DECISION MAKING IN MANUFACTURING AND SERVICES w
VoL. 1 e 2007 ¢ NO. 1-2 e PP. 111-136 m.l

The Art and Science of Modeling Decision-Making
Under Severe Uncertainty

Moshe Sniedovich*

Abstract. For obvious reasons, models for decision-making under severe uncertainty are
austere. Simply put, there is precious little to work with under these conditions. This fact
highlights the great importance of utilizing in such cases the ingredients of the mathematical
model to the fullest extent, which in turn brings under the spotlight the art of mathematical
modeling. In this discussion we examine some of the subtle considerations that are called for
in the mathematical modeling of decision-making under severe uncertainty in general, and
worst-case analysis in particular. As a case study we discuss the lessons learnt on this front
from the Info-Gap experience.
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1. INTRODUCTION

Methodologies designed for decision-making under severe uncertainty are austere in
the extreme because one has precious little to work with in such cases. This is vividly
manifested in the simple structure of the mathematical models deployed by these
methodologies.

And so given the simplicity of such models, it is not surprising that these method-
ologies are discussed in introductory OR/MS textbooks, eg. Markland and Sweigart
(1987), Winston (1994), Ragsdale (2004), Hillier and Lieberman (2005). But from a
practical point of view this means that users of such models are called upon to be
imaginative and inventive if they are to make the most of them.

As we shall see, there is another side to this coin. A failure of the imagination
here can lead to a failure to recognize these methodologies when they are disguised
by notation and terminology.

The aim of this paper is to illustrate that the mathematical modeling of
decision-making under severe uncertainty requires considerable subtlety. For this
purpose we use Info-Gap (Ben-Haim, 2006) as a case study.
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In the next section we briefly discuss the notion decision problem and then de-
scribe the two classical principles for dealing with decision-making under severe un-
certainty, namely Laplace’s Principle of Insufficient Reason and Wald’s Mazximin
Principle. This is followed by a formal description of the generic Info-Gap model.
We then discuss the mathematical modeling aspects of Info-Gap, showing that the
generic Info-Gap model is an instance of Wald’s Maximin Model. Thereafter, we
analyze the implications of the local nature of the worst-case analysis deployed by
Info-Gap and conclude that this feature of Info-Gap makes it thoroughly unsuitable
for decision-making under severe uncertainty. The point is that Info-Gap does not
tackle severe uncertainty — it simply takes no notice of it. A simple portfolio in-
vestment problem is subsequently presented to illustrate the points discussed in the
preceding sections.

2. CLASSICAL DECISION PROBLEMS

The conventional format used in classical decision theory to describe decision problems
is that of a decision table (French, 1988, Griining and Kiihn, 2005). The rows of such
a table represent actions or decisions made by the decision maker and the column
represent external factors. The basic assumption is that these external factors are
beyond the decision maker’s control.

The content of each cell of the decision table is construed as a reward or payoff
to the decision maker corresponding to her decision (row) and the true value of the
external factors (column).

Needless to say, the decision maker aims to maximize her reward but this might
not be an easy task because she may have only limited knowledge of the true value
of the external factors.

Example
Suppose that one fine morning you find the following note and four envelopes on your
doorstep.

Good morning Sir/Madam:

I left on your doorstep four envelopes. Each contains a sum of money. You
are welcome to open any one of these envelopes and keep the money you find
there.

Please note that once you open an envelope, the other three will automatically
self-destruct, so think carefully about which of these envelopes you should
open.

To help you decide what you should do, I printed on each envelope the possible
value of the amount (in Australian dollars) that you may find in it. The actual
value is equal to one of these figures.

Unfortunately the entire project is subject to severe uncertainty so I cannot
tell you more than this.
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Good luck!
Joe.

For your convenience Table 1 depicts the information Joe provided on the four
envelopes.

Table 1. Easy Problem

Envelope | Possible Amounts (Australian dollars)
El 20, 10, 300, 786
E?2 2,4000000, 102349, 500000000, 99999999, 56435432
E3 201,202
E4 200

So what would you do Dear Sir/Madam? Which envelope would you open? And
what methodology would you use to solve this problem?

One of the central issues in decision theory is the representation and quantification
of the knowledge that the decision maker has about the true value of the external
factors. This may vary from full knowledge to complete ignorance.

As far as terminology goes, the tradition has been to assume that the external
factors are embodied in an entity called state, or state of nature, and that the true
value of the state is determined by the omnipresent Mother Nature.

Classical decision theory (French, 1988) distinguishes between three classes of
decision problems associated with the behavior of Mother Nature:

— Decision-making under certainty.
— Decision-making under risk.
— Decision-making under strict uncertainty.

Decision-making under certainty represents situations in which the decision maker
has complete knowledge of the state selected by Mother Nature in response to the
decision selected by the decision maker.

In decision-making under risk it is assumed that Mother Nature selects the state
via a probability distribution and that the decision maker has full knowledge of this
distribution.

The situation in decision-making under strict uncertainty is thoroughly different:
the decision maker is totally ignorant as to how Mother Nature selects the state,
except for knowing that the state belongs to a given set, the so called State Space.

Our discussion deals exclusively with decision-making under strict uncertainty.
We shall use the terms severe and strict uncertainty interchangeably.

Now, for the purposes of our discussion it is convenient to replace the conventional
decision table format with a simple generic model of the form 9t = (D, S, f) where D
and S are sets and f is a real-valued function on D x S.

