
Decision Making in Manufacturing and Services

Vol. 1 • 2007 • No. 1–2 • pp. 91–110

Scheduling with High Variety

of Customized Compound Products

Czesław Smutnicki∗

Abstract. Domestic appliance is an instance of manufacturing various products on clients
demand with frequent changes of production. Although the technological process for each in-
dividual product is relatively simply, the variety of products, mixed orders, frequent machines
changeovers, machines with unusual service policy, lack or limited storage, etc., generates
quite nontrivial planning, batching and scheduling problems and furthermore of a huge size.
In this paper, we present specific real process of production of refrigerators, mathematical
and graph models of the problem and an outline of solution algorithm, based the on local
search approach.

Keywords: scheduling, tabu search.

Mathematics Subject Classification: 90B30, 90B35, 90C59.

Received/Revised: 29 March 2007/11 July 2007

1. INTRODUCTION

Optimization problems arising from industry, especially scheduling problems, pose
a real challenge for the designing of efficient solution algorithms. Their NP-hardness
and practical complexity disqualify classical, exact approaches, as an example,
branch-and-bound schemes (B&B) or mixed integer linear programming (ILP, MILP),
for sizes of instances that come from practice. On the other hand, the quality of solu-
tions generated by approximate approaches influences immediately economic indexes
(thus also profits of firms). That’s why many researchers continuously seek new algo-
rithms which would be able to solve practical scheduling problems with high accuracy
in a short time.

Although many efforts have been made for fundamental and advanced scheduling
models, the quality of solutions obtainable in a reasonable time remains not fully
satisfactory. Vastly worse situation we have observed in the complex production
systems, which generate troubles already with modelling, not saying anything just
about effective solution methods. New modern techniques of production management
(lean manufacturing, kanban, etc.) frequently have been proposed by experts as the
universal “medicine” on planning and control ailments. One should be conscious that

∗ Wroclaw University of Technology, Institute of Computer Engineering, Control and Robotics,
Poland. E-mail: czeslaw.smutnicki@pwr.wroc.pl.

91

92 Cz. Smutnicki

these approaches, although very useful in practice, eliminate perfect optimal planning
even in cases where mathematical optimization is the sole method for improvement
of system activity.

In this paper, we discuss real problem of producing refrigerators, for which kan-
ban technology has failed. Kanban failure in this case follows from the commonly
known fact that in case of frequent changes of final products the put down amount
of abandoned semi-products appears too heavy to carry it by the production system.
Then, perfect planning of the production is especially welcome. Not concentrating of
product mark or type, the developed methodology can be applied in firms producing
washing machines, dishwashers, cookers, etc. in various market models and frequent
changes of production profile. At first look, from the scheduling theory point of view,
this problem could be perceived as either known in the literature resource constrained
project scheduling (RCPS) problem or a generalization of job-shop problem toward
the use of multi-purpose machines with changeover constraints. However, in this real
case there exist simultaneously several untypical constraints that follow chiefly from
the usage of forms (a kind of tool), the changeover policy and from the new class of
carousel multi-channel machines. These imply that neither RCPS nor job-shop models
are immediately applicable. On the other hand, complex MILP models with many
hard constraints are commonly replaced by job shop like models, even in complex
chemical processes, (Neumann et. al, 2003). This suggests that we should look for
solution technology rather in conventional combinatorial scheduling approach than in
MILP based approaches.

As to RCPS models and tools, we consciously skip the overview of the rich litera-
ture and only refer the reader to the excellent state of the art survey papers and anal-
ysis (Brucker et. al, 1999; Herroelen et. al 1996; Kolisch, Hartmann, 2001; Kolisch,
Padman, 2001). In RCPS area, one can distinguish several research streams which
follow from type of resource used (renewable, partially renewable, non-renewable,
doubly constrained), type of relations between activity, number of criteria (single-,
multiple-criteria), particular form of criteria, type of constraints and optimization
directions. Applied solution methods strongly depends on the problem, stream, and
theirs special properties, we mention only typical approaches (Brucker, 1998; Kolisch,
Drexl 1997; Mori, Tseng, 1997; Özdamar, Ulusoy, 1996; Thomas, Salhi, 1998) but a
few. In terms of RCPS, problem considered by us can be perceived as certain spe-
cial class of multi-mode scheduling with renewable resources, (Salewski et. al, 1997;
Sprecher, Drexel, 1998), changeover times and single time criteria. Unfortunately,
taking into account the real size of instances, RCPS offers no powerful solution meth-
ods beside priority rules or tabu search, (Sprecher, Drexel, 1998; Thomas, Salhi,
1998). Hence, our basic aim is to propose the model of the described manufacturing
process (taking into account all specific constraints) and the solution algorithm of
different types, constructive, improvement type, TS type, (Glover, Laguna, 1996;
Laguna, Marti, 2003). Significant attention has been paid for modelling process, in
order to get link with graph models known in job-shop and specific RCPS scheduling,
(Nowicki, Smutnicki, 1996), block approach existed for problems with min-max type
criterion and excellent properties of well-known TSAB algorithm, (Nowicki, Smutnicki
1996, 2005a, 2005b).

Scheduling with High Variety of Customized Compound Products 93

The paper is organized as follows. After a short presentation of the problem,
notions and denotations (Section 2) we introduce formal mathematical model with
decision variables and constraints (Section 3). Batching is introduced in Section 4 as
independent outer procedure responsible for setting the batch number and batch sizes,
which can be perceived as the independent module of preparing input data for the
scheduling problem. Following the mathematical model we introduce the auxiliary
graph model (Section 5), which next has been built into multilevel algorithm obtained
through the decomposition of the problem stated. Special properties of the problem,
simplification and extensions in the context of industrial practice, as well as solution
algorithm are presented in Section 6. Conclusions and future research directions are
discussed in Section 8.

2. THE PROBLEM

In this section we introduce the real problem as well as all necessary notions and
denotations, see also Figure 1. The problem is formulated as follows.

