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Resource Management in Machine Scheduling Problems:
A Survey

Adam Janiak∗, Władysław Janiak∗∗, Maciej Lichtenstein∗

Abstract. The paper is a survey devoted to job scheduling problems with resource allocation.
We present the results available in the scientific literature for commonly used models of job
processing times and job release dates, i.e., the models in which the job processing time
or the job release date is given as a linear or convex function dependent on the amount of
the additional resource allotted to the job. The scheduling models with resource dependent
processing times or resource dependent release dates extend the classical scheduling models
to reflect more precisely scheduling problems that appear in real life. Thus, in this paper
we present the computational complexity results and solution algorithms that have been
developed for this kind of problems.
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1. INTRODUCTION

In the modern, rapidly technologically developing manufacturing process, one of the
most important tasks that managers are faced with is to determine the production
schedules. This task (in general) is to distribute available resources (machines, man-
power, energy, money) in such a way, that the total production costs will be minimized
while the productivity, and the quality of products will be maximized.

The importance of the optimal production scheduling follows from the increasing
maintenance costs of production infrastructure, which forces the managers to utilize it
optimally. Thus, the field of scheduling theory, is the area of expertise that should be
familiar to many managers that are faced to the problems of production planning. The
scheduling theory already attracted particular attention of the researchers for several
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decades, and there is a significant development of models and algorithms that can be
viewed as a tools ready for optimal scheduling in various production environments.

The classical scheduling theory deals with the models in which it is assumed that
all problem parameters, such as job processing times, job release dates, etc. are
constant given values. These models, however, do not reflect precisely many real life
production systems in which problems parameters are variables dependent on some
additional resources. In early 80’s these classical models were extended by Janiak [41]
and independently by Vickson [77], [78] to models with resource dependent processing
times. Similarly, in 1989 Janiak introduced the problems with resource dependent
release dates [31].

Generally, in scheduling problems with additional resource allocation some prob-
lem parameters, e.g.: processing times, release dates, setup times, are given as func-
tions dependent of additional resources.

Those resources may be continuously divisible (e.g. energy, financial outlay, etc.)
or discretely divisible (e.g. manpower, tools, memory, etc.). Thus, in this kind of
scheduling problems during the optimization process, beside determining of the order
of job processing, the additional resource allocation vector must be found, which
usually makes problems harder to solve.

The necessity of modeling many real-life production and computer systems, in
which resource allocation occurs, forced researchers to develop new models and solu-
tion algorithms for scheduling problems with resource dependent parameters.

In this paper we survey the results available in the literature regarding scheduling
problems with resource dependent processing times and scheduling problems with
resource dependent release dates. This survey do not cover the model of the resource
amount vs. processing rate where the processing rate (not the processing time) of a
job is a function of the continuous resources [80], [51], [52] and models in which, the
job requires the resource to be processed and its processing time is not dependent on
its amount [2]. Also the project scheduling do not fit in the scope of this paper, since
they are different from the machine scheduling problems.

The paper is organized as follows. In the next section we define precisely considered
problems and introduce some basic definitions and notations. Section 3 is devoted
to single processor scheduling problems with job processing times linearly dependent
on continuous resources. Section 4 deals with scheduling problems with resource de-
pendent processing times in multiprocessor environments such as parallel processors,
flow shops, job shops, etc. Scheduling problems with resource dependent release dates
are surveyed in Section 5. Sections 6 and 7 are devoted to scheduling problems with
processing times and/or release dates described as a convex functions of the additional
resources, and linear functions dependent on discrete resources, respectively. Some
conclusions and directions for future research are given in Section 8.

2. PROBLEMS DEFINITION AND FORMULATION

Let J = {1, . . . , j, . . . , n} denote the set of n independent jobs to be processed on a
single processor, or on the set of m processors M = {1, . . . , i, . . . , m}. For each job
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j ∈ J , the following parameters may be defined: pij – the processing time on processor
i (index i is omitted for single processor problems), rj – the release date, dj – the
due date, d̄j – the deadline. It may be also assumed that there exist some precedence
constraints between the jobs, which is denoted by prec in the problem notation.

