
Decision Making in Manufacturing and Services

Vol. 1 • 2007 • No. 1–2 • pp. 175–190

Elevator Trip Distribution

for Inconsistent Passenger Input-Output Data

Kiyoshi Yoneda∗

Abstract. Accurate traffic data are the basis for group control of elevators and its perfor-
mance evaluation by trace driven simulation. The present practice estimates a time series of
inter-floor passenger traffic based on commonly available elevator sensor data. The method
demands that the sensor data be transformed into sets of passenger input-output data which
are consistent in the sense that the transportation preserves the number of passengers. Since
observation involves various behavioral assumptions, which may actually be violated, as well
as measurement errors, it has been necessary to apply data adjustment procedures to secure
the consistency. This paper proposes an alternative algorithm which reconstructs elevator
passenger origin-destination tables from inconsistent passenger input-output data sets, thus
eliminating the ad hoc data adjustment.

Keywords: traffic problems, inverse problems, estimation, operation research

Mathematics Subject Classification: 96B20, 15A29

Received/Revised: 20 January 2007/28 June 2007

1. INTRODUCTION

This paper concerns acquisition of traffic data for elevator systems. The data acquired
are used for elevator group control (Nikovski, Brand, 2003) and its evaluation by trace
driven simulation (Smith, 1994; Uhlig, 1997), both explained briefly in Appendixes A
and B. The desired data are, for each elevator passenger, (a) arrival time, (b) origin
floor, and (c) destination floor. Hopefully these data are to be monitored continuously
on a real time basis without requiring special data acquisition equipment. Since none
of the data items is automatically available, the desired data need to be reconstructed
from sensor data such as elevator load, buttons pressed, and elevator location.

When an elevator car arrives at a floor, first some of the passengers go out of the
car; only upon its completion passengers in the elevator hall begin to flow into the
car. Hence the number of passengers who went out of and who came into the car may
be measured fairly accurately by observing the change of load from the arrival to the
departure of the car:

load out = load at arrival − minimum load at the floor
load in = load at departure − minimum load at the floor

∗ Fukuoka University, Japan. E-mail: yoneda@econ.fukuoka-u.ac.jp.

175



176 K. Yoneda

Some of the passengers get off the car at a floor only temporarily to make way to
passengers wishing to exit the car. This number is large when the car is crowded and
small when not. Some passengers are heavy while others are light. By compensating
for these by various means it is possible to obtain an estimate of the input-output (IO)
data which consists of the number of passengers who departed from and the number of
passengers who arrived at the particular floor by the elevator car under observation.

A unit of elevator car observation starts at the moment the car becomes empty,
proceeds through a process of passengers going out of and coming into the car as
the car makes stops, ending when the car becomes empty again. Such a unit of
observations is called a regenerative data set after a terminology in simulation (Ross,
1996). We assume that an elevator car becomes empty at least when the car changes
the direction from up to down or vice versa. (Actually this does not hold when the
system is so crowded that passengers ride any elevator car that stops, disregarding its
direction.) By distributing the IO data to an origin-destination (OD) table we have
reconstructed data items (a), (b), and (c), as will be detailed later in this paper: now
we know how many passengers were carried from which floor to which floor and when
that event took place.

Since the observation described involves not only various behavioral assumptions
regarding the passengers but also many sources of measurement errors, the regenera-
tive data set is prone to be inconsistent, meaning that the estimated number of pas-
sengers may differ between the total departure and the total arrival. This complicates
the downstream data processing, viz. the distribution of regenerative IO data into an
OD table. For this reason it has been customary to perform a preprocessing to ensure
that the total number of departing passengers equals the total number of arriving
passengers within a regenerative data set. The schematic data flow would then be

Regenerative data set → (Inconsistent) IO data

→ Consistent IO data → OD table. (1)

This paper documents the present status of elevator trip observation technology
and then proposes a new method to distribute regenerative IO data into an OD table
without requiring the ad hoc adjustment to enforce consistency:

Regenerative data set → (Inconsistent) IO data → OD table. (2)

Each regenerative data set obtained, to be described in Section 2, is then transformed
into IO data as in Section 3. The present industrial practice to enforce data consis-
tency by preprocessing and then distribute the IO data into an OD table is explained
in Section 4. The original contribution of this paper is in Section 5 where the incon-
sistent IO data are directly distributed into an OD table. Section 6 illustrates that
skipping the IO data reconstruction as in

Regenerative data set → OD table (3)

is conceivable but impractical. The results are summarized in Section 7 with com-
ments. Appendixes A and B include background information on elevator group control
and trace driven simulation, respectively.