The factory can produce n different products on clients demand and let N =
{1, 2, . . . , n} denote the set of these products. In fact, the real problem is much more
complicated because each product can be provided on the market in various models,
which basically differ each other by casing colour, shape and equipment. Hopefully,
the technological staff have distinguished the minimal set of mutually different logistic
products which do not depend on casing parameters, so we can calmly assume that N
contains only essentially various products. Let ni denote the demand size of product
i ordered by a client, having the supply date di, i ∈ N .

Without losing generality, we assume that ni > 0, i ∈ N , otherwise we can reduce
set N appropriately. Copy of product i needs for processing the set of operations
linked by certain graph, see for example Figure 2. Let Oi and Gi = (Oi, Ei), where
Ei ⊂ Oi ×Oi, denote respectively the set of operations and the graph of technological
order of operations in activity-on-node notation for product i. We assume next that
all operations own unique indexes, so let O =

⋃
i∈N Oi and G = (O, E), where

E =
⋃

i∈N Ei. Each operation j ∈ O needs for processing various resources, namely:
single machine a ∈ Uj (selected from the given subset of machines Uj) and the fixed
subset of forms Fj . We treat ni copies of product i as the separate batch, which means
that operation j corresponds, in fact, to processing ni identical activities successively.
Forms play the crucial role in the production process, as it will be discuss later, since
different products may have the

same structure of the operation graph, but through using completely different set
of forms provide different product.

There are three types of machines, each of them having single human operator:
(1) sequential, which can process at most one operation at the time,
(2) multi-channel, which can process simultaneously and independently several

parts at the time,
(3) carousel, which can process simultaneously

several parts (operations are delayed successively by a constant in a cyclic way),
whereas only one part is accessible at a time, see Figure 3.

94 Cz. Smutnicki

Let M denotes the set of machines of all types, M = M s∪Mm∪M c, where Ms =
{1, 2, . . . , ms}, Mm = {ms + 1, ms + 2, . . . , mm}, M c = {mm + 1, mm + 2, . . . , mc}
denote sets of sequential, multi-channel and carousel machines, respectively.

notion meaning

N = {1, 2 . . . , n} set of products
i product index

Oi set of operations for product i

Ei ⊂ Oi × Oi technological order of operations from Oi

Gi = (Oi, Ei) graph of precedence constraints for product i in activity-on-node notation
di supply date for product i

O =
Sn

i=1
Oi set of all operations

o = |O| total number of operations
E =

Sn
i=1

Ei set of arcs for graph G = (O,E)
j operation index
a machine index
Uj set of machines required alternatively by operation j ∈ O

Fj set of form types required simultaneously by operation j ∈ O

ni size of demand for product i

M = Ms ∪ Mm ∪ Mc set of machines
Ms = {1, 2, . . . ,ms} set of sequential machines

Mm = {ms + 1, . . . , mm} set of multichannel machines
Mc = {mm + 1, . . . ,mc} set of carousel machines

ka the number of channels in multichannel machine a ∈ Mm

(a, c) (machine, channel), c ∈ {1, 2, . . . , ka}, a ∈ Mm

p∗aj processing time of operation j on machine a

paj = nip
∗

aj processing time of aggregated operation j being the batch of size ni

H = {1, 2, . . . , h} set of form types
b form type index
hb the number of forms of type b

(b, c) (form type, form index), c ∈ {1, 2, . . . , hb}, b ∈ H

s(a, Fx, Fy) time necessary to make changeover on machine a from form set Fx to Fy

variable meaning

Sj , Cj starting, completion time of operation j ∈ O

Rj machine allocated for operation j ∈ O

Qj set of forms allocated for operation j ∈ O

PF (Qj) projection of Qj onto F

(R, Q,S,C) schedule, R = (R1, . . . , Ro), Q = (Q1, . . . ,Qo), S = (S1, . . . , So), etc.
bij size of batch for product i and operation j

WR set of operations being in machine conflict, see (27)
WQ set of operations being in form conflict, see (28)

Fig. 1. List of notions used in the paper

Thus Uj ⊂ M , more precisely Uj is included in the whole in exactly one of subsets
Ms, Mm, M c. Each composed machine a of type (2) and (3) can be considered as
a set (bank) of ka identical uniform parallel machines, a ∈ Mm ∪ M c.

Scheduling with High Variety of Customized Compound Products 95

extrusion forming: part H

extrusion: plastic H

painting: metal H extrusion: metal H

extrusion: metal L

extrusion: metal B

extrusion: metal D

extrusion: metal B

painting: metal L

painting: metal B

extrusion: plastic L

extrusion: plastic BH

extrusion: plastic BL

extrusion: plastic D

extrusion: plastic B

painting: metal D

painting: metal B

extrusion forming: part L

extrusion forming: part B

extrusion forming: part B

extrusion forming : part D

assembling H+L+B

assembling D+B

Fig. 2. Technological order (graph Gi) of operations for two typical products:
refrigerator with freezer (upper) and refrigerator alone (lower)

Specified machine from the bank can process an operation j if and only if all forms
Fj required by this operation have been mounted on this machine.

From the operation point of view there is no meaning which particular ma-
chine services the operation, however this is significant for forms management and
changeover. Therefore, in the sequel, machines will be identified by pairs (a, c), where
c ∈ {1, 2, . . . , ka}, a ∈ M , since forms are mounted on the particular machine c in the
bank a.

96 Cz. Smutnicki

ENTRY

EXIT
EXIT

ENTRY

Fig. 3. Multi-channel machine (left) and carousel machine (right)

For symmetry we set ka = 1 for a ∈ M s. Processing time of operation j (for single
copy of product i) processed on machine a ∈ Uj is equal p∗aj , j ∈ Oi, i ∈ N . The
composed batch-operation has real processing time nip

∗

aj , j ∈ Oi, i ∈ N , however we
use hereinafter abbreviation paj meaning in fact the term nip

∗

aj .
Forms are dedicated for specified products, however different products may use

the non-disjoin sets of forms. We denote by H = {1, 2, . . . , h} the set of form types,
and by hb the number of forms of type b ∈ H available in the system. Next we denote
by s(a, Fx, Fy) the time necessary to make changeover on machine a ∈ M from set
form Fx ⊂ F to set form Fy ⊂ F . For symmetry we set s(a, Fx, Fy) = 0 if Fx = Fy

for any a, and define additionally notions of initial changeover s(a, ∅, Fy) and final
changeover s(a, Fx, ∅). Composite machines of types (2) and (3) differ fundamentally
each other by the technology of making changeover. In particular, carousel machines
has not been considered yet in the literature at all. The changeover of forms on a
single machine (a, c) in the bank a ∈ Mm does not have any influence on the activity
of other machines in this bank as well as on machines in other banks from Mm, see
Figure 4.