The processing time as well as the release date are functions of allocated resources
uij or uj , which is denoted by pij(uij) (index i is omitted for single processor problems)
and rj(uj), respectively. Resources may be constrained locally, i.e. αij ≤ uij ≤ βij

as well as globally, i.e. Σj∈J,i∈Muij ≤ R, which is simply denoted by Σuij ≤ R,
where αij and βij are given bounds. Moreover, the resources can be continuously or
discretely divisible. In the case of continuously divisible resources the amount uj of
the resource assigned to the job j, (or its release date), can be any value within the
range [αj , βj ]. In the case of discretely divisible resources, the amount of the resource
uj , can be one of the finite number of values within the same range. Usually, it is
assumed in the literature that the amount of the resource can have one of the values
from the set {αj , βj}. In the case of discretely divisible resources, we use the separate
upperscript d to indicate this fact, i.e., uj is denoted by ud

j .
The functions of allocated resources that appear in the literature are linear or

convex. In the linear case, the job processing times or release dates are given by the
following formulae:

fj(uj) = bj − ajuj , (1)

where fj is the job processing time (pj or pij) or the release date (rj); bj is the
maximum value of the job processing time or release date and aj is the resource
consumption ratio.

In the convex case, the job processing times or release dates are given by the
following formulae:

fj(uj) = (aj/uj)k, (2)

where fj is the job processing time (pj or pij) or the release date (rj); aj and k are
the resource consumption parameters.

The objective is to find the sequence of jobs (if is not given) and the resource
allocation (the amounts of resource assigned to each job or to each release date) that
minimizes the given objective function value.

In considered problems the schedule cost can be measured by two objective func-
tions: (classical) time criterion (TC) and resource consumption penalty (RC).

The time criterion is one of the commonly used schedule cost measures such as:

— Cmax = maxj∈J{Cj} – the maximum completion time, makespan,
— Lmax = maxj∈J{Lj} = maxj∈J{dj − Cj} – the maximum lateness,
— Tmax = maxj∈J{Tj} = maxj∈J{0, dj − Cj} – the maximum tardiness,
— Emax = maxj∈J{Ej} = maxj∈J{0, Cj − dj} – the maximum earlines,
— cmax = maxj∈J{cj(Cj)}, where cj(t) is nondecreasing penalty function of com-

pleting job j at time t – maximum penalty cost,
— ΣwjCj =

∑
j∈J wjCj – the total weighted completion time,

— ΣwjTj =
∑

j∈J wjTj – the total weighted tardiness, etc,

where Cj denotes the completion time of job j.
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The resource consumption penalty is the total resource consumption Σuj , Σujk

or total weighted resource consumption Σvjuj or Σvjkujk, where where vj and vjk

are constant given weights.
The following four optimization problems are considered: (1) minimization of TC

under a given constraint on RC; (2) minimization of RC under a given constraint
on TC; (3) minimization of TC + RC and (4) double-criteria approach TC ∧ RC in
which the set of Pareto optimal solutions has to be found. It is easy to notice, that
NP-hardness of the problem with models (1)–(3) lead to NP-hardness of the same
problem with model (4). Similarly, polynomial solvability of (4) leads to polynomial
solvability of (1)–(3).

In the following we survey the results present in the literature for the problems with
resource dependent job processing times and resource dependent release dates. The
notation of scheduling problems used in this paper is compliant with the three-field
notation introduced in [17] and extended in [39].

3. SINGLE PROCESSOR PROBLEMS WITH LINEAR MODELS
OF JOB PROCESSING TIMES

In this section we consider the single processor problems with job processing times
given as a linear functions dependent on some additional resources, i.e. job processing
times are given by formulae (1). The results are summarized in Table 1.