In the parlance of classical decision theory, D represents the decision space, S
represents the state space and f represents the objective function. The conceptual
framework behind this model is as follows:
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— The decision maker selects a decision d € D.
— Given this decision, Mother Nature selects a state s € S.
— A reward (payoff) equal to f(d,s) is awarded to the decision maker.

It is assumed that the decision maker’s goal is to obtain the largest possible reward
and that this guides her decision-making analysis.

The difficulty is that the reward f(d,s) depends not only on the decision made
by the decision maker, namely d, but also on the state selected by Mother Nature,
namely s. This means that to make sense in this situation, the decision maker must
incorporate in her decision analysis considerations pertaining to how Mother Nature
will react to her decision.

But how can the decision maker bring this off, given that she has no inkling as to
how Mother Nature selects her state?

3. DECISION-MAKING UNDER SEVERE UNCERTAINTY

It it clear right from the outset that fully satisfactory solutions to problems of severe
uncertainty can hardly be expected. After all, the situation here is simply too amor-
phous for a rigorous, formal, “objective” treatment. Witness the austere structure of
the model M = (D, S, f) representing the situation: It does not provide the slightest
clue as to how Mother Nature behaves.

In short, as far as modeling is concerned the situation is desperate, hence desperate
measures are required to make our way out of it.

And to be sure, in view of the classification outlined in the preceding section, clas-
sical decision theory offers two such measures: one transforms the severe uncertainty
into risk and one transforms it into certainty. These no doubt are desperate measures
indeed.

Over the years these two approaches have become highly popular and fa-
mous — some would say infamous — and have gained the status of Principles or
decision-making Rules.

3.1. LAPLACE’S PRINCIPLE OF INSUFFICIENT REASON (1825)

This principle argues by symmetry: if there is no reason to believe that any state is
more/less likely than others, then assume that all states are equally likely. Practically
speaking this means that the state can be regarded as a uniformly distributed random
variable.

If we accept this assumption then the decision-making environment changes from
severe uncertainty to risk. The advantage of this approach is that it transforms a
difficult problem into a relatively simple one. We move from the wilderness of severe
uncertainty into the kingdom of risk where statistics and probability theory reign
supreme.
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3.2. WALD’S MAXIMIN PRINCIPLE (1945)

This principle is far more radical (Wald 1945, 1950). It argues that if we are to play
it safe, we should assume that Mother Nature plays “against us”. In other words,
the assumption is that Mother Nature always selects the worst state relative to the
decision we make.

In the framework of the model MM = (D, S, f), this means that Mother Nature
selects the state according to the following policy:

5(d) := arg Iglelél f(d,s), deD (1)

and therefore the reward for the decision maker generated by decision d € D is as
follows:

v(d) : = f(d,3(d)), deD (2)
= min f(d, s) (3)

In the parlance of classical decision theory, v(d) is the security level of decision d.
No matter what state will actually be observed, the reward generated by decision d
will be at least as large as v(d).

The idea is then to select a decision d € D whose security level is the largest. So
the recipe is as follows:

V"= max v(d) (4)
g S )

This principle has the attraction of transforming a decision-making problem under
severe uncertainty into a decision-making problem under certainty. It is almost too
good to be true!

Table 2 summarizes the results obtained by applying these two famous principles
to our little 4-envelope problem in the preceding section.

Table 2. Results

Envelope \ Possible Amounts H Wald \ Laplace
F1 20, 10, 300, 786 10 279
E2 2,4000000, 10234 2 1336745.3333 vV
E3 201,202 201 v 201.5
F4 200 200 200

Each envelope is evaluated in accordance with the two recipes. The Wald column
selects the smallest entry in the Possible Amounts column, whereas the Laplace col-
umn computes the arithmetic average of the entries in the Possible Amounts column.
For instance, consider the first envelope, E1. The super pessimistic Wald assumes
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that the worst value will materialize, hence the smallest item in the list 20, 10, 300, 786,
which is 10, is selected.

On the other hand, Laplace assumes that the amount in E1 is a uniformly dis-
tributed random variable on this very list, hence the expected value of the reward is
equal to the arithmetic mean of the elements on the list: %(20—1— 104300+ 786) = 279.

In short, if you follow Wald you’ll open the third envelope, E3, and if you follow
Laplace you’ll open the second envelope, E2.

What would you do, dear reader?

3.3. MODELING ISSUES

Details concerning obvious, and not so obvious, difficulties with these two principles
can be found in French (1988).

For our purposes it suffices to note that Wald’s Mazimin Model of uncertainty
is extremely conservative. It definitely does not provide a faithful representation of
how we operate in reality. It may lead to exceedingly costly solutions resulting from
over-protection against uncertainty.

A major difficulty with Laplace’s Principle of Insufficient Reason is that the state
space must be constructed so as to be amenable to a uniform probability distribution.
For example, the principle cannot be applied when S = R, where R denotes the real
line.

In our discussion we focus on the mathematical modeling aspects of these two
principles, especially Wald’s Mazimin Principle. The rationale for this is not only
the prominent role that these principles play in decision theory and the wealth of
knowledge at our disposal on all aspects of these two celebrities. It is also very
important to determine whether a proposed new decision theory is in fact one of
these principles in disguise.

