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Abstract. Decision making with multiple criteria requires preferences elicited from the deci-
sion maker to determine a solution set. Models of preferences, that follow upon the concept of
nondominated solutions introduced by Yu (1974), are presented and compared within a uni-
fied framework of cones. Polyhedral and nonpolyhedral, convex and nonconvex, translated,
and variable cones are used to model different types of preferences. Common mathematical
properties of the preferences are discussed. The impact of using these preferences in decision
making is emphasized.
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1. INTRODUCTION

Rapid technological and economic growth over the last fifty years has changed hu-
man lives and made modern society face complex decision making problems. In the
present world, people have to deal with urbanization and industrialization, increase
of water and energy demands, environmental pollution, shortage of natural resources
and food, and many other challenges. These problems necessitate the development of
multidisciplinary approaches for analyzing diverse mechanisms and consequences of
modern civilization.

Multiple criteria decision making (MCDM), as a subfield of systems engineering
and science, has become a modeling and methodological tool for dealing with complex
decision making problems encountered in many areas of human activity in business,
management, and engineering. The development of MCDM models and methods has
been motivated not only by a variety of real-life problems requiring the considera-
tion of multiple criteria, but also by the scientists’ and engineers’ desire to propose
enhanced decision making techniques using recent advancements in mathematical
optimization, scientific computing, and computer technology.
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A complex decision making problem is characterized by multiple objectives or
criteria such as distance, time, cost, reliability, maintenance, safety, productivity,
performance, affordability, and many others. In the presence of multiple criteria,
a unique optimal decision for the problem does not exist but rather many or even
infinitely many decisions are suitable. MCDM includes two complementary areas:
mathematics-based multiple objective programming (MOP) and decision maker-dri-
ven multiple criteria decision analysis (MCDA). The goal of MOP is to find suitable
solutions of mathematical programs with multiple objective functions. Since in gen-
eral, objectives are noncomparable and conflicting, solution sets of multiple objective
programs usually include a large or infinite number of points which are referred to
as efficient (Pareto, noninferior, nondominated) solutions or decisions. Trading one
efficient decision for another results in improvement of at least one objective and
simultaneous deterioration of at least one other. MOP constitutes the first phase
of MCDM and includes generating efficient decisions as well as characterizing the
efficient (nondominated) set.

The next phase of the decision making process, MCDA, encompasses decision
makers’ judgments and preferences to derive a preferred decision from among the
efficient (nondominated) solutions that will become the policy to be implemented for
the problem.

In this paper we focus on the stage of MOP and investigate the concept of op-
timality introduced by Yu (1974). In his seminal paper, Yu proposes to use convex
cones to model decision maker’s (DM’s) preferences and defines domination cones and
nondominated solutions to determine solution sets for multiple objective programs.

Some researchers undertake efforts to generalize the convex-cone approach of Yu
into sets and other objects. Bergstresser et al. (1976) use convex sets rather than
convex cones to represent preferences. Lin (1976) provides a comparison of the de-
fined optimality concepts and Chew (1979) proposes a reformulation for general vector
spaces. Takeda and Nishida (1980) introduce fuzzy domination structures for MOP
while Hazen and Morin (1983) study optimality conditions for MOP with a non-
conical order. Many of these earlier results are collected in the monograph by Yu
(1985). Later, Weidner (2001, 2003) studies scalarization approaches to multiob-
jective programs with preferences modeled by parameter-depending sets, Chen and
Yang (2002) relate a variable domination structure to a nonlinear scalarization for
MOP, and Chen et al. (2005) examine variable dominations structures for set-valued
optimization problems. Wu (2004) further examines the relevance of convex cones for
a solution concept in fuzzy MOP.

The purpose of this paper is to present the state-of-the-art in cone-based preference
modeling for decision making with multiple criteria. The models either refine or go
beyond the existing framework of convex cones and show how convex analysis can
be successfully employed in decision making. The paper is expected to lay out an
overall theoretical foundation for decision making with multiple criteria which could
be implemented in applied studies in various disciplines including, among others,
manufacturing and services.

Section 2 provides some preliminaries that establish the classical concepts of non-
dominance. In Section 3, we present two models of relative importance which are
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developed with polyhedral cones. These models are applicable to decision making
situations in which the DM is willing and able to quantify tradeoffs between the
criteria to model their relative importance among each other. In Section 4, we relax
nondominance to study approximate nondominance and we accomplish this by using
translated cones. In Section 5, we go beyond polyhedral cones and work with cones
induced by positively homogenous functions to discover that the earlier discovered
properties still hold even that polyhedrality does not. Finally in Section 6, we show
that variable cones are needed to model the preference of equitability. We conclude
the paper in Section 7.

2. PRELIMINARIES

Throughout this article the following notation is used. Let R
m be a Euclidean vector

space and y1, y2 ∈ R
m. y1 < y2 denotes y1

i < y2
i for all i = 1, . . . ,m. y1 5 y2 denotes

y1
i ≤ y2

i for all i = 1, . . . ,m. y1 ≤ y2 denotes y1 5 y2 but y1 6= y2.