Table 1. Computational complexity of single processor problems
with linear models of processing times

Problem Complexity Reference
1|prec, pj = bj − ajuj , Σuj ≤ R̂|Cmax O(n log n) [20]

1|prec, pj = bj − ajuj , Cmax ≤ Ĉ|Σuj O(n log n) [32]
1|prec, pj = bj − ajuj |Cmax ∧ Σuj O(n log n) [32]

1|prec, rj , pj = bj − ajuj , Σuj ≤ R̂|Cmax O(n2) [20]

1|prec, rj , pj = bj − ajuj , Cmax ≤ Ĉ|Σuj O(n2) [32]
1|prec, rj , pj = bj − ajuj |Cmax ∧ Σuj O(n2) [32]

1|prec, pj = bj − ajuj , Σuj ≤ R̂|Lmax O(n2) [20]

1|prec, pj = bj − ajuj , Σuj ≤ R̂, Cj ≤ dj |Cmax O(n2) [32]

1|prec, pj = bj − ajuj , Lmax ≤ L̂|Σuj O(n2) [32]
1|prec, pj = bj − ajuj |Lmax ∧ Σuj O(n2) [32]

1|prec, rj , pj = bj − ajuj , Σuj ≤ R̂|Lmax strongly NP-hard [20]

1|prec, rj , pj = bj − ajuj , Lmax ≤ L̂|Σuj strongly NP-hard [32]
1|prec, rj , pj = bj − ajuj |Lmax ∧ Σuj strongly NP-hard [32]

1|rj , pj = bj − ajuj , Σuj ≤ R̂|Lmax strongly NP-hard [32]

1|rj , pj = bj − ajuj , Lmax ≤ L̂|Σuj strongly NP-hard [32]
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Table 1 (continued)

Problem Complexity Reference
1|rj , pj = bj − ajuj |Lmax ∧ Σuj strongly NP-hard [32]

1|prec, pj = bj − ajuj , Σuj ≤ R̂|Tmax O(n2) [20]

1|prec, pj = bj − ajuj , Tmax ≤ T̂ |Σuj O(n2) [32]
1|prec, pj = bj − ajuj |Tmax ∧ Σuj O(n2) [32]

1|prec, pj = bj − ajuj , Σuj ≤ R̂|cmax O(n2) [22]
1|pj = bj − ajuj , cmax ≤ ĉ|Σuj O(n2) [75], [22], [39]

1|pj = bj − ajuj , Σuj ≤ R̂|cmax class P [39]
1|pj = bj − ajuj |cmax ∧ Σuj open [39]

1|pj = bj − ajuj , Σuj ≤ R̂|ΣwjCj open [39]

1|prec·, pj = bj − ajuj , Σuj ≤ R̂|ΣwjCj O(n log n) [26]

1|rj , pj = bj − ajuj , Σuj ≤ R̂|ΣCj strongly NP-hard [29]

1|prec, pj = bj − ajuj , Σuj ≤ R̂|ΣCj NP-hard [29]

1|pj = bj − ajuj , Σuj ≤ R̂|ΣTj NP-hard [29]

1|rj , pj = bj − ajuj , Σuj ≤ R̂|ΣTj strongly NP-hard [29]

1|pj = bj − ajuj , Σuj ≤ R̂|ΣwjTj strongly NP-hard [29]

1|pj = bj − ajuj , Σuj ≤ R̂|Σcj strongly NP-hard [29]
1|pj = bj − ajuj , Cj ≤ dj |Σvjuj O(n log n) [42]
1|pj = bj − uj , 0 ≤ uj ≤ βj |Tmax + Σvjuj O(n2) [78]
1|pj = bj − uj , 0 ≤ uj ≤ βj |Lmax + Σvjuj O(n2) [67]

1|pj = bj − uj , 0 ≤ uj ≤ βj , Lmax ≤ L̂|Σvjuj O(n2) [67]

1|pj = bj − uj , 0 ≤ uj ≤ βj , Σvjuj ≤ R̂|Lmax O(n2) [67]
1|pj = bj − uj , 0 ≤ uj ≤ βj |Lmax ∧ Σvjuj O(n2) [67]
1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Cmax + Σvjuj O(n2) [67]

1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , Cmax ≤ Ĉ|Σvjuj O(n2) [67]

1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , Σvjuj ≤ R̂|Cmax O(n2) [67]
1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Cmax ∧ Σvjuj O(n2) [67]
1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , qj |Cmax + Σvjuj strongly NP-hard [58]
1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Lmax + Σvjuj strongly NP-hard [58]
1|pj = bj − ajuj , 0 ≤ uj ≤ βj , dj = d||ΣUj ∧ Σuj NP-hard [6]
1|pj = bj − uj , 0 ≤ uj ≤ βj , dj = d|ΣUj ∧ Σvjuj NP-hard [7]