4. INFO-GAP

Info-Gap (Ben-Haim 2001, 2006) presents itself as a new theory that is radically
different from all existing theories for decision-making under severe uncertainty:

Info-gap decision theory is radically different from all current theories of de-
cision under uncertainty. The difference originates in the modelling of uncer-
tainty as an information gap rather than as a probability. The need for info-gap
modelling and management of uncertainty arises in dealing with severe lack of
information and highly unstructured uncertainty.

Ben-Haim (2006, p. xii)

In this book we concentrate on the fairly new concept of information-gap un-
certainty, whose differences from more classical approaches to uncertainty are
real and deep. Despite the power of classical decision theories, in many areas
such as engineering, economics, management, medicine and public policy, a
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need has arisen for a different format for decisions based on severely uncertain
evidence.
Ben-Haim (2006, p. 11)

With these declarations in mind, we shall examine the modeling aspects of
Info-Gap in the context of the following three fundamental questions:

Q1 Is the generic Info-Gap model new?
Q2 Is it radically different from the classical models of decision theory?
Q3 How well does it tackle severe uncertainty?

The generic Info-Gap model that is most relevant to such an examination consists
of the following objects. We deliberately employ the standard Info-Gap notation and
terminology (Ben-Haim 2001, 2006) where R denotes the non-negative part of R:

— An uncertainty region (set), Ll

— A parameter u whose true value, ©°, is unknown except that u° € 4.

— An estimate, @ € 4, of u®.

— A parametric family of nested regions of uncertainty, U(a, @) C U, > 0, of
varying size («), centered at @. It is assumed that U(0,a) = {u} and that U (o, @)
is non-decreasing with a, namely

o’ deRy, o >d = U, q) CUW, T) (6)

— Set of decisions available to the decision maker, Q.
— A real-valued reward function, R, on Q x l.
— A critical reward level, r. € R.

The decision problem associated with this model is to determine the best decision
q € Q given the severe uncertainty in u and the requirement r. < R(q,u).

For this purpose Info-Gap deploys robustness to rank decisions, where the robust-
ness of decision g € Q is defined as follows:

G(gq, ) = max {oz >0:r.< min R(q,u)} (7)
weU (e, )

That is, the robustness of a decision ¢ is the largest value of a such that the
performance requirement r. < R(q,u) is satisfied for all u € U(«, @).

For simplicity it is assumed that r. < R(q, @), Vq € Q, observing that this implies
that for each ¢ € Q and o > 0 there is at least one u € U(«, @) such that r. < R(q, @).
If this condition is not satisfied for a given decision ¢ € Q, then this decision can be
discarded at the outset.

So the decision problem posed by the Info-Gap model is as follows:

a(re) 1 = I;lea()ﬁi a(g,re) (8)

= max max {a >0:7. < min R(q,u)} 9)
qeQ ueU (o, i)
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In short, the recipe for an optimal decision is as follows:

4(re) := arg max max {a >0:7. < min_ R(q,u)} (10)
qeQ weU (e, i)
observing that there could be more than one optimal decision.

The direct reference to the critical reward r. in the notation &(r.) and é&(q,r.)
is an indication that the performance requirement r. < R(q,u) is “soft” rather than
“hard”. The idea is then to use Pareto optimization tools (Steuer, 1985) to generate
the efficient frontier of (&(r.),r.) pairs.

5. THE ART OF MATHEMATICAL MODELING

The most intriguing claim made in the Info-Gap books (Ben-Haim, 2001, 2006) is that
this theory is new and radically different from all existing theories of decision-making
under uncertainty. No less intriguing is the fact that these books make no mention
of, let alone discuss, Wald’s Mazimin Principle and worst-case analysis.

Apparently the explanation for this is the view (Ben-Haim, 2005, p. 392, p. 401)
that there is no worst case in an Info-Gap model of uncertainty and therefore Info-Gap
is not Mazimin.

The objective of this section is to show that by bringing mathematical modeling
into play, it is possible to express the generic Info-Gap model (9) as a run of the mill
instance of Wald’s Mazimin Model (5). As we shall see, this instance is characterized
by an interesting objective function.

So, first note that in the context of Wald’s Maximin Model it is often convenient
to let the set of states available to Mother Nature depend on the decision selected by
the decision maker. In this case, the Maximin model takes the following form:

v = max Sg}ql(ré) f(d,s) (11)
where for each d € D, set S(d) C S represents the set of decisions available to Mother
Nature given that the decision maker selected decision d.

For instance, such a model is deployed in the analysis of the famous counterfeit
coin problem (Sniedovich, 2003).

It should be noted that from a purely modeling point of view this modification
is a mere technicality. By slightly modifying the objective function f we can rewrite
(11) as (5), namely we can let S(d) = S,Vd € D and modify f accordingly.

Next, let < denote the binary operation defined by:

1 <b
a<b:=<" = a,beR (12)
0, a>b

and consider the real-valued function ¢ defined on Q x R x 4 as follows:

w(g,a,u) :=a-(r. X R(q,u)), q€Q,a>0,uclla,a) (13)



The Art and Science of Modeling Decision-Making Under Severe Uncertainty 119

where - denotes scalar multiplication.
Then clearly, by construction ¢(g, o, u) is non-decreasing with R(g,u) and there-
fore

c) = i ,Q, 14
Blre) : = max = min  o(g,a,u) (14)
= i . <R 15

10 RS0 uell(ond) (re 2 Rlg,u)) (15)

= e = in  R(q, 16
e, o (2 pin, R (16)

=max max «-|(r. = min R(q,u 17

qe()f az())( < - uEL{(la,ﬁ) (a )> (17

=max max<a:r. < min R(q,u 18

qeQ { T wel(a,@) (q )} ( )

= a(re) (19)

In other words, utilizing ¢ as the objective function of the Mazimin model we can
represent the generic Info-Gap model compactly as follows:

a(re) : = e uegl(igﬂ) a-(re 2 R(g,u)) (20)

Here then are side-by-side the generic classical Mazimin model and its instance
representing the generic Info-Gap model.