2.1. CONES

A cone C ⊂ R
m is a nonempty set for which d ∈ C ⇒ λd ∈ C whenever λ > 0. It is

said to be convex if d1,d2 ∈ C ⇒ d1 + d2 ∈ C, and pointed if
∑k

i=1 di = 0 ⇒ di = 0
for all i = 1, . . . , k, where the di ∈ C are any k elements of C. Let Co := C \ {0}.

Definition 2.1. Let A ∈ R
l×m be a matrix. The polyhedral cone C(A) ⊂ R

m deter-

mined by A is defined by

C(A) := {d ∈ R
m : Ad = 0}.

This representation of the polyhedral cone as the solution set of a homogeneous system
of linear inequalities with the l × m coefficient matrix A is called the inequality form

of the cone. In particular, for A = Im ∈ R
m×m the m-dimensional identity matrix,

the polyhedral cone C(Im) := {d ∈ R
m : d = 0} =: R

m
=

.

Proposition 2.1. Let A ∈ R
l×m be a matrix and C(A) ⊂ R

m be the related polyhe-

dral cone. C(A) is always convex. C(A) is pointed if and only if the mapping d 7→ Ad

is injective.

The equivalent conditions for the pointedness of a polyhedral cone C(A) ⊂ R
m are

that rankA = m ≥ 2 or the linear mapping d 7→ Ad is injective (i.e., Ad = 0 if and
only if d = 0). In particular, the cone C(Im) = R

m
=

is convex and pointed.

2.2. NONDOMINATED OUTCOMES

The MOP framework includes the following basic elements: a solution space, an
outcome space, a collection of objective (criterion) functions (performance indices)
evaluating solutions and producing outcomes. The goal is to identify those feasible
solutions that yield the most satisfactory (preferred) outcome(s) according to DM’s
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preferences. In this study we assume that the spaces are Euclidean, the objective
functions are real-valued, and the preferences are modeled with cones.

More specifically, let R
n and R

m be the solution (decision, design) space and the
objective (criterion, outcome, performance) space, respectively. Let X ⊆ R

n be a set
of feasible solutions in R

n. Let the vector-valued function f : X → R
m be composed

of m real-valued functions fi : X → R, i = 1, . . . ,m. The set Y ⊂ R
m of accessible

outcomes is defined as Y := f(X) = {y ∈ R
m : yi = fi(x), i = 1, . . . ,m, x ∈ X}. It is

of interest to find outcomes that perform satisfactorily according to DM’s preferences
modeled with an ordering cone. In other words, we intend to optimize all criteria
while the “optimality” in the m-dimensional objective space is determined by a cone.

Let C ⊂ R
m be an ordering cone in the outcome space. We assume that it is the

set of all dominated directions in R
m and refer to it as the domination cone D. The

notion of domination cone was introduced into MOP by Yu (1974). A domination
cone contains all vectors d ∈ R

m such that for y,y1 ∈ Y , if y1 = y + d for some
d ∈ D◦, then y1 is dominated by y. The vectors in the domination cone can be
thought of as “bad” or “dominated” directions to travel within R

m. A nondominated
outcome is one that is not dominated by any other outcome in Y .

Definition 2.2. An element y ∈ Y is called a nondominated element of the set Y

with respect to the domination cone D if there do not exist an element y1 ∈ Y and a

direction d ∈ D◦ such that y = y1 + d, or equivalently, Y ∩ (y − D◦) = ∅. The set

of all nondominated elements of Y with respect to D is denoted by N(Y,D). The set

of weakly nondominated elements of Y with respect to D is defined as Nw(Y,D) :=
N(Y, int D).

The cone C can also be defined as the set of all preferred directions in R
m and then

it is referred to as the preference cone P . The cone P is then the set of all directions
d ∈ R

m such that for y,y1 ∈ Y , if y1 = y + d for some d ∈ P ◦, then y is dominated
by y1. In other words, a preference cone contains all “good” or “preferred” directions
to travel within R

m.

Definition 2.3. An element y ∈ Y is called a nondominated element of the set Y

with respect to the preference cone P if there do not exist an element y1 ∈ Y and a

direction d ∈ P ◦ such that y = y1 − d, or equivalently, Y ∩ (y + P ◦) = ∅. The set

of all nondominated elements of Y with respect to P is denoted by N(Y, P ). The set

of weakly nondominated elements of Y with respect to P is defined as Nw(Y, P ) :=
N(Y, int P ).

The relationship between the domination and preference cones is given as D = −P

since the negation of a dominated direction in D must be a preferred direction in P

to maintain consistency of preferences. Typically, it is assumed that the cones are
convex and pointed. In other words, the sum of two dominated (preferred) directions
d1,d2 ∈ D (P ) is again a dominated (preferred) direction, d1 +d2 ∈ D (P ) and that
if both d and −d ∈ D (P ) are dominated (preferred) directions, then d = 0. We will
see later that these assumptions may not be fulfilled for a certain class of preferences.

In general, one can approach preference modeling using domination cones or pref-
erence cones and seek the sets N(Y,D) or N(Y, P ). Some authors (e.g., Hunt (2004))
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use the latter since they believe that it is more intuitive for DMs to express what they
like or prefer as oppose to what they do not like or do not prefer.