1|s, pj = bj − uj , αj ≤ uj ≤ βj , d̃|Σvjuj NP-hard [11]
1|rj , sj = b′j − a′ju

′
j , pj = bj − ajuj , 0 ≤ u′j ≤

β′
j , 0 ≤ uj ≤ βj , Σvj ≤ R̂1, Σuj ≤ R̂2|F where

F ∈ {Cmax, Lmax, Tmax, ΣwjCj , ΣαjEj+ΣγjTj}
and the job sequence is fixed

O(n2) [45]
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Problems:

a) 1|prec, pj = bj − ajuj ,Σuj ≤ R̂|Cmax,
b) 1|prec, pj = bj − ajuj , Cmax ≤ Ĉ|Σuj ,
c) 1|prec, pj = bj − ajuj |Cmax ∧ Σuj .

In problems a) – c), the criterion function value does not depend on the sequence
of jobs. The optimal solution may be obtained in O(n log n) steps by allocation of
resources to any permutation of jobs feasible with respect to precedence constraints.
In problem a), the maximal possible amount of resources is allocated to jobs starting
from the job with maximal value of aj till resource depletion [22]. Similarly, for
problem b), resources are allocated to jobs starting from the job with maximal value
of aj and allocation is finished when Cmax ≤ Ĉ holds [32]. For the problem c), the set
of Pareto-optimal solutions may be calculated using an algorithm described in [32].
The algorithm allocates resources in a special manner to jobs with maximal value of
aj . The set of Parteo-optimal solutions forms a piece-wise linear decreasing convex
curve.

Problems:

a) 1|prec, rj , pj = bj − ajuj ,Σuj ≤ R̂|Cmax,
b) 1|prec, rj , pj = bj − ajuj , Cmax ≤ Ĉ|Σuj ,
c) 1|prec, rj , pj = bj − ajuj |Cmax ∧ Σuj .

The optimal solutions for above mentioned problems may be obtained in O(n2)
steps by an algorithm analogous to the algorithm for classical 1|prec, rj |Cmax problem
[19]. Jobs with not scheduled predecessors are scheduled according to increasing values
of rj from the first position in constructed schedule. Resources are allocated to shorten
the critical path using as little as possible of resource. An exact algorithms of resource
allocation are described in [20] for problem a) and in [39] for b) and c).

Problem 1|prec, pj = bj − ajuj ,Σuj ≤ R̂|Lmax – The optimal solution may be
obtained in O(n2) steps by an algorithm analogous to the algorithm for classical
1|prec|Lmax problem [19]. Jobs with not scheduled successors are scheduled accord-
ing to decreasing dj from the last position in constructed schedule. Resources are
allocated to shorten the critical path using at least as possible of the resource [20].

Problems 1|prec, pj = bj − ajuj , Lmax ≤ L̂|Σuj and 1|prec, pj = bj − ajuj |Lmax ∧
Σuj are symmetrical to 1|prec, rj , pj = bj − ajuj , Cmax ≤ Ĉ|Σuj and 1|prec, rj , pj =
bj − ajuj |Cmax ∧ Σuj , respectively, thus very similar algorithms may be constructed
to solve them [39].

Problems:

a) 1|prec, rj , pj = bj − ajuj ,Σuj ≤ R̂|Lmax,
b) 1|prec, rj , pj = bj − ajuj , Lmax ≤ L̂|Σuj ,
c) 1|prec, rj , pj = bj − ajuj |Lmax ∧ Σuj .



Resource Management in Machine Scheduling Problems: A Survey 65

It was shown in [32] that all of the above problems are strongly NP-hard. For a given
sequence of jobs, problems a) and b) reduce to a linear programming task, and problem
c) to a parametric linear programming task [39], and thus may be solved by polynomial
algorithms [55], [53] or more effective well known simplex algorithm which is non
polynomial. Practically, the above algorithms are not computationally effective. It
was proven that any algorithm based on greedy approach cannot be constructed for
problems with a given job sequence [39]. Modified algorithm for time/cost trade-off
curve may be used. An adaptation was shown in [32] and pseudopolynomial algorithm
was constructed. Heuristic algorithms for problems a) b) and c) are presented in [32].
Numerical experiments show that average values of upper bound of relative error are
about 15% and running times are less than a few seconds. In [23], a branch and bound
algorithm was constructed for problem a) and may be used for problems with up to
100 jobs.