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 177

2. REGENERATIVE DATA SETS

A cheap way to monitor traffic of a large number of elevators is to use sensors that
elevators readily have and send collected data to a computer over a communication
channel. This is not difficult since modern elevators come with remote monitoring
systems for safety and maintenance purposes. Available sensors vary among elevator
systems but usually include those listed in Table 1.

Table 1. Commonly available elevator car status information

Current time
Direction neutral, heading up, heading down
Location between floors i and j, j = i or j = i + 1
Load weight onboard
Door status open or closed
Hall button status up/down call pressed or not
Car button status destination k pressed or not

Additional data are sometimes available such as door control button signals, pho-
tocell door sensor signals, or even images from monitoring cameras. However, de-
velopment of data collection methods specific to those exceptional systems is seldom
justifiable.

Suppose the observation of a car starts at the moment it becomes empty. After
some time passengers will walk into the elevator hall, press the hall button, and get
in when the car arrives. The car travels upward or downward; some passengers get
off and others get on as the car makes stops. Eventually the car becomes empty
again. We call such a sequence of observations beginning and ending with null load
a regenerative set of data following the terminology in simulation (Ross,1996).

Example 1. Regenerative data set.
In this example from (Yoneda et al. 1997), Figures 1 to 4 illustrate a sequence of

events from which a regenerative data set is acquired.
The elevator car is initially empty at stop 1 (not necessarily floor 1) as in Figure 1.

When the car leaves stop 1 its load corresponds to five passengers. Car buttons to
stops 3, 4, and 5 (not necessarily floors 3, 4, and 5) have been pressed prior to the
arrival at stop 2, and that at stop 2 the upward hall button has been pressed. The
car proceeds upward to stop 2, at which no passenger gets off.

At stop 2, one passenger gets into the elevator car, as illustrated in Figure 2. When
the car leaves stop 2 its load is six passengers with the same car buttons pressed as
before. Upward hall button has been pressed at stop 3. Upon arrival at stop 3, the
car button to stop 3 is cleared; two passengers get off.

At stop 3, two passengers ride the elevator car as in Figure 3. When the car leaves
stop 3, its load is six again. Upon arrival at stop 4, the car button to stop 4 is cleared;
four passengers get off.



178 K. Yoneda

Time-

Stop

6

Car buttons

-

5

4

3

2

1

1

2

d

��AA
��

d

��AA
��

d

��AA
��

d

��AA
��

d

��AA
��

d
��

d
��

d
��

d
��

d
��

6

d
��

d
��

d
��

d
��

d
�� ©

©

©

Fig. 1. From stop 1 to stop 2

Time-

Stop

6

Car buttons

-

5

4

3

2

1

2

3

d

��AA
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

6

d
��

d
��

d
��

d
��

d

��AA
��

d

��AA
��

©

©

©

Fig. 2. From stop 2 to stop 3

At stop 4, no new passenger rides the elevator car. When it leaves stop 4, the load
is two as in Figure 3. At floor 5, the car becomes empty again; a regenerative data
set has been acquired.



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 179

Time-

Stop

6

Car buttons

-

5

4

3

2

1

3

4

d

��AA
��

d

��AA
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

6

d
��

d
��

d

��AA
��

d

��AA
��

d

��AA
��

d

��AA
��

©

©

Fig. 3. From stop 3 to stop 4

Time-

Stop

6

Car buttons

-

5

4

3

2

1

4

5

d
��

d
��

d
��

d
��

6

d

��AA
��

d

��AA
��

©

Fig. 4. From stop 4 to stop 5

The entire process is summarized in Figure 4. Note that the exact number of pas-
sengers in the car is unknown since it is only estimated from the weight measurement
of the load.



180 K. Yoneda

With such a regenerative set of data it is desired to estimate how many passengers
traveled from stop i to stop j, for all stop pairs (i, j),

3. PASSENGER IO DATA

As has been outlined in Section 1, an estimate of the number of passengers coming
out of and going into an elevator car at a stop may be obtained from elevator car
loads.