time

(a,1)

channel

form changeover
machine a

(a,2)

(a,3)

(a,4)

(a,5)

j k

s(a,Fj,Fk) Cj Sk

Fig. 4. Multi-channel machine. Form changeover policy. Basic case

The changeover of forms on a single machine (a, c) in the bank a ∈ M c stops the
whole bank a (this carousel) for the time of making setup, see Figure 5. Since rules of
form changeover are a bit complex, similarly as for machines, forms will be denoted
by pairs (b, c), where c ∈ {1, 2, . . . , hb}, b ∈ H .

Scheduling with High Variety of Customized Compound Products 97

time

form changeover
channel

carousel a

(a,1)

(a,2)

(a,3)

(a,4)

(a,5)

j k

s(a,Fj,Fk)

Cj Sk

l

l

l

l

l

l

l

Fig. 5. Carousel machine. Form changeover policy. Basic case

Now, we are ready to formulate solution, constraints and the optimization criteria.
Let Sj and Cj denote the decision variables being starting time and completion time
of operation j. We consider machines and forms as renewable resources Rj , Qj allo-
cable for operation j. Let Rj be the decision variable denoting machine allocated for
operation j. Then we have Rj = (a, c), where c ∈ {1, 2, . . . , ka}, a ∈ Uj ⊂ M , j ∈ O.
Let Qj be a decision variable denoting set of forms allocated for operation j. Then

we have Qj = {(b1, c1), (b2, c2), . . . , (bq, cq)}, where PF (Qj)
def
= {b1, b2, . . . , bq} = Fj ,

and ct ∈ {1, 2, . . . , hbt
}, t = 1, 2, . . . , q, q = |Fj |. PF (Qj) is the projection of set Qj

onto F done by choosing prime components of pairs from Qj . The schedule is repre-
sented by quadruple (R, Q, S, C), where R = (R1, R2, . . . , Ro), Q = (Q1, Q2, . . . , Qo),
S = (S1, S2, . . . , So), C = (C1, C2, . . . , Co), o = |O|. After consultation, experts from
the factory suggest to use as the optimization criteria either makespan or maximum
lateness, which we would like to minimize. Since the solution methodology in both
cases is the same, whereas the latter criteria is slightly more general, we decided to
use lateness hereinafter.

3. MATHEMATICAL MODEL

This section aim is to formulate the formal mathematical model of the problem. It
provides the framework for the solution method as well as foundations for the graph
model employed in the algorithm. The goal function value, given below, represents
the lateness, whereas constraints are listed in the further part of this section

min
R,Q,S,C

max
j∈O

(Cj − dj). (1)

Condition (2) allows only feasible allocations of machines to operation and ensures
that capacity of machines from Mm ∪ M c won’t be violated,

Rj = (a, c), c ∈ {1, 2, . . . , ka}, a ∈ Uj ⊂ M, j ∈ O. (2)

Condition (3) ensures that required forms for operation will be allocated,

PF (Qj) = Fj , j ∈ O. (3)

98 Cz. Smutnicki

Condition (4) ensures that available number of forms won’t be exceeded,

Qj = {(b1, c1), (b2, c2), . . . , (bq , cq)}, ct ∈ {1, 2, . . . , hbt
}, t = 1, 2, . . . , q = |Fj | , j ∈ O.

(4)
Condition (5) naturally limits starting times,

Sj ≥ 0, j ∈ O. (5)

Condition (6) forces the technological order of operations in products,

Cj ≤ Sk, (j, k) ∈ Ei, i ∈ N. (6)

Condition (7) takes into account processing time of operation for the chosen machine
Rj = (a, c) allocated for this operation,

Sj + paj ≤ Cj , j ∈ O. (7)

Changeover constraints depend on machine type and type of resource conflict.
If two operations k, j ∈ O use the same machine Rj = (a, c) = Rk, where a ∈

Ms ∪ Mm, then we have disjunctive condition (symbol
.
∨ means disjunction) with

suitable changeover times, see also Figure 4,

(Cj + s(a, Fj , Fk) ≤ Sk)
.
∨ (Ck + s(a, Fk , Fj) ≤ Sj). (8)

Notice, by the definition s(a, Fj , Fk) = 0 if Fj = Fk. If two operations k, j ∈ O
use different machines (a, c) = Rj 6= Rk = (a′, c′), where a, a′ ∈ Ms ∪ Mm, but have
conflicted set of forms Qj∩Qk 6= ∅ then we have disjunctive condition with a extended
changeover times, being the sum of times of mount off and on proper forms, namely

(Cj + s(a, Fj , ∅) + s(a′, ∅, Fk) ≤ Sk)
.
∨ (Ck + s(a′, Fk, ∅) + s(a, ∅, Fj) ≤ Sj). (9)

If two operations k, j ∈ O use the same machine Rj = (a, c) = Rk, where a ∈ M c,
then we have disjunctive set of conditions “either (10) or (13)”, completed by auxiliary
conditions (11)–(12) or (14)–(15), respectively,

Cj + s(a, Fj , Fk) ≤ Sk. (10)

Taking (10) we have to add simultaneously conditions that force temporary stop
carousel a in the interval [Cj , Cj + s(a, Fj , Fk)], namely

Sl + pal + s(a, Fj , Fk) ≤ Cl, (11)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Sl ≤ Cj < Sl + pal and also

Cj + s(a, Fj , Fk) ≤ Sl (12)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Cj < Sl < Cj + s(a, Fj , Fk).
By analogy, complementary to (10) condition

Ck + s(a, Fk , Fj) ≤ Sj , (13)

Scheduling with High Variety of Customized Compound Products 99

we have to supplement by analogous conditions stopping carousel a

Sl + pal + s(a, Fk , Fj) ≤ Cl, (14)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Sl ≤ Ck < Sl + pal and also