Wald’s Maximin Model \ Generic Info-Gap Model
L i 5 = i (r, <
v = max Sgg&)f(dﬁ) (re) jonax - min o (re = R(q,u))

So what are we to make of this?

Contrary to Info-Gap’s claim that it is a new theory that is radically different from
all current theories for decision-making under severe uncertainty, from a Mazimin view
point Info-Gap is clearly one of its numerous specific instances.

To make this point crystal clear, we now repeat the above derivation in the other
direction, that is we start with a standard Maximin model. Formally, the result is as
follows:

Theorem 1. The generic Info-Gap model is an instance of Wald’s Maximin Model.

Proof. Consider the following specific ingredients of the Mazimin model IM* =
(D*, S*, f*), where

D* := Q x Ry (21)
S*(q,a) =U(, 1), ¢€Q,a>0 (22)
f*(Q7a,u) = (TC = R(qau)) (23)
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The Mazximin model associated with these specific objects is then as follows:

v max Sergy(ld)f (d,s) (24)
— i * ; 25
B0 gy (@) (25)

f 1 . c ‘< R 5 26
2880 w0 3 Rl@w) (26)

= e < in R(q, 27
o (o= i Rioo) @

= ma a e = i R(q, 28
mgg may o (o=, in, Rlaw) =

= ma a e < in R(q, 29
e o1 < i R0 | )
Clearly, this is none other than the generic Info-Gap model stipulated in (9). O

For the reader’s convenience, Table 3 displays in full detail the elements of the
Info-Gap model and their Maximin counter-parts.

Table 3. Correspondence between the generic Info-Gap and Maximin models

Wald’s Maximin Principle ‘ Generic Info-Gap Model
d (g:0)
s U
D Q xRy
S(d U(a, 1)
f(d,s) a-(re = R(g, u))

In words, Info-Gap’s generic model is an instance of Wald’s Mazimin Principle
characterized by a number of particular features, the most important one being the
structure of the objective function, namely f(q,o,u) = « - (rc =< R(q, u))

This formulation highlights the conflict between the decision maker, who attempts
to maximize the value of o, and Mother Nature who attempts to minimize the value
« by minimizing R(q,w) within the region of uncertainty U(«, @) stipulated by a.

It is a typical worst-case analysis: each decision is evaluated by the worst outcome
associated with it: Mother Nature selects a w in U(a, @) that minimizes f(q, o, u)
over U(a,w). In this framework, the values of ¢ and « are fixed, so minimizing
fg,a,u) = a- (re = R(q,u)) over v € U(a, %) amounts to minimizing R(q,u) over
u € U(a, ).
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To see more clearly what is going on here, consider a given ¢ € Q and its robust-
ness:

alg,re) + = rggguegl(igﬂ) a-(re 2 R(g,u)) (30)
= . i c —< 3 ].
mes @ i (e 3 Fla) @
=max G(a) - H(g, @) (32)
where:

Gla):=a, a>0 (33)
H(q,o):== min (r. 2 R(q,u)), ¢€Q,a>0 (34)

uweU (a,i)

observing that the nesting property of the regions of uncertainty, namely (6), implies
that for a given g, H(q, «) is a step function of «, as shown in Figure 1(a).
This implies that for a given g,

ﬁ(% a) = G(Ot) : H(qa Oé) (35>

consists of two linear parts: on the interval [0, &(q, r.)] this function is equal to G; and
then on the interval (&(q,r.),o0) the function is equal to 0, as shown in Figure 1(b).

G(a) B(q, @)

a(g,re)

1 H(q, o) 1
0 | o 0 alg,re) o

(a) (b)

Fig. 1. G=G(a), H= H(q,«), and 3(q, @) (q is fixed).

More details on the relationship between Info-Gap and Mazimin and other related
issues can be found in Sniedovich (2006).

In summary then, the answers to the first two questions that we raised above
regarding the place and role of Info-Gap in decision theory are as follows:

Al Not only is it the case that the generic Info-Gap model (9) is not new, it is a
simple instance of none other than the most famous model in decision-making
under severe uncertainty, namely Wald’s Mazimin model.
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A2 For the very same reason, the generic Info-Gap model is not radically different
from classical models for decision-making under severe uncertainty.

To formulate an answer to the third question raised above, we need to examine a
peculiar feature of the generic Info-Gap model and its ramifications. This feature has
to do with the fact that (9) is completely oblivious to the “size” of the total region
of uncertainty i in relation to the “size”, &(r.), of the optimal region of uncertainty
U(&(re),@). More precisely,

Theorem 2. The generic Info-Gap model is invariant with the total region of uncer-
tainty U: the value of &(r.) does not vary with i for all 4 such that U(G&(r.)+e,a) C U
for some € > 0.

Proof. Let o* := G&(r.) and 4* := U(a* + ¢,%). We have to show that a* does not
vary with U for all 4 such that $4* C L.

