+G+R+D+K
ss8 B N+W+L Z F P T O E4+C+S+G+R+D+K
ss9 B N W+L Z F P T O E4+C+S4+G+R+D+K
ss10 B NWULZFPT O E4+CH+S+G+R+D+K
ssll B NWILZVFPT O E+C+S+G+R+D K
sgll BNWLZFPTO E+C S+G+R+D K
sgl2 BNWILZFPTOE+CS G+R+D K
sgl3 BNWILZFPTOETCS GHR+D K
Bottom BNWLZFPTOECSGH+R D K

Table 18. Silhouette coefficient statistics for unique partitions

for Szczotka—Spaeth technique application case for sixteen DMUs case

Name Number min s(1) mean s(i) max s(4) std.dev. s(3)
of clusters (DMU (DMU) (DMU)
ss3 3 0.104 (P) 0.723 0.860 (S) 0.188
ssd 4 0.104 (P) 0.731 0.860 (S) 0.196
585 5 0.039 (P) 0.712 0.855 (S) 0.223
ss6 6 0.058 (T) 0.645 0.805 (G, R) 0.232
ss7 7 ~0.818 (0) 0.505 0.773 (W) 0.430
558 8 0.450 (E) 0.651 0.773 (W) 0.127
589 9 0.455 (E) 0.642 0.771 (G, R) 0.114
5510 10 0.455 (E) 0.653 0.771 (G,R) 0.120
ss11 11 0.617 (E) 0.692 0.776 (S) 0.058
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It appears that almost all unique partitions derived from the application of the
Szczotka—Spaeth technique deal with rather unacceptable silhouette coefficient val-
ues for individual DMUs. The only unique partition that provides acceptable values
for the coefficient consists of a single cluster {E C S G R D} and 10 clusters made
up of distinct DMUs. Coefficient values for individual DMUs seem, nevertheless, to
suggest that the partition is slightly worse than the best partitions provided by the
gradient approach application (see Table 16).

The sequence of the Pareto rule-based procedure steps is illustrated in Table 19.
The boldfaced ideals in the table correspond to the current cluster composition. Note
that the application of the procedure finally gives the partition, which consists of
5 clusters: {B N W L}, {Z F}, {P T}, {O E C S}, and {G R D K}. The silhouette
coefficient values for individual DMUs, which are presented in the last column of
Table 19, show, however, that the partition is inefficient (see the boldfaced entries in
the last column). This is because some DMUs generally misfit the partition (T, S, O),
while others show a rather poor fit (C, E, P, K).

Table 19. Pareto rule-based approach use illustration (¢ = 0.80) for the sizteen DMUs case

DMU I 1 111 v N s(i)
B 1 - - - B 0.603
N 0.934 - - - - 0.713
W 0.905 - - - - 0.649
L 0.891 - - - - 0.529
Z 0.789 1 - - - 0.797
F 0.760 0.963 - - B 0.831
P 0.559 0.709 1 - - 0.402
T 0.454 0.576 0.812 - - —0.327
0 0.437 0.554 0.782 1 - —0.027
E 0.374 0.473 0.668 0.854 - 0.375
C 0.369 0.468 0.660 0.844 B 0.309
S 0.355 0.450 0.634 0.811 - —0.282
G 0.342 0.434 0.612 0.782 1 0.519
R 0.342 0.434 0.612 0.782 1 0.519
D 0.337 0.428 0.603 0.771 0.985 0.570
K 0.287 0.364 0.514 0.657 0.839 0.447

The sequence of steps for the VIKOR-like rule-based application is presented in
Table 20. The obtained results suggest a partition that consists of 7 clusters: {B N},
{W L}, {Z F}, {P}, {T O}, {E C S G R D}, and {K}. Although the partition is
much better, in terms of the silhouette coefficient, than the partition resulting from
the application of the Szczotka—Spaeth technique, it is still ineffective. This is due to
an unacceptable coefficient value for the second best DMU and a rather poor value
for the top DMU. It is truly a pity, as fairly high silhouette coefficient values are
registered for the majority of the remaining DMUs.
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The comparison of final results for the sixteen DMUs case is presented in Ta-
ble 21. It transpires that the application of different approaches results in the iden-
tification of partitions that differ in the structure of DMU clusters. The number of
clusters ranges from 5 in the case of the Pareto rule, application to 11 in the case
of the Szczotka—Spaeth technique. Almost all the approaches proved capable of iden-
tifying partitions where more than half of the DMUs form clusters consisting of at
least two DMUs. Szczotka—Spaeth is a notable exception in this regard.