Ck + s(a, Fk, Fj) ≤ Sl (15)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Ck < Sl < Ck + s(a, Fk, Fj).
If two operations k, j ∈ O use different machines (a, c) = Rj 6= Rk = (a′, c′),

where a, a′ ∈ M c, but have conflicted set of forms Qj ∩Qk 6= ∅ then we have disjunc-
tive conditions “either (16) or (21)”, completed by auxiliary conditions (17)–(20) or
(22)–(25) respectively,

Cj + s(a, Fj , ∅) + s(a′, ∅, Fk) ≤ Sk. (16)

Taking (16) we have to add simultaneously conditions that force temporary stop
carousel a in the interval [Cj , Cj + s(a, Fj , ∅)], namely

Sl + pal + s(a, Fj , ∅) ≤ Cl, (17)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Sl ≤ Cj < Sl + pal, and also

Cj + s(a, Fj , ∅) ≤ Sl (18)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Cj < Sl < Cj + s(a, Fj , ∅).
Moreover carousel a′ has to be stopped in the interval [Cj+s(a, Fj , ∅), Cj+s(a, Fj , ∅)+
s(a′, ∅, Fk)], so we need to add conditions

Sl + pa′l + s(a′, ∅, Fk) ≤ Cl, (19)

for any l such that Rl = (a′, e), e ∈ {1, 2, . . . , ka′}, e 6= c′, Sl ≤ Cj + s(a, Fj , ∅) <
Sl + pa′l, and also

Cj + s(a, Fj , ∅) + s(a′, ∅, Fk) ≤ Sl (20)

for any l such that Rl = (a′, e), e ∈ {1, 2, . . . , ka′}, e 6= c′, Cj + s(a, Fj , ∅) < Sl <
Cj + s(a, Fj , ∅) + s(a′, ∅, Fk). By analogy, complementary to (16) condition

Ck + s(a′, Fk, ∅) + s(a, ∅, Fj) ≤ Sj (21)

we have to supplement by conditions that stopped carousel a′ in the interval [Ck, Ck +
s(a′, Fk, ∅)]

Sl + pa′l + s(a′, Fk, ∅) ≤ Cl, (22)

for any l such that Rl = (a′, e), e ∈ {1, 2, . . . , ka′}, e 6= c′, Sl ≤ Ck < Sl + pa′l and
also

Ck + s(a′, Fk, ∅) ≤ Sl (23)

100 Cz. Smutnicki

for any l such that Rl = (a′, e), e ∈ {1, 2, . . . , ka′}, e 6= c′, Ck < Sl < Ck + s(a′, Fk, ∅).
Moreover carousel a has to be stopped in the interval [Ck + s(a′, Fk , ∅), Ck +
s(a′, Fk, ∅) + s(a, ∅, Fj)], so we need to add conditions

Sl + pal + s(a, ∅, Fj) ≤ Cl, (24)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Sl ≤ Ck + s(a′, Fk , ∅) <
Sl + pal, and also

Cj + s(a′, Fk, ∅) + s(a, ∅, Fj) ≤ Sl (25)

for any l such that Rl = (a, e), e ∈ {1, 2, . . . , ka}, e 6= c, Ck + s(a′, Fk, ∅) < Sl <
Ck + s(a′, Fk, ∅) + s(a, ∅, Fj).

The model presented above does not reflect complex reality in all details, however
we consciously omit a lot of them chiefly in order to simplify description and analysis.
How complex is the problem (1)–(25) one can imagine providing real instance data.
We get from the industry: n ≈ 50,

∑n
s=1

ni ≈ 5000 (plan per week), |F | = f = 50,
∑f

t=1
ht ≈ 300, |M | ≈ 25, |Mm| ≈ 4,

∑mm

t=ms+1
kt ≈ 30, |M c| ≈ 5,

∑mc

t=mm+1
kt ≈

70, etc. Planning horizon gather three periods: (1) 2–3 recent days where schedule
theoretically cannot be changed (in practice few “very important” changes usually
occur), (2) w week – typical planning horizon with three shifts per day, (3) a month
– inflow of orders collected for pre-planning. The great number of logistic models
implies frequent changeovers – at least a few per shift for carousel machines and few
for multichannel machines. Utilization of machines is about 80-90%. Processing times
for various models change in the range 20%. It is clear that transformation (1)–(25)
into MILP will not fulfill our expectations regarding solution methods.

The manufacturing process is organized in specific way. Operations, see Figure
2, called “extrusion: metal”, “painting: metal” and “extrusion: plastic” are performed
using machines from M s. For these operations forms are associated with each par-
ticular machine, which implies that problem of form allocation for these operations
does not exist. Operations “extrusion forming: part X”, where X ∈ {H, L, D} are
performed using machines from M c. Each such operation requires typically a couple
of forms. One can introduce certain simplification, by allocation only pre-defined
couples of forms, which reduces the number of considered variants of allocation. Op-
erations “extrusion forming: part B” are performed using machines from Mm. Each
such operation requires from two to five forms, different than those for previously
mentioned operations. Assembling operations are performed on the assembly line, no
additional resources are required.

4. BATCHING

In this section we discuss possibility of embedding portions of the order (used by the
planning department of the factory) in the formulated already mathematical model. It
is clear that by performing order i sequentially, in the whole, we prevent unnecessary
machine changeovers, so we can reduce costs and waste time. Moreover, a quite small
number of forms is required. One can say that this strategy should be preferred. On

Scheduling with High Variety of Customized Compound Products 101

the other hand, there are several significant reasons which justify splitting the order
i of size ni into smaller portions called batches. The first argument follows from the
higher capacity of successive stage (usually the assembly line) which forces processing
parts from order i simultaneously on several parallel machines preceding the assembly
line. The second argument is justified for orders of large size from single client – in
fact, this order will be shipped in portions, because of the transport property. This
approach ensures smoother policy of supplying as the side effect.