The arrival time of a passenger can be narrowed down to the interval between the
time the hall button of the relevant direction was pressed and the time the elevator
car of the same direction arrived. At least one passenger is sure to have arrived at
the moment the hall button was pressed (unless the passenger leaves the elevator hall
without riding the elevator, which is not very likely). The rest of the arrivals can
be estimated according to the arrival process model, such as Poisson arrival or some
kind of group arrival.

To summarize, with a regenerative set of data,
1. The elevator load carried from one stop i to the next i + 1 can be measured fairly

accurately.
2. At a stop i it is possible to estimate n

· i, the number of passengers which the
elevator carried to stop i, and ni ·, the number of passengers which the elevator
carried from stop i.

3. The arrival time of the first passenger can be measured fairly accurately for each
(floor, direction)-pair.

4. The arrival times of the other passengers may be estimated according to the arrival
process model.

However, since the estimates are based upon passengers’ behavioral assumptions which
may well be violated and also subject to measurement errors (such as the “hysteresis”
of the scale), the data set is usually inconsistent meaning that

∑

i

ni· =
∑

j

n
·j (4)

may not hold, as if the number of passengers were not conserved by transportation
using elevators.

4. IO DATA WITH ENFORCED CONSISTENCY

For trace driven simulation of elevator groups traffic has to be supplied for all floor
pairs. Since there is no direct way to measure the traffic between floor pairs, it has to
be reconstructed mainly from item 2 in the previous section. The industrial practice
has been to make a preliminary adjustment to satisfy the consistency (4) in order to
facilitate the downstream data processing.



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 181

The easiest way to go is (1), to normalize ni · and n
· j , for instance, by

n
· ·

ni ·/
∑

k nk ·
and n

· ·
n
· j/

∑

` n
· `, respectively, where n

· ·
is something like, say,

the average of
∑

k nk ·
and

∑

` n
· ` rounded to an integer.

Example 2. Consistent data from Figure 5.
Assuming that the numbers of passengers who went into and came out of the

elevator car at each stop are accurately known, the formulation into origin-destination
(OD) table estimation proceeds as follows.

Fig. 5. A regenerative data set

The question marks “?” are for the unknowns while the blanks are for zero:

OD 1 2 3 4 5
∑

1 ? ? ? 5
2 ? ? ? 1
3 ? ? 2
4
5
∑

2 4 2 8

Since buttons to stops 3, 4, and 5 have been pressed prior to the car’s arrival at stop
2, it may be concluded that at least one person moved from stop 1 to each of the
stops 3, 4, and 5:

OD 3 4 5
∑

1 ? ? ? 2
2 ? ? ? 1
3 0 ? ? 2
∑

1 3 1 5



182 K. Yoneda

This table enables the use of various matrix balancing algorithms, notably the
easy-and-fast RAS algorithm (Schneider, Zenios, 1990). The RAS algorithm with
the uniform prior adding up to 5





5/8 5/8 5/8
5/8 5/8 5/8
0 5/8 5/8





results in:

OD 3 4 5
∑

1 0.667 1.000 0.333 2
2 0.333 0.500 0.167 1
3 0 1.500 0.500 2
∑

1 3 1 5

The only remaining problem is that the solution thus obtained is in real numbers
rather than integers. Rounding the reals into integers results in inconsistencies as
follows

OD 3 4 5
∑

1 1 1 0 2
2 0 1 0 1
3 0 2 1 2
∑

1 3 1 5

Consistent integer estimates may be obtained by the greedy algorithm which as-
sumes that the passengers arrived in the order of likelihood. The algorithm is much
faster than trying to obtain an integer solution directly as in Yoneda (1994).

Example (continued). Integer solution.
Since the most probable arrival is a passenger going from stop 3 to stop 4, assume

that such a passenger actually existed.
Then we have

OD 3 4 5
∑

1 0 0 0 0
2 0 0 0 0
3 0 1 0 1
∑

0 1 0 1



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 183

and the OD table for the remaining passengers is

OD 3 4 5
∑

1 ? ? ? 2
2 ? ? ? 1
3 0 ? ? 1
∑

1 2 1 4

Solving this yields

OD 3 4 5
∑

1 0.667 0.889 0.444 2
2 0.333 0.444 0.222 1
3 0 0.667 0.333 1
∑

1 2 1 5

from which we have the next arrival (1, 4)

OD 3 4 5
∑

1 0 1 0 1
2 0 0 0 0
3 0 1 0 1
∑

0 2 0 2

with the OD table for the remaining passengers

OD 3 4 5
∑

1 ? ? ? 1
2 ? ? ? 1
3 0 ? ? 1
∑

1 1 1 3

Proceeding similarly the greedy algorithm terminates with

OD 3 4 5
∑

1 1 1 0 2
2 0 1 0 1
3 0 1 1 2
∑

1 3 1 5

We have secured a reconstructed OD table.