Table 20. VIKOR-like rule approach rule-based use illustration for the sixteen DMUSs case

DMU I 11 111 v \% \%! VII
N 16 14 12 10 9 7 1 s(4)
9 0.067 | 0.077 | 0091 | 0111 | 0.125 | 0.167 -
B 1 - - - - - - 0.355
N 0.934 - - - - - - —0.450
W 0.905 1 - - - - - 0.778
L 0.891 | 0.984 - - - - - 0.818
7 0.789 | 0.872 1 - - - - 0.733
F 0.760 | 0.839 | 0.963 - - - - 0.789
p 0.559 | 0.618 | 0.709 1 - — — -
T 0454 | 0502 | 0576 | 0.812 1 — — 0.832
o) 0.437 | 0483 | 0554 | 0.782 | 0.962 — - 0.797
E 0.374 | 0413 | 0473 | 0.668 | 0.822 1 — 0.662
C 0.369 | 0.408 | 0.468 | 0.660 | 0.812 | 0.988 - 0.728
S 0.355 | 0.392 | 0450 | 0.634 | 0.781 | 0.950 - 0.776
G 0342 | 0378 | 0434 | 0612 | 0.753 | 0.916 - 0.724
R 0342 | 0378 | 0434 | 0612 | 0.753 | 0.916 - 0.724
D 0.337 | 0373 | 0428 | 0603 | 0.742 | 0.903 - 0.618
K 0.287 | 0.318 | 0.364 | 0514 | 0.632 | 0.769 1 -
Table 21. Final results for the sizteen DMUs case
Approach Partition
number of i i i
( clusters) I(n];;llv[%z)) mean s(1) r?]g)li/&%) std.dev. s(%)
Simple gradient {B}={N}={W L}=H{Z}={F}={P}={T O}={ECS G R D K}
9) 0.528 (W) | 0.707 0.832 (T) | 0.085
Szczotka Spaeth [{BY={N}AW}=A{L}={Z}AF}A{P}{T}={O}={E CS G R D}—{K}
(11) 0.617 (E) 0.692 0.776 (S) 0.058
Pareto rule {BNWL}~{ZF}={P T}={O E CS}={G R D K}
(5) -0.327 (T) 0.414 0.831 (F) | 0.336
VIKOR-like rule {(B}={N}={W L}{Z F}={P}={T O}={E C S G R D}={K}
(7) -0.450 (N) 0.635 0.854 (G, R) 0.322
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4. DISCUSSION

Results of the presented analysis show that traditional clustering approaches seem
capable of indicating partitions that provide a good fit for individual DMUs. On the
other hand, both proposed rule-based approaches seem to lack such a capability.
A closer look at the results of the application of distinct techniques (see Table 14 and
Table 21) nevertheless provides some hints regarding possible improvements in the
results. For example, there is only a single E5 sustainability program that doesn’t
fit the final partition suggestion provided by the application of both rule-based ap-
proaches for the six DMUs case (see Table 14). Hence, we could try to break its
common cluster with the E2 program (VIKOR rule-based partition only) or even
merge it with the cluster of worse sustainability programs. The anticipated effects
of these actions are presented in Table 22. The effects nonetheless confirm that the
corrections result in unsatisfactory outcomes.

Table 22. Anticipated effects of partition corrections for the siz DMUs case

Approach Partition (1)
E2 | E5 | E3 | E1 | E6 | E4
Pareto rule {E2}—={E5 E3 E1}—{E6 E4} -0.20] 027 | 0 | 0.52 | 0.50
VIKOR- {E2}={E5}={E3 E1 E6 E4} | - — | 042|058 | 0.72 | 0.69
like rule {E2}={E5 E3 E1 E6 E4} ~ | -0.40| 0.63 | 0.67 | 0.69 | 0.67

Let us see if it is possible to improve the results of the application of rule-based
approaches in the sixteen DMUs case. The contents of Table 19 suggest that the main
problem with the inefficiency of the partition resulting from the application of the Pareto
rule clearly pertains to the cluster {P T O E C S}. The somewhat poor, although not
very bad, silhouette coefficient values for P, E, and C suggest that it could be advanta-
geous to separate them into distinct clusters: {P} and {E C}. By the way, conducting
the same action regarding the least preferable DMU, namely K, may also help improve
individual silhouette coefficient values. Note that negative values for the coefficient in the
cases of T and O also suggest that these DMUs could benefit from a common, distinct
cluster. On the other hand, the negative silhouette coefficient value for S suggests that it
would fit better into a common cluster with slightly better DMUs (C and E) and slightly
worse DMUs (G, R, and D). Hence, we could finally obtain the corrected partition, which
would consist of 6 clusters: {B N W L}, {Z F}, {P}, {T O}, {E C S G R D}, and {K}.
The quality of the derived partition is confirmed by the contents of Table 23.