Allowing batching, we assume that order i of size ni is split into wi batches of
non-zero sizes bi1, bi2, . . . , biwi

,
∑wi

j=1
bij = ni, i ∈ M . Then, product i should be

rather denoted by set of pairs (i, c), where c ∈ {1, 2, . . . , wi} is the index of batch; all
such batches of product i own the same due date di, i ∈ N . Similarly, operation j
should be written rather as pairs (j, c), where c ∈ {1, 2, . . . , wi} is the index of batch.
Processing time of such composed batch-operation can be found as bicp

∗

kj , where p∗kj

is the processing time for the unit of product i. So we need to re-define appropriately
all necessary notions, namely set of tasks, set of operations and graph. This will com-
plicate description of the problem as well as presentation of the algorithm. Therefore,
we do not do it chiefly for the simplicity of notation. We assume hereinafter that:
(A) batching has been already made and the extended set of products N ∗ consists
portions of repetitive products in form of batches of sizes denoted by ni instead of bij ,
(B) each batch-operation j has processing time equal nip

∗

kj , where k ∈ Uj , j ∈ Oi.
Open remains the policy of selecting batch size. It results from either optimization

process or firm policy. Exploiting rules currently used in the firm, following strategies
have been proposed, implemented and tested in the algorithm:

(1) constant batch size b∗, where b∗ is a parameter, i.e. wi = dni/b∗e, bij = b∗,
j = 1, . . . , wi − 1, biwi

= ni − B(wi − 1),
(2) proportional batch size, i.e. wi = n∗, where n∗ is a parameter, bij = bni/n∗c,

j = 1, . . . , wi − 1, biwi
= ni −

∑wi−1

j=1
bij ,

(3) constant (or proportional) batch size for large orders only, i.e. for these i such
that ni > n∗∗; small orders are not spliced onto batches.

Notice that b∗, n∗, n∗∗ can be used as control parameters in an independent outer
optimization procedure, which provides modified input data set.

5. GRAPH MODEL

In this section we provide foundations for the solution algorithm, in particular we
introduce auxiliary graph model used in the most internal part of the method. Let
us assume that splitting jobs into batches has been already done, providing expanded
set of products N∗ which implies suitable set of operations O. Then, optimization
(1) can be organized in the following hierarchical way

min
R,Q

min
S,C

max
j∈O

(Cj − dj). (26)

Let R, Q be fixed but feasible in the sense of constraints (2)–(4). Then, decision
variables S, C depend, among others, on the choice made between alternatives in all

102 Cz. Smutnicki

disjunctive conditions (8)–(10), (13), (16), (21), each of which fix precedence either
j → k or k → j for operations j, k being in resource conflict, namely in machine
conflict

WR = {(j, k), (k, j) : Rj = Rk, j, k ∈ O} (27)

and in form conflict

WQ = {(j, k), (k, j) : Rj 6= Rk, Qj ∩ Qk 6= ∅, j, k ∈ O} (28)

Assume next that exactly single pair from each two disjunctive pairs (j, k), (k, j) has
been chosen, providing representations of disjunctions TR ⊂ WR and TQ ⊂ WQ. This
means that problem (26) has been additionally decomposed by introducing TR, TQ,
namely

min
R,Q

min
TR,TQ

min
S,C

max
j∈O

(Cj − dj). (29)

Following (29) we propose hierarchical algorithm which carries out appropriate min-
imization in layers, see Figure 6. On the lowest level we need to solve the problem

min
S,C

max
j∈O

(Cj − dj). (30)

for fixed R, Q, TR, TQ. To this aim, we construct graph G(R, Q, TR, TQ) = (O, E ∪
TR ∪ TQ), where O and E follow from the graph of technology order G = (O, E)
defined in Section 2. Node j ∈ O represents operation j and has associated two
events: starting time Sj and completion time Cj . Node j has weight paj , where
a = Rj . Arc (j, k) ∈ E has weight zero. Remain arcs have weights that depend on
disjunctive conditions set in the mathematical model. Arc (j, k) ∈ TR has weight
s(a, Fj , Fk), where Rj = a = Rk, see (8) and (10) or (13). Arc (j, k) ∈ TQ has
weight s(a, Fj , ∅) + s(a′, ∅, Fk), where Rj = a 6= a′ = Rk, see (9) and (16) or (21).
Observe that conditions (11)–(12) (appropriately (14)–(15)) and conditions (17)–(20)
(appropriately (22)–(25)) are still not respected in the graph G(R, Q, TR, TQ), because
cannot be expressed using fixed a priori graph arcs. Therefore we propose special
procedure of finding S, C for (30) which consists of two phases: (A) generating and
(B) improvement. In the former phase constraints (11)–(12), (14)–(15), (17)–(20),
(22)–(25) are relaxed and then Sj , Cj are found through longest paths in the graph,
however so found values are only lower bounds instead of real starting and completion
times. In the latter phase relaxed conditions are introduced step-by-step, modifying
Sj , Cj toward feasible ones in sense of the whole model (1)–(25). Let us consider
these phases in detail.

Phase (A) can be performed if and only if graph G(R, Q, TR, TQ) does not con-
tain cycle. Then, starting time Sj of operation j is the length of the longest path
going to the node j, without the weight of this node. Completion time Cj of op-
eration j equals Sj plus the weight of node j. Using commonly known transfor-
mation, we convert maximum lateness value into critical path length in standard
problem of finding critical path in the graph. At the begin of phase (B) we sort all
events Sj into nondecreasing order. Our aim is to check events, along this order, for
possible violation of previously relaxed constraints (11)–(12), (14)–(15), (17)–(20),

Scheduling with High Variety of Customized Compound Products 103

(22)–(25). For example, if we found for some j that (j, k) ∈ TR, a = Rj ∈ M c and
s(a, Fj , Fk) > 0, then we modify processing time pal (weight of node l) by adding
term s(a, Fj , Fk), see (11), for all nodes l such that Rl = (a, e), e ∈ {1, 2, . . . , ka},
e 6= c, Sl ≤ Cj < Sl + pal. Additionally, for any node l such that Rl = (a, e),
e ∈ {1, 2, . . . , ka}, e 6= c, Cj < Sl < Cj + s(a, Fj , Fk) we introduce additional
arc (j, l) with weight s(a, Fj , Fk), see (12). Such modification influences on graph
structure (provides its temporary modification), thus can change values of Sj , Cj .
Therefore, immediately after modification we need to run critical path method once
again, actually for some part of the graph. We repeat phase (B) until no changes
have been introduced. Retrieving other types of feasibility is made in analogous way.
The described procedure provides not necessary optimal values for the problem (30),
however in experiments it is very close to optimal.