Problem 1|rj , pj = bj − ajuj ,Σuj ≤ R̂|Lmax is strongly NP-hard [32]. The algo-
rithms based on artificial neural networks (ANN), genetic search (GS) and tabu-search
(TS) are presented in [39]. The best solutions are delivered by the ANN algorithm.

Problem 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , qj |Cmax was considered in [82] and an
approximation algorithm, a lower bound of criterion function value and the worst-case
analysis for the proposed algorithm are presented.

Problems:

a) 1|prec, rj , pj = bj − ajuj ,Σuj ≤ R̂|Tmax,
b) 1|prec, rj , pj = bj − ajuj , Tmax ≤ T̂ |Σuj ,
c) 1|prec, rj , pj = bj − ajuj |Tmax ∧ Σuj .

The optimal solution for any problem with resource allocation and criterion Lmax

is optimal for the same problem with criterion Tmax. Hence, problem a) may be
solved by the algorithm for mentioned above problem 1|prec, rj , pj = bj−ajuj ,Σuj ≤
R̂|Lmax. A special algorithm was constructed for problem a) in [25]. Similarly,
problems b) and c) may be solved by algorithms for analogical problems with criterion
Lmax [39].

Problems

a) 1|prec, pj = bj − ajuj ,Σuj ≤ R̂|cmax,
b) 1|prec, pj = bj − ajuj , cmax ≤ ĉ|Σuj ,
c) 1|prec, pj = bj − ajuj |cmax ∧ Σuj .

First of all it is easy to notice that, in problem a) with equal resource consumption
ratios (aj = a), i.e. for problem 1|prec, pj = bj −auj ,Σuj ≤ R̂|cmax, if a job sequence
is given, the optimal resource allocation may be obtained by the maximal possible
allocation of resources to consecutive jobs, starting from the first, till the resource
depletion (the complexity O(n)).

In [22], for the general case of a) (with different values of aj), an optimal algorithm
with the complexity O(n2) was presented. The algorithm finds the optimal sequence
of jobs and the optimal resource allocation. In [75], an algorithm was presented
for some problem similar to 1|pj = bj − ajuj , cmax ≤ ĉ|Σuj . Based on this result,
an algorithm with the complexity O(n2) may be constructed for problem 1|pj =
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bj − ajuj , cmax ≤ ĉ|Σuj [39]. This algorithm cannot be adopted to solve problem
1|pj = bj − ajuj ,Σuj ≤ R̂|cmax, however, this problem can be solved in polynomial
time [39].

Problem 1|pj = bj−ajuj ,Σuj ≤ R̂|ΣwjCj – For a given job sequence, the optimal
resource allocation may be found in O(n log n) steps, [39]. If job sequence is not given,
then the computational complexity of the problem is an open question [39]. In [26],
the problem with a specific dominance relation (denoted by "< ·") was considered.
The dominance relation "< ·" is defined as follows: job j dominates i if bi ≤ bj and
ai ≥ aj and βi ≥ βj and wi ≥ wj . In such case, in optimal solution, job j is processed
before job i. If relation "< ·" holds for every pair of jobs then it is possible to find the
optimal solution in O(n log n) steps by sorting jobs according to "< ·" and assigning
the resource in maximum possible amount from the first job till its depletion.

Problem 1|pj = bj − ajuj , Cj ≤ dj |Σvjuj – In [42] and [39], it was shown that the
solution for the problem may be found in O(n log n) steps. Jobs are scheduled accord-
ing to increasing critical paths and resource allocation is done by a generalization of
Moore’s algorithm [63].

Problem 1|pj = bj −uj , 0 ≤ uj ≤ βj |ΣwjCj +Σvjuj is considered in [77]. Two im-
portant properties for the problem are presented: 1) each job is shortened maximally
(uj = βj) or is not shorten at all (uj = 0); 2) the SWPT rule (Shortest Weighted
Processing Time First [73]) holds for the optimal sequence of jobs. Generally, there
are 2n cases of possible choices of uj that have to be checked to find the optimal so-
lution. Some tests are proposed to reduce the space where the optimal solution may
be found. A special function for bounds calculation for branch and bound method
and efficient heuristic algorithm are presented. Numerical experiments show that
the heuristic algorithm is efficient for problems with size from 10 to 100 jobs and
delivered solutions are optimal or near to optimal. The problem with wj = w may be
formulated as an assignment problem [78]. The general version (with arbitrary values
of wj) has been proved to be NP-hard [43].