This follows immediately from the nesting property of the regions of uncertainty
U(a, @), > 0 stipulated in (6) and the worst-case characteristic of robustness stipu-
lated in the definition (7) of &(q, ). O

So the answer to the third question regarding the place and role of Info-Gap in
decision-making under uncertainty is as follows:

A3 The generic Info-Gap model does not deal with the severe uncertainty aspect of
the decision problem. It simply ignores it.

uﬂ'

Fig. 2. Illustration of Theorem 2

This point is illustrated in Figure 2 where three regions of uncertainty are dis-
played, 4 C (' C U”. The same solution, a*, is obtained for any region of uncertainty
containing the set U(a* + €, @) represented by the circle.

This serious flaw in Info-Gap’s model of uncertainty calls for a closer examination
of the mathematical structure of Info-Gap’s generic model (9).
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6. LOCAL VS GLOBAL WORST-CASE ANALYSIS

The concept Worst Case plays a central role in many areas of decision theory such as
decision-making under uncertainty, robust optimization, numerical complexity anal-
ysis, design of algorithms and so on.

One of the most important issues in worst-case analysis is the formulation of the
region of uncertainty from which the worst case is selected. There are two conflicting
considerations in play here:

— The need to represent the region of uncertainty as fully as possible so as to avoid
precluding adverse states of nature that are relevant to the investigation.
— The need to exclude from the analysis overly-pessimistic states that will make the
analysis as a whole too conservative. Hence the advice,
If the forecaster tries to specify too many discrete forecasts, in an attempt to
cover most possibilities, discrete minimax may yield too pessimistic strate-
gies or even run into numerical, or computational, problems due to the
resulting numerous scenarios. Similarly, as the upper and lower bounds on
a range of forecasts get wider, to provide coverage to a wider set of pos-
sibilities, the minimax strategy may become pessimistic. Thus, scenarios
have to be chosen with care, among genuinely likely values. The minimax
strategy will then answer the legitimate question of what the best strategy
should be, in view of the worst case.
Rustem and Howe (2002, p. xiii)

One thing that the literature on worst-case analysis and robust optimization under
severe uncertainty does not bother to take up explicitly is the danger in using a single
point estimate to represent the region of uncertainty. On this one can only speculate
but it would seem that this “omission” reflects the tacit understanding that such an
idea is so alien to the basic dilemma in decision-making under severe uncertainty that
it would not even be contemplated.

Be it as it may, the basic issue is this: whatever estimate we have of the true value
of the state variable, under severe uncertainty this estimate is of a very poor quality
and is likely to be substantially wrong. Therefore, it makes no sense to conduct the
worst-case analysis only on the immediate region surrounding this estimate, as this
region does not provide a good representation of the entire region of uncertainty.

This issue is described schematically in Figure 3. A poor estimate of the true
value of the state variable (s") and its surrounding region (S’) is shown inside a large
region of uncertainty.

For illustrative purposes the true value of the state variable (s°) and the worst
state in S’ are also shown.

With this in mind, let us now re-examine the way Info-Gap defines the robustness
of a decision ¢, namely:

a(q,re) : = max {oz >0:r. < uerzfll(icryla) R(q, u)} (36)
=max min  «a-(r. X R(u,u)) (37)

a>0 uel(a,it)
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Region of Gevere Uncertainty

5°

true value

SF
worst
value
af ¢

in S’

Fig. 3. Local worst-case analysis

Note that for a given (g, «) pair, the worst value of u is selected from the region
of uncertainty U(«, @) surrounding the estimate @. This means that the worst-case
analysis conducted by Info-Gap is local in nature. In fact, for a given ¢ it covers only
the region U(&(q, r.),w). This means that the largest region of uncertainty considered
in the analysis is U (&(r.), @), recalling that &(r.) = maxgyeq &(g, 7¢)-

This is shown schematically in Figure 4. The conclusion is therefore that, un-
der severe uncertainty, there is no reason to believe that the solutions generated by
Info-Gap are likely to be robust.

Region of Gevere Uncertainty

u®
P

true value

U, )
worst
value
of u

in U(e, @)

Fig. 4. Worst-case analysis a la Info-Gap.
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For the purposes of our analysis it suffices to indicate that Imfo-Gap’s local ap-
proach to robustness is not only simplistic, but flawed. It definitely stands in sharp
contrast to the much more global approach to robustness deployed in the Robust
Optimization literature (Ben-Tal et al, 2006; Rustem and Howe, 2002; Vladimirou
and Zenios, 1997; Kouvelis and Yu, 1997).

From a mathematical modeling point of view it is imperative to distinguish
between local worst-case analysis of the type deployed by Info-Gap, and global
worst-case analysis of the type formulated in Robust Optimization. Certainly, the
notation and terminology used here should make this distinction explicit, especially
for unsuspecting readers/users.

Thus, in the case of Info-Gap, the notation for robustness should incorporate the
estimate @ so that instead of &(r.) we would write &(r.|a) and instead of &(q,r.) we
would write &(q,r.|a).

Along the same lines, é&(q,7.) should be called something like “robustness of ¢ in
the neighborhood of #, rather than just “robustness of ¢”.

In this regard it is interesting to note that in the worst-case analysis and robust
optimization literature one often finds warnings about the conservative/pessimistic
nature of worst-case analysis (eg Rustem and Howe, 2002). Yet, no such issues are
discussed in the Info-Gap literature, even though, as we have shown, Info-Gap is
definitely a worst-case oriented methodology par excellence, albeit of a local nature.