Alternative terminology refers to the nondominated sets as sets of minimal or
maximal elements defined for partially ordered sets. However, we choose to follow the
terminology of Yu (1974) since we believe it has been very effective theoretically and
is intuitive for DMs, and therefore more attractive.

2.3. NONDOMINANCE WITH RESPECT TO POLYHEDRAL CONES

As indicated above, the simplest polyhedral cone is generated by the m×m identity
matrix which yields the cone being the nonnegative orthant in R

m. In the literature,
this cone is known as the Pareto cone. The Pareto domination cone DPar ⊂ R

m is
defined by

DPar := R
m
=

and the Pareto preference cone PPar ⊂ R
m is given as

PPar = −DPar

An overwhelming majority of studies in MOP and MCDM use the notion of Pareto
nondominance based on the Pareto domination and preference cones. It is however
very straightforward to generalize the Pareto cone to polyhedral cones.

Definition 2.4. Let A ∈ R
l×m be a matrix. The domination cone D(A) ⊂ R

m

determined by A is defined by

D(A) := {d ∈ R
m : Ad = 0}.

The preference cone P (A) ⊂ R
m is given as

P (A) = −D(A)

The following result is well established throughout the literature, see (Sawaragi,
et. al, 1985; Yu, 1985; Noghin, 1997; Cambini et. al, 2003; Hunt, Wiecek, 2003)
among others.

Theorem 2.1. Let A ∈ R
l×m be a matrix and D(A) ⊂ R

m be the related domination

cone. Then

A[N(Y,D(A)] ⊆ N(A[Y ], Rl
=)

where A[Y ] = {z : z = Ay,y ∈ Y }. Furthermore, if the cone D(A) is pointed, then

A[N(Y,D(A)] = N(A[Y ], Rl
=)

In any case,

A[N(Yw, D(A)] = Nw(A[Y ], Rl
=)

Hence, the problem of finding the nondominated set of Y with respect to a domination
cone D(A) is equivalent to finding the nondominated set of A[Y ] with respect to the
Pareto cone, where A is the matrix that determines the domination cone.
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3. RELATIVE IMPORTANCE OF CRITERIA

In the following section we investigate how the structure of a matrix A determining
the polyhedral cone may influence the set of nondominated solutions with respect to
the related domination cone. In particular, we use the elements of this matrix to
model relative importance of the m criteria that evaluate the set of feasible solutions.

Even that one seeks to simultaneously optimize all criteria over the feasible set,
some of them may be considered more important than others. Using the lexicographic
ordering to model relative importance of criteria has been perhaps the first approach
undertaken in the literature. Doležal (1976) applies the lexicographic ordering to biob-
jective programs in which one criterion is more important than the other, while Ying
(1983) applies the lexicographic ordering to multiobjective programs whose criteria
are divided into groups of equal importance. A large number of researchers have mod-
eled relative importance of criteria with numerical weights assigned to the criteria to
express their importance. Podinovskii (1977, 1978, 1994, 2000) defines preference and
indifference relations using coefficients of relative importance. Similar concepts are
used by Menshikova and Podinovskii (1988) and Roy and Mousseau (1996). Berman
and Naumov (1989) introduce interval tradeoffs between criteria which are defined as
the quantity by which one criterion must be improved to compensate for the decay
in another criterion. They use the tradeoffs to construct a polyhedral cone modeling
DM’s preferences among criteria. Noghin (1997) and Noghin and Tolstykh (2000)
divide criteria into two groups, more and less important, and construct weight func-
tions to define coefficients of this relative importance. Their approach leads to the
augmentation of the Pareto cone to a polyhedral cone subsuming it. Wei et al. (2000)
discuss relative importance of criteria from the perspective of group decision-making
while Karaskal and Michalowski (2003) recognize that the importance may change
during the decision-making process and may depend on current values of criteria.

In our work, in order to model DM’s preferences, we partially follow upon Noghin
(1997), since we put all criteria into two groups, and upon Berman and Naumov
(1989) as we explicitly use the matrix description of a polyhedral cone. We assume
that the DM follows the Pareto preference in the outcome space R

m implying that
every direction in the preference Pareto cone is a preferred direction and thus is always
contained in the DM’s overall preference cone. Furthermore, when traveling along a
direction d ∈ R

m neither in the Pareto preference cone nor in the Pareto domination
cone, the DM recognizes simultaneous increase and decrease of values of particular
components di, i = 1, . . . ,m, which the DM refers to as decay and improvement in
this component, respectively.

If the DM is willing to allow tradeoffs between criteria, then additional attrac-
tive directions may be appended to the Pareto cone to construct the DM’s overall
preference cone.

Definition 3.1. An allowable tradeoff between criteria i and j, i, j ∈ {1, . . . ,m},
i 6= j, denoted aij , is the largest amount of decay in criterion i considered allowable

to the DM to gain one unit of improvement in criterion j. Also, aij ≥ 0 for all i and

j, i 6= j.
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The values of the allowable tradeoffs depend on DM’s preferences. We assume that an
experienced DM has previous knowledge of and experience with the decision problem
to guide the assignment of allowable tradeoff values. In particular, if aij = 0 for all
i, j ∈ {1, . . . ,m}, i 6= j, then the DM has the classical Pareto preference.