Table 23. Recommended corrected partition for sizteen DMUs case —
Pareto rule approach application

.. min | mean | max | std.dev.
Partition (i) (i) (i) (i)
(BN W L}—{Z F}—{P}—{T O}—{E C S G R D}—{K} Oﬁg 0.713 0{%3)2 0.088
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In the case of the VIKOR-like rule application (see Table 20), the presence of only
two unsatisfactory values for individual silhouette coefficient values for adjacent top
DMUs, B and N, seems to suggest a rather obvious and simple solution for improving
the partition. The solution would address the final division of two top DMUs into
two separate clusters or the final integration of N into the adjoining cluster {W L}.
Note that the latter partition is identical to the sg7 partition from the seventh level
of the cluster hierarchy obtained for the simple gradient approach application (see
Table 15). Nevertheless, the descriptive statistics for individual silhouette coefficient
values for the partition presented in Table 16 show that N fits rather poorly with the
common cluster of W and L. The division of the two top DMUs among two distinct
clusters is finally recommended. Therefore, the final recommended partition consists
of 8 clusters. Note that the corrected partition is only slightly worse than the best
partitions derived from the application of both clustering approaches, as its core dis-
advantage results from a lower silhouette coefficient for W only.

All in all, both clustering approaches and both rule-based approaches proved
to be capable of recommending diverse partitions to which DMUs fit well, at least.
The diversity of the partitions results in a different number of clusters (ranging
from 6 in the case of the Pareto rule to 11 in the case of the Szczotka—Spaeth
technique) and differences in silhouette coefficient values for individual DMUs.
The results of the calculations conducted show that very good partitions — in
terms of both average and maximum silhouette coefficients (values over 0.71) — are
provided by the corrected results of the application of the VIKOR-like and Pare-
to rule-based approaches. Note, however, that the results provided by the use of
both clustering approaches and the simple gradient approach, in particular, do not
prove to be significantly worse in this regard. Moreover, the partitions provided by
correcting the direct VIKOR-like rule and using a simple gradient technique are
almost the same, with only two DMUs — Z and F — being treated differently by
these methods. Note that balanced partitions are ultimately recommended by the
application of all four approaches, as the standard deviation level for individual
silhouette coefficient values is relatively low. Almost all the approaches proved to
be capable of recommending partitions in which more than half of the DMUs form
clusters consisting of at least two DMUs Szczotka—Spaeth is, nevertheless, a nota-
ble exception in this regard.

5. CONCLUSIONS

Some possible ways to interpret the results of qualitative AHP/ANP technique appli-
cations in a more adequate manner were discussed in the paper. The application of
both common hierarchical clustering approaches (the simple gradient approach and
the Szczotka—Spaeth technique), as well as simplified approaches based on discrimi-
nation rules (the Pareto rule and the VIKOR-like rule), is considered in this regard.
Two distinct real case studies, which differed in the number of DMUs, were used to
initially assess the suitability of the approaches for an adequate analysis of AHP/
ANP results.



62 G. Ginda

It turns out that common clustering approaches seem to be generally capable
of providing adequate means for expressing qualitative differences between DMUs,
thanks to their reliable division among distinct groups, regardless of how many DMUs
are actually considered. Their use, particularly the use of a less tedious and simpler
gradient approach, is therefore recommended.

The considered simplified rule-based approaches are generally less tedious but do
not seem to directly succeed in recommending partitions in which all DMUs fit well, at
least. However, the quality of the corrected results from their application, obtained for
a considerable number of DMUs, seems to suggest that they may, nevertheless, prove
to be useful in peculiar circumstances, at least. This is because they seem to be capable
of providing a reliable basis for the identification of unique competitive partitions that
common clustering approaches were not aware of at all. Hence, although they do not
seem to directly derive reliable DMUs partitions, they should not be disregarded.

It is obvious that the rather limited scope of the conducted analysis does not
allow for the formation of reliable general conclusions. Further research is recom-
mended; therefore, a comprehensive investigation into the effects of using considered
approaches for grouping AHP/ANP application results is necessary to facilitate their
qualitative interpretation. For instance, simulating the influence of the number of
DMUs and other parameters of decision analysis problems on the effects of using
the approaches could prove advantageous in this regard. The verification of the suit-
ability of other approaches is also welcome. For example, the application of diverse
metrics for cluster separation quality assessment (Bezdek & Pal, 1998; Dunn, 1973;
Pakhira et al., 2004; Tibshirani et al., 2001) and various clustering techniques (Ism-
khan, 2017; Mankowski & Moshkov, 2021; Szkaliczki, 2016; Wang & Song, 2011). The
influence of the use of different priority estimation techniques and assessment scales
in AHP/ANP, as well as similarity metrics, may also be considered in this regard.
All in all, it is nonetheless hoped that the paper will foster a serious discussion about
the adequate way to interpret the results provided by AHP/ANP applications in
a meaningful and consistent manner, at least.
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