It should be stressed that the flaw in the Info-Gap uncertainty model does not lie
in its employment of Wald’s Maximin Principle. Rather it lies in the use of a single
point estimate and its neighborhood as an approximation of the entire region of uncer-
tainty. Indeed, the Principle is used extensively in Robust Optimization to (properly)
generate robust solutions for decision-making situations under severe uncertainty.

In summary, the local nature of the worst-case analysis conducted by Info-Gap
brings to light two related but distinct points that undermine it:

— Optimality of the solution generated by the Info-Gap model.
— Robustness of the solution generated by the Info-Gap model.

Next, let ¢(i) denote the optimal solution generated by the Info-Gap model for
a given value of the estimate @. Since under severe uncertainty « is a poor estimate
of the true value of u, we should be concerned about changes in ¢(@) resulting from
changes in the value of 4. For the same reason we need to be concerned about the
changes in the robustness &(q(%),r.) as we change the value of .

Of course, sensitivity analysis of this kind is also used in decision-making under
risk and even in decision-making under certainty. And to be sure, such an analysis
can be useful, beneficial and informative, and could serve many purposes. But the
point is that in decision-making under SEVERE uncertainty these matters are crucial.
Indeed, if we accept the notion that under severe uncertainty it is acceptable to base
the analysis on the immediate neighborhood of some estimate 4, then the distinction
between decision-making under risk and decision-making under severe uncertainty is
completely wiped out.

In many respects the distinction made here between local and global robustness
and worst-case analysis is similar to the distinction made in optimization theory
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between local and global optimum. However, in optimization theory the distinction
is crystal clear whereas in the context of Info-Gap it is not.

The difficulty is not in the fact that an analysis is conducted on a neighborhood
of the estimate we have. The difficulty arises because the results of this analysis are
construed and presented as though they were based on a methodology that takes into
account the full scope of the severe uncertainty.

And to sum it up, from a modeling point of view Info-Gap does not take on the
severe uncertainty: it simply takes no notice of it. This involves two things:

— Replacing severe uncertainty by a poor point estimate of the parameter of interest.
— Conducting a conventional worst-case analysis a la maximin in the immediate
neighborhood of this poor estimate.

In the next section we illustrate the methodological issues discussed above in the
framework of a simple portfolio investment problem.

7. ILLUSTRATIVE EXAMPLE

Consider a simplified version of the portfolio investment problem discussed in
Ben-Haim (2006, pp. 70-71) where the reward function is as follows:

N
R(gu) = qu; =q"u (38)
i=1

Here g; denotes the sum invested in security ¢ and u; denotes the (unknown)
future value of one unit of security <. The budget available for investment is (), so
the decision space is

N
@{qu:Zqu} (39)

To apply Info-Gap we have to express the region of uncertainty, 4, in a particular
way. Specifically we have to

— Determine a nominal value, call it 4, to serve as an estimate of the true value of
the parameter u, call it u°.

— Express the region of uncertainty il as the limit of a parametric family U (o, @)
where « is a scalar such that U(«, @) is increasing with a.

Info-Gap (Ben-Haim, 2006, pp. 70-71) suggests the following format for these
sub-regions of uncertainty:

Uoya)={ueRY cu=a+v, v"Wv<a?}, a>0 (40)

where W is a real, symmetric, positive definite matrix.
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For each value of o > 0, the region of uncertainty U(c, @) is then an ellipsoid
whose center is at the nominal point 4. Note that elements of («, @) can be negative,
especially for large values of a.

By implication then, the complete region of uncertainty, LI, is the smallest subset
of RN containing all these regions. This entails that {f = RV,

At this stage we should not be concerned that these regions of uncertainty center
around the nominal point @. Namely, we regard (40) as a representation device and
u as a reference point. This representation does not suggest — at this stage — that the
“true” value of u is more likely to be in the neighborhood of 4 than in other parts of
the complete uncertainty region . You'll recall that any such assertion is in blatant
violation of the very concept of severe uncertainty.

There is another thing that we need to do to apply Info-Gap to the portfolio
investment problem under consideration, that is we need to formulate a robustness
function for this problem.

The idea is to devise a function stipulating how robust an investment decision (g)
is. To this end Info-Gap regards the coefficient o as a measure of robustness: the
larger « is, the better. Formally, the robustness function is defined as follows:

a(q,re) : = max{a > 0: R(q,u) > re,Vu € U(a, @) } (41)
= max {a >0:r. < min_ R(q, u)} (42)
weU (o, @)

where 7. represents a minimum critical reward (so called minimum attractive rate of
return (MARR)). Note that this suggests the following modification of U («, @):

Ula, T, q,1c) :={u eU(a, i) : R(g,u) >r.} (43)

By construction, U (o, @, q, ) is the subset of U(«, @) whose elements satisfy the
reward constraint

R(q,u) >, (44)

for the specified values of ¢, 4 and r..
This definition entails that

a(g,r.) = max{a > 0: U(a,a,q,7.) = U(a,a)} (45)

To formulate a user-friendly representation of this function, observe that the small-
est reward associated with u values in U(«a, @) is

r(g,a):= min q¢'u, a>0 (46)
ueU(a,a)

= min{q” (@ +v) : vTWv < o?} (47)

=q¢"a + min{qg"v : T Wv < o?} (48)

=q"u—a/q¢TW-1q (see derivation in Appendiz A.1) (49)
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Hence, the largest value of « for which r(q, ) > 7. is

qTa —Te

(¢,7re) = (50
"W-lq :
Formally, Info-Gap defines the robustness of ¢ with respect to r. as follows
¢'i—re gli—re o
A TW-1q ’ /qTW—lq =
a(g,re) = - (51)
0 ) T2 " T <9
q"W-lq

The optimal investment decision, ¢, according to Info-Gap, is the decision that
maximizes the robustness index &(q,7.), hence (assuming that &(q,r.) > 0,Vq € Q)

G(re) = argmax {a q,7e) Zqz Qq> 0} (52)

_argmax{\/g ZQZ Q7QZ0} (53)

This then is the Info-Gap recipe for deciding on the best investment for the as-
sumed value of the critical reward r..