6. ALGORITHM

Process administrator has proven that currently bottleneck of the production system
occurs on machines from Mm and M c. At the analysis described below we accept this
point of view. Following SQUEZEE philosophy we use OPT management strategy. In
OPT we relax all but bottleneck stage, then optimally schedule the bottleneck stage
and at the end “spread” solution to obtain feasible schedule of remain stages. Thus,
we resign from the scheduling on machines M s as well as the assembly line balancing,
and consider only operations processed on machines Mm and M c, see area bounded
by dashed line in Figure 1.

Without the loss of generality we assume that:

(a) these operations are numbered consecutively 1, 2 . . . , o,
(b) operation j can be processed using machine a ∈ Uj and set of forms Fj , as it

has been already defined,
(c) obligatory are changeover rules set previously.

Following decomposition in (26) we propose the hierarchical algorithm shown in
Figure 6. The lowest level has been already proposed and discussed in detail in
Section 5.

Let us go to successive higher levels. Next two levels, namely minR,Q and
minTR,TQ

, can be considered either separately or jointly. The former approach is
more suitable in the context of decomposition already made. It also allow us to
isolate loading from sequencing in their influence on the final schedule as well as to
use different optimization techniques on these levels. Many authors do so, not dis-
cussing neighbourhood size derived from this approach in the context of local search
methods. On the other hand, joint treatment of loading and sequencing leads us to
certain homogeneity in defining and considering moves for local search needs, see e.g.
TS (Nowicki, Smutnicki 1998), which results in faster convergence to good solution as
well as prevents explosion of the neighbourhood size and search cost in local search
approaches.

104 Cz. Smutnicki

Joint optimization can be realized in several ways:

(a) outline of the load and sequence, found by certain optimization method,
spread then into detailed schedule,

(b) common moves for loading and sequencing, see (Nowicki, Smutnicki 1998),
(c) priority list algorithm.

bij, j=1,…,wi, i=1,…,n

R, Q

TR, TQ

S, C

loading

sequencing

scheduling

batching

Fig. 6. Multi-level solution algorithm

Let us consider these approaches in the context of the problem stated.
Implementation of (a) bring to large size optimization tasks, its applicability needs

further studies. Implementation of (b) implies complex forms of moves (because of
complex resource requirements for single operation) and large size of the neighbour-
hood (because of the real instance size). Although the former disadvantage (complex
moves) has been partially resolved, still open remains efficient method of the neigh-
bourhood reduction. Not abandoning completely ideas (a)–(b), we decided at the
begin to implement approach (c).

We used algorithm (LA) that determines simultaneously R, Q and TR, TQ and
which approximately realizes minimization minR,Q minTR,TQ

in (26). This is greedy
method based on the entry list given by a permutation π = (π(1), . . . , π(o)) of op-
erations from the set O. For each resource (machine, form) we introduce the release
time, i.e. time moment from which it becomes continuously available. Consecutive
operation π(i) from the list π is tested for possible allocation of available resources
(machine, channel, forms) in time moments greater than release times of required re-
sources. Such approach was used formerly in the DSS for RCPS, (Nowicki, Smutnicki,
1994). For each considered variant of allocation, the earliest possible completion time
is calculated, taking into account head, body, tail and changeover times. The best,
in this sense, allocation is accepted and chosen resources become occupied in proper
periods of time, providing modification of resource release times. Constructive method

Scheduling with High Variety of Customized Compound Products 105

bases on the single run of LA for pre-defined π. There is a freedom in generating initial
π – we propose to order operations according to nondecreasing dj ’s. Improvement
type algorithm we based on TS with the insert-type moves that change order of
operations in π, being the entry to LA. Because of huge size of π, the important is the
proper selection of perspective and non-perspective moves in the neighbourhood, to
avoid too high computational cost of the single neighbourhood search, see (Nowicki,
Smutnicki, 1998). This study has not been completed yet, however, one can hope
that good properties associated with critical path and blocks defined for scheduling
problems with makespan criterion, (Nowicki, Smutnicki, 1996, 1998, 2005b) can be
implemented in this case as well.

The highest level of the algorithm in Figure 6 refers to batching strategy shown
in Section 4. Note that we need to perform optimization using at most two decision
variables (batch size, threshold). This can be done by an overview of pre-defined
areas of parameter space.

7. COMPUTATIONAL EXPERIMENTS

Implementation. Algorithm has been implemented as a console application in C++
and run on a PC with 1GB RAM and processor with 1.86 GHz clock, (Budyn, 2007),
and tested on the class of specially designed benchmarks.

Benchmarks. Computational experiments have been carried out by using bench-
marks designed specially for coincidence with practical instances. Data for processing
times are taken fundamentally from the production process.

Each benchmark is determined by four sets of data:

(1) models,
(2) freezer parameters,
(3) refrigerator parameters,
(4) order sizes.

Data for (2) and (3) are coded by: A – with equal processing times, B – with
various processing times, whereas for (4) by: C – with small differences between size
of orders, D – with large difference of sizes of orders. Combination of letters A and
B with C and D is supplemented by the number of models, e.g. AD30 denotes 30
models with equal processing times and large variation between order sizes. The
number of channels in each Mm and M c is set to four. For instances containing
10 models experiments are carried out by using single machine of each type, for 20
models – using two, for 30 – using three, and for 40 – using four machines of each
types. Orders are split into two batches.

Solution and schedule. Solution is represented by the permutation π =
(π(1), . . . , π(o)). Optimization criterion is the makespan. Detailed schedule is built
from π by using the greedy method. To this order we start from the scratch schedule
and add, in each step, single operation. Adding policy depends on machine type.
Carousel machines perform doors for refrigerators and freezers and requires the cou-
ple of forms per model. Changeover times is comparable to operation processing

106 Cz. Smutnicki

times but stops the whole carousel. For M c, successive operation is allocated to that
machine and channel which either is the earliest available under condition that owns
required set of forms (changeover is not needed) or is the earliest available without any
additional conditions (changeover is expected). To evaluate balance between these two
these opposite tendencies we use priority index α C(a, c) + β C∗ (the smallest value
of the index is selected), where α, β are some parameters, and C(a, c) is the release
time of channel c on machine a and C∗ is the earliest release time of machine that
can process that operation without changeover. Based on the set of random solutions
we set experimentally the best combination of parameters α = 0.25 i β = 0.75.