A tradeoff between two criteria incurred when traveling along a direction in the
outcome space is called a directional tradeoff.

Definition 3.2. A directional tradeoff between criteria i and j, i, j ∈ {1, . . . ,m},
i 6= j, denoted tij(d), is the tradeoff incurred between criteria i and j when traveling

along direction d ∈ R
m and is defined as follows:

tij(d) = 0 if di ≤ 0 and dj ≤ 0

tij(d) =
di

−dj

if di > 0 and dj < 0

tij(d) = ∞ if di ≥ 0 and dj ≥ 0,d 6= 0

tij(d) is undefined otherwise

Given the definition of an allowable tradeoff and a directional tradeoff between
two criteria, we define attractive directions in the outcome space.

Definition 3.3. A direction d ∈ R
m is an attractive direction in the outcome space

if tij(d) ≤ aij for every pair of criteria i and j, i, j ∈ {1, . . . ,m}, i 6= j.

In other words, a direction d ∈ R
m is an attractive direction if every directional

tradeoff between criteria i and j with respect to d is no larger than the corresponding
allowable tradeoff between criteria i and j.

In the following subsections we present two types of matrix A to model relative
importance of criteria. The models require eliciting preferences from the DM in the
form of allowable tradeoffs between criteria.

3.1. MODEL 1

In the first model, we assume that the DM allows one criterion i ∈ {1, 2, ...,m} to
decay only if all other criteria j ∈ {1, 2, ...,m}, j 6= i, improve. The DM is required to
define an allowable tradeoff aij for every j ∈ {1, 2, ...,m}, j 6= i. It may be of interest
in some cases to repeat this process with more than one selection of criterion i, thus
the model is constructed to address this possibility. All attractive directions in R

m

are appended to the Pareto cone to obtain the DM’s new preference cone.
Let l ∈ {1, 2, ...,m} represent the criterion that the DM would like to decay while

all other criteria j ∈ {1, 2, ...,m}, j 6= l, improve, and let the tradeoff between the
improvement and each decay be bounded by some allowable tradeoff alj . Define the
set of all attractive directions to the DM

Pl := {d ∈ R
m|dl > 0, dj < 0 for all j ∈ {1, 2, ...,m}, j 6= l, and tlj(d) ≤ alj for all j 6= l}

Then the preference cone of Model 1 is then defined

P1 :=
⋃

l

Pl ∪ (−R
m
= ) (1)
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and the domination cone of Model 1 is given by

D1 = −P1 (2)

Note that if d ∈ Pl for some l ∈ {1, 2, ...,m} such that dl > 0 and −∞ < dj <

0, j ∈ {1, 2, ...,m}, j 6= l, then alj > 0 for all j ∈ {1, 2, ...,m}, j 6= l.
We now present the algebraic cone representations of D1. After all allowable

tradeoff values are collected from the DM, the following matrix is constructed.

Definition 3.4. Let A1 be an m(m−1)×m matrix described by m blocks of m−1 rows

and m columns, where A
ij
1 represents row j ∈ {1, 2, ...,m−1} of block i ∈ {1, 2, ...,m}

of A1, and (Aij
1 )k represents the element of A

ij
1 in column k ∈ {1, 2, ...,m}. The

elements of A1 are defined as follows:

(Aij
1 )i = 1 for all i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m − 1}

(Aij
1 )j = aij ifj < i, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m − 1}

(Aij
1 )j+1 = ai(j+1) ifj ≥ i, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m − 1}

(Aij
1 )k = 0 otherwise, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m − 1}

In general, A1 has the following structure:

A1 =



























































1 a12 0 · · · 0

1 0 a13
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 a1m

a21 1 0 · · · 0

0 1 a23
. . .

...
...

... 0
. . . 0

0 1 0 0 a2m

...
...

...
...

...
am1 0 · · · 0 1

0 am2
. . .

... 1
...

. . .
. . . 0

...
0 · · · 0 am(m−1) 1



























































m(m−1)×m
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For a more detailed view, the ith block of A1 has the following structure:

column

i

Ai
1 =































ai1 0 · · · 0 1 0 · · · 0

0 ai2
. . .

... 1
...

...
...

. . .
. . . 0

...
...

...
...

. . . ai(i−1) 1 0
...

... 0 1 ai(i+1)

. . .
...

...
...

... 0
. . . 0

0 · · · · · · 0 1 0 0 aim































(m−1)×m

Let C(A1) be a cone represented in inequality representation with matrix A1.

C(A1) := {d ∈ R
m|A1d = 0} (3)

Since all entries of A1 are nonnegative, A1d = 0 for any d ∈ R
m
=

and thus R
m
=

⊆

C(A1). Matrix A1 consists of m blocks since each criterion j ∈ {1, 2, ...,m} may be
selected to decay. In turn, each block has m − 1 rows since m − 1 criteria improve
while one criterion decays. If aij > 0 for some i ∈ {1, 2, ...,m} and for all j ∈
{1, 2, ...,m}, j 6= i, then the ith block of A1 describes directions d ∈ Pi. If aij = 0 for
some i ∈ {1, 2, ...,m} and for any j ∈ {1, 2, ...,m}, j 6= i, then Pi = ∅.