Now, when you examine this result it seems either too good to be true or a major
breakthrough in decision theory.

After all, we are dealing here with a difficult problem involving decision-making
under severe uncertainty and yet we did not have to grapple with the central issue
— severe uncertainty. How did we manage to do that?

Interestingly, the Info-Gap literature is totally oblivious to this matter. So it is
instructive to consider a naive instance of the portfolio investment problem and to
analyze the results generated by the Info-Gap model.

Our naive instance consists of only N = 2 assets. And to keep things simple, we
assume that

max{dy, Uz} > ¢ (54)

W‘lz[(l) H (55)
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in which case the Info-Gap solution is as follows:

G(re,u, W) = argmax { \jl ZqL Q, q> O} (56)

qi1u1 + gatia — 7

= arg max
‘J{ Vai+a

This boils down to a simple equivalent one-dimensional problem with d = ¢;:

d(re, @i, W) : = arg max dii + (1 = d)itz — e (58)
0<d<1 d? + (1 —4d)?

:maX{O,min{l,Nul:%}} (59)
a1 + Uy — 2r,

it =1, q>0} (57)

More explicitly,

0 % <0
~ Uy + g — 27,
J(Tc,ﬁ, W) = % , otherwise (60)
1 e g

U1 + Uy — 27,
The derivation of this result is provided in Appendix A.2.

It is immediately clear that for a fixed r., the optimal solution J(rc, u, W) can vary
widely as we change the value of the nominal point @. In fact, it can vary continuously
from its lower bound (0) to its upper bound (1).

Consider for example the case where r. = 10 and @ = (16, 14) in which case the
objective function is as follows:

16d+14(1 —-d) — 1 2d+4
o) = 26410 =4 —10 T 0<d<1 (61)
a2+ (1—4d)? a2+ (1—d)?
The picture depicting z(d) vs d is shown in Figure 5.
The optimal decision in this case is
~ 16 — 10 3
d(10, (16,14 =— = - 2
(10, (16,14), W) = ;=" os = (62)
and the corresponding value of the objective function is
2(3/5) +4
2(3/5) = (3/5) + =213 = 7.2111026 (63)

(3/5)2 +(2/5)
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:

Fig. 5. Graph of the robustness z(d) as a function of the decision variable d

Figure 6 illustrates how the optimal decision d changes as we change the value of
the nominal point @ parametrically via a parameter A € [10, 20].

A—10 .
11 d()\) = T 20 + Un

D 10 +

0 1 : A0 = | i
0 10 20 0 10 20

Fig. 6. Optimal d as a function of @ € U := {(),30 — \) : 10 < X\ < 20}, 7. = 10

By the same token, we can see that the region of uncertainty associated with the
optimal solution can be very small relative to the complete region of uncertainty,
entailing that the optimal solution is robust only with respect to a relatively small
region around 4.

In the above example the region of uncertainty associated with the optimal decision
d=3/51is

U(a,@) : = {u € R? :u =1+ v,0" Wv < o?} (64)
2

= {u €R?:u=(16,14) + v,0" Wov < (2\/5) } (65)

={ueR?:u=(16,14) + v,v] + vj < 52} (66)

={ueR?: (u; —16)* + (up — 14)* < 52} (67)
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This is a circle of radius v/52 centered at @ = (16, 14), as shown in Figure 7. We
deliberately show a large area of the total region of uncertainty to stress the local
nature of the analysis. In this regard, recall that the full region of uncertainty in this
case is U = R2.

30

g

70 Region of Gevere LUncertainty

60
50
40
30
Region of uncertainty for the optimal robust solution
20 i ={16,14)
T =(3/5,2/5)
10 a = T7.2111026
Fe==HIT
0 10 20 30 40 50 60 70 g0

Fig. 7. The optimal uncertainty region U(c, %) for our example

Note that for obvious reasons we cannot display the entire (unbounded) region
of uncertainty. Nevertheless, it does not take much to see that the region U(«,u)
covered by the optimal decision generated by Info-Gap is exceedingly small relative
to the entire region of uncertainty 4 = R2.

The implication is that in this case the Info-Gap analysis was confined to a minute
part of the complete region of uncertainty.

Given that decisions are made here under severe uncertainty, it is advisable — if
not imperative — to analyze in a similar fashion other nominal points representing
other sub-regions of the region of uncertainty 4. The question naturally arises: what
will happen if we change the value of the nominal point u?