Problem 1|pj = bj−uj , 0 ≤ uj ≤ βj |Tmax+Σvjuj is presented in [78]. The optimal
sequence of jobs may be found by scheduling the jobs according to nondecreasing due
dates. The optimal algorithm with complexity O(n log n) is presented.

Problem 1|pj = bj − ajuj |Tmax ∧ Σvjuj was considered in [79]. The greedy algo-
rithm with the complexity O(n2) was presented.

Problems:

a) 1|pj = bj − uj , 0 ≤ uj ≤ βj |Lmax + Σvjuj ,
b) 1|pj = bj − uj , 0 ≤ uj ≤ βj , Lmax ≤ L̂|Σvjuj ,
c) 1|pj = bj − uj , 0 ≤ uj ≤ βj ,Σvjuj ≤ R̂|Lmax,
d) 1|pj = bj − uj , 0 ≤ uj ≤ βj |Lmax ∧ Σvjuj ,
e) 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Cmax + Σvjuj ,
f) 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , Cmax ≤ Ĉ|Σvjuj ,
g) 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj ,Σvjuj ≤ R̂|Cmax,
h) 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Cmax ∧ Σvjuj
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were considered in [67]. An algorithm with complexity O(n2) for problem 1|rj , pj =
bj − uj , 0 ≤ uj ≤ βj |Cmax ∧ Σvjuj is presented and equivalence of this problem to
problem 1|pj = bj − uj , 0 ≤ uj ≤ βj |Lmax ∧Σvjuj is shown. These two problems are
the most general ones among those presented above, so their solution algorithms may
be applied to solve the remaining ones.

Problem 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj |Lmax + Σvjuj is strongly NP-hard which
follows from its classical counterpart (with fixed job processing times) [58]. Similarly,
the problem 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , qj |Cmax + Σvjuj is strongly NP-hard.
An approximation algorithm with the worst case performance ratio equal to 2 was
presented in [67].

In [81] and [65], approximation algorithms with worst case performance ratio equal
to ρ + 1/2 and ρ + 1/3 are presented, where ρ denotes worst case performance ratio
for a the problem with fixed given job processing times.

Problem 1|rj , pj = bj − uj , 0 ≤ uj ≤ βj , dj = d|Σ(vEj + wTj + yuj)) ∧ min d,
where min d indicates that the due date value has to be optimally selected during
the optimization process, was considered in [69]. Some properties of the problem are
presented and its formulation as an assignment problem.

Problem 1|pj = bj − ajuj , 0 ≤ uj ≤ βj |ΣUj ∧ Σuj is considered in [6]. It is
proved that the problem is NP-hard for the case where dj = d. Some properties and
a dynamic programming algorithm is presented for the general case and for the case
with common due date, dj = d.

Problem 1|pj = bj − uj , 0 ≤ uj ≤ βj |ΣwjUj ∧ Σvjuj is considered in [7]. It is
proved that the case with common due date, dj = d, and common weight, wj = w,
is NP-hard. A dynamic programming algorithm, a fully polynomial approximation
scheme and some approximation algorithms are proposed.

Problem 1|pj = bj − uj , 0 ≤ uj ≤ βj |Σ(vEj + wTj + xdj + yjuj) is considered in
[12]. The problem was formulated as a polynomially solvable assignment problem.

The paper [10] is devoted to some bicriterion scheduling problems in which the
processing time of each job is a linear decreasing function of the amount of a common
discrete resource allocated to the a job. The quality of a solution is measured by two
independent criteria F1 and F2. The first criterion is the maximal or total (weighted)
resource consumption and the second criterion is a regular scheduling criterion de-
pending on the job completion times. Both criteria have to be minimized. Algorithms
for solving and general schemes for the construction of the Pareto set and the Pareto
ε-approximation are presented.