Theorem 3.1. Let D1 and C(A1) be defined as in (2) and (3). If aijaji ≤ 1 for all

i, j ∈ {1, 2, ...,m}, i 6= j, then D1 = C(A1).

Since we require preference cones to be convex and pointed to maintain preference
consistency, Corollaries 3.1 and 3.2 reveal conditions to ensure C(A1) possesses these
properties.

Corollary 3.1. If aijaji ≤ 1 for all i, j ∈ {1, 2, ...,m}, i 6= j, then the preference cone

C(A1) ⊂ R
m is convex.

Corollary 3.2. If m = 2, then the preference cone C(A1) ⊂ R
2 is pointed if a12a21 <

1. If m ≥ 3, then C(A1) ⊂ R
m is pointed.

For a problem with three criteria, A1 has three submatrices each of dimension
2 × 3 producing the 6 × 3 matrix shown in (4). The first two rows of A1 form the
first submatrix, the third and fourth rows form the second submatrix and the last
two rows form the third submatrix.

A1 =

















1 a12 0
1 0 a13

a21 1 0
0 1 a23

a31 0 1
0 a32 1

















(4)
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The first submatrix models the case that criterion f1 decays while criteria f2

and f3 improve. The second submatrix models the case that criterion f2 decays while
criteria f1 and f3 improve. Finally, the third submatrix models the case that criterion
f3 decays while criteria f1 and f2 improve. One might expect that in practical decison
making the occurrence of all these three situations is unrealistic. While this theoretical
model allows for all these three cases to take place simultaneously, any submatrix may
collapsed to the corresponding identity row if the related case should not be included
due to a practical context.

3.2. MODEL 2

In Model 1, the DM allows only one criterion to decay while all other criteria must
improve. In the second preference model, we assume that the DM allows more than
one criterion to decay and all the others are expected to improve or remain unchanged.
We call this Model 2, which is less restrictive than Model 1 and perhaps more ap-
plicable in practice because multiple criteria are allowed to improve or decay at a
time.

Model 2 requires that the indices of all criteria be divided into two groups: the
set M of indices corresponding to a relatively more important group of criteria that
are not allowed to decay and must improve and the set L of indices corresponding to
a relatively less important group of criteria that are allowed to decay. Even though
the criteria represented by L are allowed to decay, if they also improve or remain
unchanged then we consider ourselves fortunate.

The sets L and M are constructed such that L∪M = {1, 2, ...,m} and L∩M = ∅.
Also, letting |L| = l, 0 ≤ l ≤ m− 1, implies that |M | = m− l. The DM is required to
define an allowable tradeoff aij for every pair i, j, i 6= j, such that i ∈ L and j ∈ M .
All attractive directions in R

m (see Definition 3.3) are appended to the Pareto cone
to obtain the DM’s preference cone P2. We assume that directions in the Pareto
preference cone are always attractive to the DM and are always contained in the
preference cone P2 defined as follows.

Given the sets L and M , define the set

W := {d ∈ R
m|di ≤ 0 for all i ∈ M and dk ≥

∑

i∈M

akidi for each k ∈ L} (5)

Then the preference cone of Model 2 is defined as

P2 := W ∪ (−R
m
= ) (6)

and the domination cone of Model 2 is given by

D2 = −P2 (7)

The components dk, k ∈ L, of directions d ∈ W are allowed to be nonnegative
to represent decay or no change in the corresponding criteria. However, these com-
ponents are also allowed to be negative to represent improvement in these criteria,
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which is an attractive feature. The components di, i ∈ M, of directions d ∈ W

are only allowed to be nonpositive because the corresponding criteria are considered
relatively more important and are never allowed to decay.

According to the definition of set W given in (5), the total amount of improvement
allowed for each criterion indexed by k ∈ L is bounded. Since di ≤ 0 for all i ∈ M ,
then for each k ∈ L

dk ≥
∑

i∈M

akidi ≤ 0 (8)

If dk ≥ 0 for some k ∈ L representing decay or no change in criterion k, then equation
( 8) holds. However, if dk < 0 for some k ∈ L representing improvement in criterion
k, then d ∈ W if and only if

0 > dk ≥
∑

i∈M

akidi for each k ∈ L such that dk < 0 (9)

Inequality (9) shows that the total amount of improvement in criterion k is
bounded from below by the value of the expression

∑

i∈M akidi calculated using
the allowable tradeoff values and the amount of improvement in the relatively more
important criteria in M .

Next we derive the algebraic cone representations of P2. After all allowable tradeoff
values are assigned by the DM, we define the following matrix.

Definition 3.5. Let A2 be an m×m matrix with elements (A2)
i
j in row i and column

j that are defined as follows:

(A2)
i
i = 1 for all i ∈ {1, 2, ...,m}

(A2)
i
j = aij for all i ∈ L and j ∈ M

(A2)
i
j = 0 otherwise

Using matrix A2, define the related polyhedral cone.