As we have noted above, if you do that you will generate new optimal solutions
with corresponding new sub-regions of uncertainty.
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For example, if we now test the new nominal point & = (20,20), the optimal
solution would be

. 20 — 10 1
d(10, (20,20), W) = 503030 " 3 (68)

and the corresponding value of the objective function is

20(1/2) + 20(1/2) — 10
(1/2)* + (1/2)

2(1/2) = =10V2 = 14.1421 (69)

Observe that the robustness index for this solution is almost twice as large as the
robustness index for the solution generated for @ = (16,14). Since we are dealing
here with severe uncertainty, why should we prefer the optimal solution (d = 3/5)
generated for & = (16, 14) to the optimal solution (d = 1/2) generated for @ = (20, 20)?
And how about other possible values for @, say (20, 15) or (15,20), or whatever?

Clearly, one need hardly embark on a formal mathematical analysis of, and nu-
merical experiments with, the Info-Gap methodology to demonstrate its failure to
deal with decision-making under severe uncertainty. The flaw can be clearly seen
pictorially.

Imagine that your complete region of uncertainty i is the positive quadrant of R?
and suppose that, as instructed by Info-Gap, you resolve the severe uncertainty issue
by choosing some nominal point @ in this region.

Since to determine the robustness of any decision you conduct a worst-case analysis
with respect to the reward R(q, ) around @, the critical value of u should not be —
in general — far from .

Hence, in general the subregion U(q,d(q,7.)) is expected to be considerably
smaller than (. The picture is as shown in Figure 4.

Needless to say, there could be decision-making situations where the choice of
u can be safely justified by our knowledge and understanding of the system under
consideration. In other words, the choice of the nominal value of the parameter of
interest could be justified by solid data, experience, and familiarity with the problem
situation under consideration.

This, of course, is a fact of life.

But such cases definitely do not fall within the category of decision-making under
SEVERE uncertainty.

The bottom line is that Info-Gap cannot have it both ways: if it claims to be a
tool for decision-making under severe uncertainty then it cannot use a model based
on a single point estimate and its immediate neighborhood. If the best point estimate
is so good that the recipe indeed yields robust solutions, then it cannot be claimed
that we are in a situation that can be categorized as decision-making under SEVERE
uncertainty.
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8. CONCLUSIONS

Mathematical models for decision-making under severe uncertainty are — by neces-
sity — austere and involve highly simplistic assumptions regarding uncertainty. For
many years now, classical decision theory has offered two paradigms for this purpose:
Laplace’s Principle of Insufficient Reason and Wald’s Mazimin Principle. To be sure,
these principles are far from perfect, yet they still dominate the scene.

In particular, Wald’s Maximin Principle is used extensively in worst-case analysis
and robust optimization.

As illustrated in this discussion, from a mathematical modeling point of view
its deployment requires subtlety and imagination. Indeed, this is one of the lessons
learned from the Info-Gap experience.

A. APPENDIX

A.1. PROOF OF THE RESULT USED IN EQUATION (49)
We have to show that

r(g, @) : = ¢" a4+ min{qgTv : vT Wo < o?} (70)
=q¢ ' — a/q¢TW-1q (71)
namely that the optimal value of v is such that ¢7v = —a/qTW—1q.

Observe that because ¢ is non-negative, the constraint v Wwv < o? is binding at
the optimum. And since the minimization problem is convex, the first order optimality
condition for the associated Lagrangian problem is as follows

Vo {qTUﬁL)\{UTWU*O‘z}} =0 (72)
(q + %)\Wv vTWo — 042) = (0,0) (73)
Hence, 1
SAWu=—g (74)
TWo = a2 (75)
and therefore N 2101;6] (76)

Now, multiplying (74) on the left by ¢” W1 we obtain

1
§AqTW—1Wv =—¢Twy (77)
1
iAqTU =—q¢'wq (78)
T T
q v)\vgq _
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Hence,

¢'v=+a\/qTW-1q (80)

Since o > 0 and we are minimizing, the optimal solution is

¢"v=—a\/qTW-1q (81)

as required.

A.2. PROOF OF EQUATION (60)

We have to show that if max{a, a2} > r, then the optimal solution (d) of

- i 1 — d)itg — 1,
d(re, @, W) : = arg max din + (1 = d)ii — v (82)
0<d<1 d? + (1 —4d)?
is
d(re,it, W) = —2 ¢ (83)

ﬂl + ’112 — 27"[3
Since max{,u2} > r. implies that the optimal solution yields a non-negative
numerator in (82), we have

J(rc,ﬂ,W) : = arg max {{dal ;Q(j—zldzﬂ;); re} } (84)

0<d<1

The expression being maximized is pseudoconcave with d on the interval [0, 1],
(see Avriel, 1976, Theorem 9.6, pp. 154-5), so any stationary point in the feasible
region is a global optimum.

Equating to zero the derivative (with respect to d) of the expression being maxi-
mized we obtain the two roots

uy —r Ug — T
d/:%;d”:# (85)
U1 + ug — 2r, Uo — U

It turns out that the second root, d”, is not relevant because it always yields 0

for the objective function, regardless of the values of 4 and 7., namely

diig + (1 — d)iis — 7. 4 )
Er1-a® [,

Note that for the two end points of the feasible range of d we have

e
{dul (- d)is “’} =y 7. (87)
d=0

@+ (1—d)?

{dm + (1 —d)yag —r. } PR (88)
d=1

@+ (1—d)?
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Thus, if max{ay,us} > re, then the second root, d”, cannot be strictly better

than both end points.

We conclude therefore that

U — 1T
0 , ~1~7€ <0
Uy + o — 21,
d(re, @, W) e therwi (89)
Te, U, = —_— otherwise
¢ uy + Uy — 27,
Uy — T
1 s ~1~7€ >1
w1 + U — 2r,
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