Multichannel machines perform cupboards for refrigerators and requires 4 to 5
various forms per model. Three forms can be treated as allocated constantly to
channel, next 1–2 are variable and depend on the model. Changeover times are
relatively long. Operations are added using greedy scheme, similarly as the above.
At first we check whether exists machine and channel having required set of forms –
operation is allocated there. If there are no such configuration, algorithm looks for
the earliest available machines having the missing forms – these forms are re-mounted
on that channel which ensures the earliest completion of the operation, taking into
account changeover time.

Algorithms. Three metaheuristic algorithms have been examined: genetic algo-
rithm (GA), simulated annealing (SA), tabu search (TS). To ensure common condi-
tions for comparisons, each algorithm uses the same representation of solution and
schedule, as well as generates the same number of solutions equal 50*o, where o is
the problem size. At the begin each algorithm has been analysed and tested sepa-
rately to obtain the best configuration of components and tuning parameters. We
skip consciously partial results obtained in this phase of algorithm development, and
present only final results obtained through comparison the best selected versions of
each method.

Genetic algorithm. There have been examined single and double point order
crossover operators (SX, PMX, OX, OX-2), tournament and roulette wheel selection.
GA has been tuned to set population size and mutation probability.

After extensive experiments there has been selected the best configuration: tour-
nament selection, PMX crossover operator, mutation probability 0.05, population
size 20.

Simulated annealing. There have been examined several cooling schemes,
namely (a) automatic cooling (SA autotuning version, [1]), and a few manualy tuned
cooling schemes: (b) geometric Tk = θ(ak), (c) logarithmic Tk = θ(ln−1(k + 1)), (d)
harmonic Tk = θ(k−1). For manually tuned schemes there have been also examined
the influence of neighbourhood structure, initial temperature, cooling parameters as
well as the number of repetitions in fixed temperature, on the quality of best solution
found. Among all tested variants the one with autotuning and neighbourhood based
on swap moves has turned out the champion.

Tabu search. There have been examined neighbourhoods based on adjacent
pairwise interchange moves (deterministic) and based on the limited set of random
swap moves (stochastic), two types of tabu list (complete permutations, recent move),
tabu list length, diversification strategies. After extensive experiments there has been

Scheduling with High Variety of Customized Compound Products 107

set the best configuration: stochastic neighbourhood, tabu list based on recent moves
of length 10, diversification after each 50 moves.

Evaluation methodology. Since algorithms are stochastic in their nature, each
algorithm for each instance have been run 10 times. For each algorithm A and each
run we evaluate the relative error (in per cent)

RE = 100% ·
CA − CREF

CREF
(31)

where CA is the makespan provided by algorithm A and CREF is the reference
makespan. As CREF we use the best makespan found for this instance during all
tests. Next, for each instance we calculate the BEST value of RE among 10 runs and
Average value of RE among 10 runs.

Results. Results are shown in Tables 1 (makespan list) and 2 (relative error).
Each run of the instance takes from a minute to few minutes on a PC. It is clear that
the best results provides SA with autotunning, GA is worse, TS is the worst one.
Conclusions from these results are numerous. First, more extensive further research
should be made to develop GA as well as TS through application of special problem
properties. Special attention need to be paid to promising TS approach, which can
be improved by using generalisation of critical path and block notions.

Table 1. Makespans for algorithms GA, SA, TS. BEST* is the best one
among all algorithms

algorithm

GA SA TS

benchmark BEST* BEST AV BEST AV BEST AV

AC10 1056 1070 1097 1056 1086 1058 1093
AC20 1310 1351 1382 1310 1353 1310 1406
AC30 1240 1261 1340 1240 1291 1282 1376
AC40 1192 1228 1288 1192 1250 1278 1345
AD10 1101 1103 1138 1103 1136 1101 1142
AD20 1245 1321 1344 1245 1310 1314 1359
AD30 1219 1251 1296 1219 1312 1265 1430
AD40 1340 1400 1422 1340 1392 1388 1471
BC10 2307 2307 2357 2324 2380 2379 2402
BC20 4893 4969 5013 4893 4948 4938 5004
BC30 5379 5443 5469 5379 5440 5415 5486
BC40 4734 4734 4781 4758 4781 4758 4824
BD10 2844 2904 2919 2844 2913 2934 2952
BD20 4609 4677 4729 4609 4713 4669 4760
BD30 5397 5447 5494 5397 5467 5468 5532
BD40 5586 5592 5632 5586 5609 5628 5678

108 Cz. Smutnicki

Table 2. Relative errors [%] to reference makespans (BEST*) for algorithms GA, SA, TS

algorithm

GA SA TS

benchmark BEST AV BEST AV BEST AV

AC10 1.3 3.9 0.0 2.8 0.2 3.5
AC20 3.1 5.5 0.0 3.3 0.0 7.3
AC30 1.7 8.1 0.0 4.1 3.4 11.0
AC40 3.0 8.1 0.0 4.9 7.2 12.8
AD10 0.2 3.4 0.2 3.2 0.0 3.7
AD20 6.1 8.0 0.0 5.2 5.5 9.2
AD30 2.6 6.3 0.0 7.6 3.8 17.3
AD40 4.5 6.1 0.0 3.9 3.6 9.8
BC10 0.0 2.2 0.7 3.2 3.1 4.1
BC20 1.6 2.5 0.0 1.1 0.9 2.3
BC30 1.2 1.7 0.0 1.1 0.7 2.0
BC40 0.0 1.0 0.5 1.0 0.5 1.9
BD10 2.1 2.6 0.0 2.4 3.2 3.8
BD20 1.5 2.6 0.0 2.3 1.3 3.3
BD30 0.9 1.8 0.0 1.3 1.3 2.5
BD40 0.1 0.8 0.0 0.4 0.8 1.6

AV all 1.87 4.02 0.09 2.99 2.21 6.01

8. EXTENSIONS AND CONCLUSIONS

In Figure 7 has been shown a small instance for operations “extrusion forming: X”,
where X ∈ {H, L} on machines M c, with relaxed changeover times, and equal batch
size 9. Batches of the same order i has been denoted by i.1, i.2, etc. Obtained
schedule follows from constructive version of LA method with π generated by FIFO
rule (all dj ’s are equal). This quite small instance clearly shows weakness of Gantt
chart for huge production planning problems with complex time constraints – it is
hardly to observe visually regularity on huge diagram, and to show possible direction
of solution modification toward sub-optimal ones. This conclusion was formulated
already in Nowicki, Smutnicki (1994) and is one of the reasons of stimulation of DSS
development. Nevertheless, the programming package for Gantt chart presentation is
the necessary tool for problem analysis.