C(A2) := {d ∈ R
m|A2d = 0} (10)

Theorem 3.2. Let D2 and C(A2) be defined as in (7) and (10), respectively. Then

D2 = C(A2).

Due to its defining properties, the preference cone C(A2) is always convex and
pointed.

The structure of A2 depends on the definition of the sets of criterion indices L and
M . Suppose that for an MOP with four criteria, L = {1, 2} and M = {3, 4}. Then
A2 has the following form:

A2 =









1 0 a13 a14

0 1 a23 a24

0 0 1 0
0 0 0 1
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Note that the first two inequalities in the linear system A2d = 0, corresponding to the
first and second rows of matrix A2, enforce that the first and second objectives may
decay, remain unchanged, or improve according to (5). Note also that the last two
inequalities in this system, corresponding to the third and fourth rows of matrix A2,
enforce that the third and fourth objectives may only improve or remain unchanged
according to the assignment M = {3, 4}. If aij = 0 for any i ∈ L and j ∈ M ,
then inequality i, corresponding to the ith row of A2, enforces that objective i is not
allowed to decay at all when objective j improves and thus the cone will contain no
directions d from the orthant where di > 0 and dj < 0. Of course, if aij = 0 for all
i ∈ L and j ∈ M , then none of the objectives in the problem are allowed to decay
yielding the classical Pareto preference.

For a detailed development and complete derivations of these models, we refer the
reader to Hunt (2004). For applications of these models in engineering design we refer
the reader to Hunt and Wiecek (2003), Hunt et al. (2004, 2007), Wiecek (2007), and
Blouin et al. (2007).

For illustration, Figure 1 depicts the set of outcomes given as Y = {y ∈ R :
y2
1 + y2

2 ≤ 1} with three different domination cones in the two-dimensional outcome

space, the Pareto cone C1 = DPar, the polyhedral cone C2 = D(A) for A =

[

1 0
1 1

]

,

and the pth-order cone C3 = C(Γ3) = Cm
p that is defined in Section 5.

y1

y2

Y

C1

y1

y2

Y

C2

y1

y2

Y

C3

Fig. 1. The unit disk as outcome set Y and the two-dimensional Pareto (left), polyhedral
(center), and pth-order cone (right) cone

4. APPROXIMATE NONDOMINANCE

In this section we use polyhedral cones to model approximate nondominance. In MOP,
the notion of approximate nondominance was introduced by Kutateladze (1979), and
later independently by Loridan (1984) and White (1986). Traditionally, approximate
nondominance has been tolerable rather than desirable in MOP because it has been
used in the context of modeling limitations or computational inaccuracies rather than
for enhancing decision making. Engau (2007) and Engau and Wiecek (2007) explain
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reasons for enlarging the set of nondominated solutions with approximate nondomi-
nated solutions for decision making purposes. Such relaxation is useful when dealing
with a collection of multiobjective programs for which a common preferred solution
does not exist but the relaxation helps to find such a solution.

Definition 4.1. Let ε ∈ D. An element y ∈ Y is called an ε-nondominated element

of the set Y with respect to the domination cone D if there do not exist an element

y1 ∈ Y and a direction d ∈ D◦ such that y = y1 + ε+d, or equivalently, Y ∩ (y− ε−
Do) = ∅. The set of all ε-nondominated elements of Y with respect to D is denoted

by N(Y,D, ε). The set of weakly ε-nondominated elements of Y with respect to D is

defined as Nw(Y,D, ε) := N(Y, int D, ε).

Engau and Wiecek (2007) show that translated cones can be used to model the
domination and preference cones of the ε-nondominance preference. Define first the
translated cone according to Luenberger (1969).

Definition 4.2. Let C ⊂ R
m be a cone and ε ∈ R

m be a vector. Then the set

Cε = C + ε is called a translated cone with the translation vector ε.

Let D be a domination cone. The domination cone Dε of the ε-nondominance
preference is defined as:

Dε := D + ε (11)

and the preference cone Pε of the ε-nondominance preference is given as:

Pε = −Dε

Theorem 4.1. Let D ⊂ R
m be a convex pointed and ε ∈ D. Then

N(Y,D, ε) = N(Y,Dε)

Engau (2007) and Engau and Wiecek (2007) extend the result of Theorem 2.1 for
ε-nondominated elements of Y .

Theorem 4.2. Let D ⊂ R
m be a polyhedral cone given as D = {d ∈ R

m|Ad = 0},
where A is an l × m matrix, and let ε ∈ Do be a vector. Then

A[N(Y,D, ε)] ⊆ N(A[Y ], Rl
=s

)

where R
l
=s

:= R
l
=

+ s = {d ∈ R
l : d = s} and s = Aε. If D is pointed, then

A[N(Y,D, ε)] = N(A[Y ], Rl
=s

)

In any case,

A[Nw(Y,D, ε)] = Nw(A[Y ], Rl
=s

)
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According to this result, the set of ε-nondominated elements of Y with respect
to a polyhedral pointed domination cone D is equal to the set of nondominated
elements of the set A[Y ] with respect to the translated Pareto domination cone with
the translation vector s = Aε, where A is the matrix of the polyhedral cone. In view
of this result it is now possible to generate various types of ε-nondominated elements
of Y depending upon the structure of matrix A describing the polyhedral cone. It is
therefore possible to construct this matrix using the models of relative importance of
criteria and in this way control the type of the ε-nondominated set for decision making
purposes. The nondominated set may be enlarged due to allowing ε-nondominated
elements or modified due to recognizing relative importance modeled by matrix A.