5. INCONSISTENT IO DATA

We now drop the assumption that the IO data are consistent to adopt (2). Since
the RAS algorithm oscillates when the data are inconsistent, an alternative algorithm



184 K. Yoneda

is required. Various candidates exist, including the network optimization algorithm,
also described in Schneider, Zenios (1990), which we find to be too involved. Here
we choose the positive inverse problem approach in Yoneda (2006) for simplicity.
The method finds a unique positive solution to approximate a generally inconsistent
system of positive near-equations of the form























1
. . .

1
...

· · · Xi j · · ·
...































...
θj

...









≈





















...

...

...
yi

...





















w =





















...

...

...
wi

...





















0 ≤ Xij , 0 < θ, 0 < y, 0 ≤ w

where w is a vector of importance weights. Note that this is an interesting problem
in its own right since most numbers such as prices and quantities which appear in
various real-world applications are positive. Zero has been excluded as a possible
value of θ to avoid complications related to the difference between estimation and
model identification.

The solution method proposed in Yoneda (2006) is as follows. Write the system of
near-equations Xθ ≈ y , or equivalently Xi ·θ ≈ yi , where Xi · is the i-th row vector
of X. By writing Zij := Xij/yi the system may be rewritten as Zθ ≈ 1. Noting that

Zi·θ − 1 = 0 ⇔ log Zi·θ = 0

0 ≤ (Zi·θ − 1) log Zi·θ

the solution to Zθ ≈ 1 is defined by

θ̂ := arg min
θ

∑

i

(Zi ·θ − 1) log Zi ·θ .

Since this is minimization of a strictly convex smooth function the solution is fast
and easy. The computational effort required is greater than the RAS algorithm (the
greater the inconsistency, the more the effort needed) but well within the capacity of
personal computers or even elevators’ onboard microcomputers.

Example 3. Inconsistent IO data.
Suppose that in the previous example the measured number of passengers who

went into the elevator does not match the number of passengers who came out, as
follows:

OD 3 4 5
∑

1 θ1 θ2 θ3 2
2 θ4 θ5 θ6 1
3 0 θ7 θ8 2
∑

1 2 1 4 or 5?



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 185

Then we have, say,

















































1
1

1
1

1
1

1
1

1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1









































































θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

























≈

















































4.5/8
4.5/8
4.5/8
4.5/8
4.5/8
4.5/8
4.5/8
4.5/8

2
1
2
1
2
1

















































w =

















































1/100
1/100
1/100
1/100
1/100
1/100
1/100
1/100

1
1
1
1
1
1

















































where the weights indicate that the priors are one digit less credible than the IO data,
i.e., 1/10 in standard deviation or 1/100 in variance. Its solution gives

OD 3 4 5
∑

1 0.703 0.702 0.350 1.755
2 0.364 0.363 0.220 0.947
3 0 1.217 0.512 1.729
∑

1.067 2.282 1.086 4.431

so that the first arrival is

OD 3 4 5
∑

1 0 0 0 0
2 0 0 0 0
3 0 1 0 1
∑

0 1 0 1

Proceeding similarly to the greedy algorithm with consistent data we arrive at

OD 3 4 5
∑

1 1 0 0 1 (< 2)
2 0 1 0 1
3 0 1 1 2
∑

1 2 1 4



186 K. Yoneda

With inconsistent data the greedy algorithm always favors the minimum of the
row and column sums. It is easy to modify the algorithm so that the total estimated
number of passengers equals, say, the closest integer to the average of row and column
sums. It is also easy to set a higher weight to the more credible between the row and
the column sums.