As one can see, the study of the problem has not been completed yet. It is caused
by the time – the problem is stated and applied very recently. The open subjects
in particular areas leading to the solution algorithm, as well as alternative solution
approaches, have been signalled in suitable sections. Valid is also the problem of
storing semi-products before assembly line. It can be embedded in the presented
model by introducing upper limit on waiting time of operations “extrusion forming:
X”, where X ∈ {H, L, B} before final assembly. Advantageously, limits on waiting
time can be transformed on appropriate arc weights in graph G.

Scheduling with High Variety of Customized Compound Products 109

FORMS

(1,1) 1.3 3.2 5.1 5.4
(1,2) 1.2 3.1 5.2 5.5
(1,3) 1.1 1.4 3.3 5.3
(2,1)
(2,2)
(2,3) 2.2
(2,4) 2.1
(3,1)
(3,2) 6.4
(3,3) 6.1 6.2 6.3
(4,1) 4.1
(5,1) 7.2 7.4 8.1 8.3
(5,2) 7.1 7.3 7.5 8.2 8.4

MACHINES
(1,1) 4.1 6.1 6.2 6.3
(1,2) 1.3 3.2 5.1 5.4
(1,3) 1.2 3.1 5.2 5.5
(1,4) 1.1 1.4 3.3 5.3 6.4
(2,1) 7.2 7.4 8.1 8.3
(2,2) 7.1 7.3 7.5 8.2 8.4
(2,3) 2.2
(2,4) 2.1

Fig. 7. Schedule instance

It is clear that the main challenge still remains optimization and synchronization
of the work of the whole system. The proposed model is general enough to attack
this problem as well.

REFERENCES

1. E.H.L. Aarts, P.J.M. van Larhoven, Simulated annealing: a pedestrain review of the the-
ory and some applications, In: Patter Recognition and Applications, Eds. P.A. Devijver,
J. Kittler, Springer, Berlin, 1987.

2. P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-constrained project
scheduling: Notation, classification, models, and methods, European Journal of Opera-
tional Research 112 (1999), 3–41.

3. P. Brucker, S. Knust, A. Schoo, O. Thiele, A branch and bound algorithm for the
resource-constrained project scheduling problem, European Journal of Operational Re-
search 107 (1998), 272–288.

4. P. Budyn, Scheduling under frequent changes of production profile, MSc Thesis, ICECR,
Wroclaw University of Technology, 2007.

5. F. Glover, M. Laguna Tabu search, Kluwer Academic Publishers, 1996.

6. W. Herroelen, E. Demeulemeester, B. De Reyck, Resource-constrained project schedul-
ing, A survey of recent developments, Computers & Operations Research 25 (1998), 4,
279–302.

7. R. Kolisch, A. Drexl, Local search for nonpreemptive multi-mode resource-constrained
project scheduling, IIE Transactions 29 (1997), 987–999.

110 Cz. Smutnicki

8. R. Kolisch, S. Hartmann, Heuristic Algorithms for Solving the Resource Constrained
Project Scheduling Problem: Classification and Computational Analysis, in: J. Wȩglarz
(ed.), Handbook on Recent Advances in Project Scheduling, 147–178. Kluwer, 1999.

9. R. Kolisch, R. Padman, An integrated survey of deterministic project scheduling, Omega,
29 (2001), 249–272.

10. M. Laguna, R. Marti (2003) Scatter search. Methodology and implementation in C,
Kluwer Academic Publishers, 2006.

11. M. Mori, C.C. Tseng, A genetic algorithm for multi-mode resource constrained project
scheduling, European Journal of Operational Research 100 (1997), 134–141.

12. K. Neumann, C. Schwindt, N. Trautmann, Advanced production scheduling for batch
plants in process industries, in: Günther H.O., Beek P, (eds.) Advanced Planning and
Scheduling Solutions in Process Industry, Springer 2003.

13. E. Nowicki, C. Smutnicki, A decision support system for resource constrained project
scheduling problem, European Journal of Operational Research 79 (1994), 183–195.

14. E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job shop problem, Man-
agement Science 6 (1996), 797–813.

15. E. Nowicki, C. Smutnicki, Flow shop with parallel machines. A tabu search approach,
European Journal of Operational Research 106 (1998), 226–253.

16. E. Nowicki, C. Smutnicki a Some new ideas in TS for job-shop scheduling, in: Rego
C. and Alidaee B. (eds.) Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search, Kluwer Academic Publishers, 2005.

17. E. Nowicki, C. Smutnicki b, New algorithm for the job-shop problem, Journal of Schedul-
ing 8 (2005), 145–159.

18. L. Özdamar, G. Ulusoy, An iterative local constrained based analysis for solving the
resource constrained project scheduling problem. Journal of Operations Management 14
(1996), 3, 193–208.

19. F. Salewski, A. Schirmer, A. Drexl, Project scheduling under resource and mode identity
constraints: Model, complexity, methods, and application, European Journal of Opera-
tional Research 102 (1997), 88–110.

20. A. Sprecher, A. Drexl, Multi-mode resource-constrained project scheduling by a simple,
general and powerful sequencing algorithm, European Journal of Operational Research
107 (1998), 431–450.

21. P.R. Thomas, S. Salhi, A Tabu Search Approach for the Resource Constrained Project
Scheduling Problem, Journal of Heuristics 4 (1998), 123–139.

	Smutnicki