For applications of this preference in engineering design and portfolio optimization,
the reader is referred to Engau (2007), Engau and Wiecek (2007) and Wiecek (2007).

5. BEYOND POLYHEDRAL CONES

In an effort to generalize polyhedral cones, we now make use of positively homogenous
functions.

A function Γ : R
m → R

r is said to be positively homogeneous if Γ(λd) = λΓ(d)
whenever λ > 0. If, in addition, Γ(d1 +d2) ≤ Γ(d1)+Γ(d2) for all d1,d2 ∈ R

m, then
Γ is said to be sublinear. If, instead, Γ(d1 +d2) ≥ Γ(d1) + Γ(d2) for all d1,d2 ∈ R

m,
then Γ is said to be superlinear. Finally, if, for all d1,d2 ∈ R

m, Γ(d1) = Γ(d2) if and
only if d1 = d2, then Γ said to be injective.

Definition 5.1. Let Γ : R
m → R

r be a positively homogeneous function. The non-

polyhedral cone C(Γ) ⊂ R
m induced by Γ is defined by

C(Γ) := {d ∈ R
m : Γ(d) = 0}

In particular, the two functions Γ1(d) = d and Γ2(d) = Ad induce the Pareto domi-
nation cone C(Γ1) = R

m
=

and the polyhedral cone C(Γ2) = C(A), respectively.

Consider also the function Γ3(d) = d1 − ‖d−1‖p. Given p ≥ 1, this function
induces the p-th order cone Cm

p ⊂ R
m defined by

C(Γ3) = Cm
p := {d = (d1,d−1) ∈ R

1+(m−1) : d1 = ‖y−1‖p}

For p = 2, the second order cones Cm
2 are also called Lorentz or ice cream cones (see

also Figure 1).
In Engau (2007) it is proven that C(Γ) is a cone. If Γ is superlinear then C(Γ) is

convex. If, in addition, the condition Γ(y) = 0 if and only if y = 0 holds, then C(Γ)
is pointed. If the function Γ is injective, then this condition is always satisfied.

Given a positively homogeneous function Γ, the domination cone D(Γ) is defined
as

D(Γ) := {d ∈ R
m : Γ(d) = 0}.

and the preference cone is given by

P (Γ) = −D(Γ)
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The result of relating the set of nondominated solutions with respect to polyhedral
cones or translated polyhedral cones to the nondominated set with respect to the
Pareto cone also holds for nonpolyhedral cones induced by a positively homogeneous
function.

Theorem 5.1. Let Γ : R
m → R

r be a positively homogeneous function and D(Γ) ⊂
R

m be the induced domination cone. If Γ is sublinear, then

Γ[N(Y,D(Γ))] ⊆ N(Γ[Y ], Rr
=)

If Γ is superlinear and injective, then

Γ[N(Y,D(Γ))] ⊇ N(Γ[Y ], Rr
=)

If Γ is linear and injective, then

Γ[N(Y,D(Γ))] = N(Γ[Y ], Rr
=)

Since this result makes preferences modeled with nonpolyhedral cones available
for MOP, it is of interest to explore the meaning of these preferences in contrast to
those modeled with polyhedral cones. In general, polyhedral cones can be viewed as
piecewise linear approximation of nonpolyhedral cones. Since polyhedral cones model
relative importance of criteria in a piecewise linear fashion, nonpolyhedral cones might
model continuous change of this importance. This, however, remains for now an open
research question.

6. EQUITABILITY WITH VARIABLE CONES

It is surprising but even further generalization of cones into a bigger family than
nonpolyhedral cones was already introduced by Yu (1974). All the cones used for
preference modeling so far in this paper are constant cones in the sense that the
domination (preference) cone is the same at every point y ∈ R

m. However, Yu (1974)
also proposes to use variable cones to define nondominated outcomes with respect to
structures of domination.

In general, let C(y) ⊂ R
m denote a cone at y ∈ R

m. In general, C(y1) 6= C(y2)
for y1,y2 ∈ R

m,y1 6= y2.

Definition 6.1. Let the family D = {D(y),y ∈ Y }, where D(y) is a domination

convex cone in R
m for each y ∈ R

m, be called the structure of domination. An element

y ∈ Y is called a nondominated element of the set Y with respect to the structure of

domination D if there does not exist an element y1 ∈ Y such that y ∈ y1+D(y1)\{0}.
The set of all nondominated elements of Y with respect to D is denoted by N(Y,D).