6. SKIPPING IO DATA

Up to the previous section we first documented the industrial practice (1) and then
proposed a way to proceed more directly as in (2). The advantage of permitting
inconsistent IO has been that the method requires no preprocessing to ensure data
consistency, unlike with the traditional method. Going a step further, now we drop
the computation of IO data, which is likely to be inaccurate anyway, to adopt (3).
This is possible since the method proposed in the previous section solves any system
of positive linear approximate equations. However, if we assume that only load car-
ried from a stop to another is available in place of the IO data, information seems
insufficient even for the simple example used in this paper:

Example 4. Load data without IO.
If IO data are unavailable, the near-equations become, say,





































1
1

1
1

1
1

1
1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1





























































θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

























≈









































1
1
1
1
1
1
1
1
2
3
3
2









































w =









































1/100
1/100
1/100
1/100
1/100
1/100
1/100
1/100

1
1
1
1









































where the weights for priors are taken even smaller than before since not even the
total number of passengers is now known. The solution is

OD 3 4 5
∑

1 0.678 0.447 0.833 1.958
2 0.383 0.281 0.447 1.111
3 0 0.384 0.675 1.062
∑

1.062 1.111 1.958 4.131



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 187

so that the first arrival is θ3 = 1:

OD 3 4 5
∑

1 0 0 1 1
2 0 0 0 0
3 0 0 0 0
∑

0 0 1 1

The next near-equations are then





































1
1

1
1

1
1

1
1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1





























































θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

























≈









































1
1
1
1
1
1
1
1
1
2
2
1









































w =









































1/100
1/100
1/100
1/100
1/100
1/100
1/100
1/100

1
1
1
1









































Although it is possible to proceed by greedy algorithm as in previous examples, it
becomes apparent that even with this example the near-equations do not have enough
information so that the assignment of a person to the OD pair becomes arbitrary, viz.,
the integer solution will not be unique. For instance, these two solutions are equally
likely:

OD 3 4 5
∑

1 2 0 1 3
2 0 0 0 0
3 0 1 0 1
∑

2 1 1 4

OD 3 4 5
∑

1 1 0 1 2
2 0 1 0 1
3 0 1 0 1
∑

1 2 1 4

7. CONCLUDING REMARKS

A new elevator trip distribution method has been proposed, which has the following
properties:
— The ad hoc data adjustment preprocessing, which has been a common practice, is

eliminated.
— The computational effort is slightly greater than the RAS algorithm but well

within the commonly available computational capabilities.
The first experiment by Toshiba Corporation to obtain regenerative data sets was

conducted 1975 in Tokyo after the author’s suggestion1. Inspection of patents applied

1 The first measurement equipment was the size and weight of a refrigerator because it comprised

microcomputer boards and recording devices. It was a hard work to pull it up to the elevator ma-

chine room at the top floor, since the elevator does not go to the floor hosting its motor-generator.



188 K. Yoneda

for indicate that other Japanese elevator manufacturers may have conducted similar
experiments around that time as well.

It should be possible to improve the accuracy of traffic estimation by introducing
more sensor data such as a monitoring camera in each elevator car. Although that
would certainly increase the credibility of trace driven simulations, it is doubtful if the
same would result in an indisputably better elevator group control. This is not only
because the concept of elevator efficiency is obscure as pointed out in Appendix A
but also because the present elevator configuration which restricts the operation to a
single car per elevator shaft severely limits the traffic throughput.

The idea of operating multiple cars in two elevator shafts, one upward and the
other downward, has been in the air for at least half a century. With the advent of
linear motors and inexpensive microcomputers no serious engineering obstacle seems
to exists in implementing the idea. Such systems bring about many new problems
regarding its operation. For instance, given expected inter-floor traffic, how many
elevator cars should be deployed in a pair of upward and downward elevator shafts?
What size should an elevator car be? Academic research directed towards such future
elevator systems would seem more productive than those aiming to squeeze out small
increase in utility from traditional elevator systems while it is perfectly understandable
that industrial research need results immediately applicable to existing systems.

Acknowledgments

The author is grateful to Mr. Hiroshi TAKEUCHI, who was with Toshiba Fuchu Works
when the author worked on elevator projects in the late 1970s, for being permissible
to what was then an unconventional idea.

Appendixes

A. ELEVATOR GROUP CONTROL

In high-rise buildings elevators are divided into groups belonging to the same elevator
bank and facing the same elevator hall on all serving floors. Aiming to achieve a
higher efficiency by coordinating them, elevator group control has been researched by
elevator manufacturers. See Nikovski, Brand (2003) for a summary of the technology
and literatures available in English.

The difficulty of elevator group control lies not so much in optimizing a given
objective function but rather in agreeing on a reasonable objective function.

In academia attention is often focused on minimizing the passengers’ average wait-
ing time. This is, however, not unlike saying that all that matters in a computer
system is the average response time. If the average waiting time were the only issue,
an elevator car moving upward would likely do better by fetching not only passengers



Elevator Trip Distribution for Inconsistent Passenger Input-Output Data 189

going up but also those wishing to go down since the time the passengers waste in
the car does not count. Adopting passengers’ average system time instead of average
waiting time does not change the situation significantly because it is usually more
efficient to stop only once going up instead of twice, once when going up and again
when coming down. The fact that no group controlled elevator exhibits such behav-
ior suggests that factors other than those simple performance indexes are important.
Certain behavior patterns are expected of elevators; those violating them are deemed
unacceptable.

If elevator group control aims at reducing complaints from passengers the average
waiting time is inappropriate as a performance index since a passenger who had to
wait a long time is more likely to complain than a passenger who had to wait a
near-average waiting time. For this reason Mitsubishi states the minimization of
a quadratic function of waiting time to be an important element in their objective
function favoring short-tailed waiting time distribution in detriment of the average.

The choice between reassignment and immediate policies also illustrates that wait-
ing time is not the only issue. Japanese elevator companies adopt immediate policy
meaning that when a passenger presses a hall button the assigned car is announced
to the passenger at once and remains unchanged until it arrives. The passengers who
wish to take that car walk up to its door and wait paying no further attention to the
behavior of the other elevators. On the other hand, reassignment is the rule in the
West meaning that car assignment may change depending on circumstances. This
shortens passengers’ average waiting time but requires that they beware of changes
in schedule. Deciding which one provides a better service to the passengers is not
an easy task even when a numerical description of the tradeoff is available, which
suggests another criterion to settle the issue: manufacturers may adopt immediate
policy not so much to provide a better service but more to simplify the control logic.

In a wider perspective, passengers are not the only customers to take care
of. For instance, under low traffic the building owner may prefer to turn off the
motor-generator for some of the elevator cars to save energy even if the level of
customer service drops as a consequence. In order to take a multitude of elements
in consideration manufacturers such as Otis and Toshiba adopt weighted sums of
various performance indexes as the objective function, which may be considered a
kind of multiple attribute utility function.

B. TRACE DRIVEN SIMULATION

All these suggest that a good elevator group control means well-balanced operation
rather than optimization of a simple performance criterion. A natural adaptation
strategy for an elevator manufacturer in this situation is to leave key parameters, such
as weights in the sums, adjustable and present simulation results to the customers to
show tradeoffs among performance indexes. The customers may decide on the param-
eters for themselves after having seen the simulation results. To make the simulation
persuasive it is necessary that the input data be realistic, not something idealized like
Poisson arrival to the entrance hall with a uniformly distributed destination floors.



190 K. Yoneda

Traffic data should be based on real observation obtained from a building similar to
the one under study. Such form of simulation, called trace driven simulation (Smith,
1994; Uhlig, Mudge, 1997), has been popular in performance analyses of computer
and communication systems. A major issue in trace driven simulation is how to obtain
a large amount of data at a low cost, which is the problem dealt with in the present
paper.

REFERENCES

1. D. Nikovski, M. Brand, Decision-theoretic group elevator scheduling, in International Con-
ference on Automated Planning and Scheduling (ICAPS), Mitsubishi Electric Research
Laboratories, 2003, number TR2003-061 in Technical Report.

2. S. M. Ross, Simulation, Academic Press, second edition, 1996.

3. M. H. Schneider, S. A. Zenios, A comparative study of algorithms for matrix balancing,
Operations Research, 38 (3), (1990), 439–455, ISSN 0030-364X.

4. A. J. Smith, Trace driven simulation in research on computer architecture and operating
systems, in S. Morito et al., editors, New Directions in Simulation for Manufacturing and
Communications, The Operations Research Society of Japan, 1994, 43–49.

5. R. A. Uhlig, T. N. Mudge, Trace-driven memory simulation: A survey, ACM Computing
Surveys, 29 (2), (1997), 128–170.

6. K. Yoneda, Integer estimation of origin-destination tables, Transactions of Institute of
Electric Engineers of Japan, 114-C (4), (1994), 483–490.

7. K. Yoneda, A parallel to the least squares for positive inverse problems, Journal of the
Operations Research Society of Japan, 49 (4), (2006), 279–289.

8. K. Yoneda, Y. Nakayama, T. Matsumoto, Trace-driven simulation of elevator groups,
Communications of the Operations Research Society of Japan, 42 (5), (1997), 371–374.
In Japanese.


	Yoneda