If D(y) = D for each y ∈ R
m, then the concept of nondominance in Definition

6.1 reduces to the nondominance with respect to constant cones in Definition 2.2.
Let P (y) in R

m denote the preference convex cone for y ∈ Y . The property that
P = −D available for constant cones does not hold true for the variable cones defined
above. In general, P (y) 6= −D(y).
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This very general concept of nondominance allows for using a different domination
cone at each point of the space. In a practical context, one may say that preferences
depend upon the current values of objective functions or the so-called “decisional
wealth” (see Karaskal and Michalowski (2003)). For example, when a criterion per-
forms poorly or unsatisfactorily, its very small improvement may be very desirable
even that it may cause other “rich” criteria to decay. However, when a criterion
performs very well, its small improvement would be unimportant and certainly unde-
sirable if it caused other “poor” criteria to further decay.

A well researched example of a preference based on variable cones is the preference
of equitability introduced to MOP by Kostreva and Ogryczak (1999) and further ex-
amined by Kostreva et al. (2004). It strengthens the concept of Pareto nondominance
by additionally requiring that the objective functions be comparable (measured on a
common scale) and anonymous (impartial), and satisfy the Pigou-Dalton principle of
transfers. The former makes the distribution of outcomes among the criteria more
important than the assignment of outcomes to specific criteria. The latter means
that any outcome with two unequal components can be improved by transferring a
ceratin amount from the larger to the smaller component to reduce the difference
(inequity) between the corresponding criteria. Both these additional requirements
model equitability among the criteria.

Baatar and Wiecek (2006) developed the structure of domination for this prefer-
ence. Let Ik, k = 1, . . . ,m!, denote the matrices obtained by permuting columns of
the m × m identity matrix. Let E denote the m × m lower triangular matrix of the
form

E =









1 0 0 . . . 0
1 1 0 . . . 0

. . . . . . . . . . . . . . .

1 1 1 . . . 1









Due to variability of this preference, the space R
m has to be partitioned into

sectors.

Definition 6.2. The set Si ⊂ R
m, i = 1, . . . ,m!, defined as

Si := {y ∈ R
m : (Iiy)1 ≥ (Iiy)2 ≥ · · · ≥ (Iiy)m}

where (Iiy)j is the j−th component of the vector Iiy, is called a sector i.

We also define an auxiliary polyhedral cone by means of the matrix E and the
permutation matrix Ik, k = 1, . . . ,m!.

Definition 6.3. The polyhedral cone Dk ⊂ R
m, k = 1, . . . ,m!, of the form

Dk := {d ∈ R
m : EIkd = 0}

is called a permutation cone.

The permutation cone Dk is convex and pointed.
In Baatar and Wiecek (2006) it shown that the domination and preference cones

of the equitabiliy preference are variable and depend upon the location of the outcome
y in a sector Sk.
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Theorem 6.1. Let y ∈ Sk. The set D(y) ⊂ R
m

D(y) =

m!
⋃

p=1

IT
p Ik(y + Dk)

is the domination cone of the equitability preference at y ∈ Sk. The set P (y) ⊂ R
m

P (y) =

m!
⋂

p=1

IT
p Ik(y − Dk)

is the preference cone of the equitability preference at y ∈ Sk.

Obviously, P (y) 6= −D(y). Additionally, P (y) is a convex set while D(y) is not.
In order to find the nondominated outcomes in Y with respect to D(y), one may

extend the last part of Theorem 2 in Ehrgott and Wiecek (2005) to multiple cones
Ck ⊂ R

m, k = 1, . . . ,K:

N(Y,

K
⋃

k=1

Ck) =
K
⋂

k=1

N(Y,Ck)

Let y ∈ Sk, and Dk,y = y + Dk be a translated cone with the translation vector y.

N(Y,D(y)) = N(Y,

m!
⋃

p=1

IT
p Ik(y + Dk)) =

m!
⋂

p=1

N(Y, IT
p IkDk,y)

In effect, the problem of finding equitably nondominated points with respect to
D(y) can be decomposed into m! problems of finding nondominated points in Y with
respect to a (constant) translated polyhedral cone. While other researchers work on
finding methods for generating equitable solutions (e.g., Singh (2007)), the knowledge
of the domination cone for this preference may open another way to accomplish this
goal.

For applications of the equitability preference in location, portfolio analysis,
telecommunication and others the reader is referred to Ogryczak (1997, 2000),
Ogryczak et al. (2008) and Singh (2007).

7. CONCLUSION

This paper presents an overview of the most recent advances in cone-based preference
modeling in MOP. The classical Pareto preference is considered as one type in the
family of preferences that are all modeled with cones. The family also includes the
relative importance preference modeled with polyhedral cones, the approximate non-
dominance modeled with translated cones, preferences modeled with nonpolyhedral
cones, and the preference of equitability modeled with variable cones. For each prefer-
ence, the domination and preference cones as well as the results on finding the related
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nondominated set are given. Furthermore, the significance of using these preferences
in decision making is discussed.

The overview makes use of many results spread out in the operations research and
engineering literature in various articles, reports, and theses. The reader interested
either in theoretical details or applications is referred to those sources for proofs,
complete derivations, and examples. This overview however presents all those results
from a brief but unified perspective and with common notation.

The author hopes that the paper attests to close interplay between theory and
practice of decision making and will stimulate further interest and investigation in
this inspiring area of research.

This research was partially supported by the National Science Foundation, grant
number CMMI 0621055.
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