Problem with setup times 1|s, pj = bj − ajuj , αj ≤ uj ≤ βj , d̃|Σvjuj is studied in
[11]. The authors prove that problem is NP-hard even if aj = 1, i.e. for 1|s, pj =
bj − uj , αj ≤ uj ≤ βj , d̃|Σvjuj . A dynamic programming algorithm and a fully
polynomial approximation scheme are presented.

Some properties of approximation schemes are presented in [56]. The properties
improve quality and efficiency of calculation of upper and lower bounds of optimal
criterion function value. A special procedure based on approximation scheme is pre-
sented. That procedure may be used to many single and multi processor scheduling
problems.
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4. MULTI PROCESSOR SCHEDULING PROBLEMS WITH LINEAR MODELS
OF JOB PROCESSING TIMES

4.1. PARALLEL PROCESSORS

At first, we present some general result derived for parallel machine prob-
lems. The authors of [45] showed that for every scheduling criterion F ∈
{Cmax, Lmax, Tmax,ΣwjCj ,ΣαjEj + ΣγjTj}, the resource allocation problem with
respect to a given job schedule in parallel processor problem P |pj = bj − ajuj |F
can be formulated as the linear programming task and thus solved in polynomial
time. Notice, that the last of the criterion mentioned above, ΣαjEj + ΣγjTj , is not
regular and not linear with respect to job completion times, so the result is not trivial.
Moreover they propose some algorithm with O(n2) complexity for optimal resource
distribution in P |pj = bj − ajuj |Cmax.

The problem Pm|pmtn, pj = bj − uj |Cmax ∧ Σvjuj was considered in [68]. The
authors propose optimal algorithm that requires O(n2) steps, which proves that also
Pm|pmtn, pj = bj − uj ,Σvjuj ≤ Û |Cmax, Pm|pmtn, pj = bj − uj , Cmax ≤ Ĉ|Σvjuj ,
and Pm|pmtn, pj = bj − uj |Cmax + Σvjuj are polynomially solvable in O(n2) time.
However, an algorithm with the computational complexity O(n) was proposed in
[49] for the problem Pm|pmtn, pj = bj − ajuj , Cmax ≤ Ĉ|Σvjuj . In [49], the prob-
lems without preemption were also considered. The polynomial time approximation
schemes (PTAS) were proposed for the following problems: Pm|pj = bj−ajuj , Cmax ≤
Ĉ|Σvjuj , Pm||pj = bj − ajuj ,Σvjuj ≤ Û |Cmax, Pm|pj = bj − ajuj |Cmax + Σvjuj .

The problems Pm|pj = bj−ajuj |ΣwjCj +Σvjuj and Pm|pj = bj−ajuj |ΣwjUj +
Σvjuj were considered in [3]. Since both problems are NP-hard, a column generation
branch and bound algorithm was proposed.

In [5], it was shown that problems Pm|pij = aij−uij , 0 ≤ uij ≤ βij |Σfijuij +ΣCj

and Pm|pij = aij − uij , 0 ≤ uij ≤ βij , d ≥ Σaij |Σfij(uij) + Σ(vEj + wTj) where f(·)
is a convex, nondecreasing function, are equivalent to the assignment problem and
may be solved by an algorithm with complexity O(n3m + log(nm)). However, if m is
a part of the input data all above mentioned problems become NP-hard.

The problems with the release dates Pm|rj , pj = bj − ajuj ,Σvjuj ≤ Û |ΣCj and
Pm|pmtn, rj , pj = bj−ajuj ,Σvjuj ≤ Û |ΣCj were considered in [62]. Authors showed
that the first problem is NP-hard and propose a 3− (2/m)-approximation algorithm.
For the second problem, a linear programming formulation is presented which solves
the problem optimally in polynomial time.

The problems Qm|pmtn, pj = bj − uj , Cmax ≤ Ĉ|Σvjuj and Qm|pmtn, pj =
bj − uj |Cmax ∧ Σvjuj were analyzed in [68]. An optimal algorithm that runs in
O(n max(m, log n)) time and an ε-approximation scheme ware proposed for the first
and the second problem, respectively. However, the computational complexity of the
second problem is unknown.

The problem Rm|pj = bj − uj |ΣCj + Σvjuj was considered in [1]. The authors
showed that the problem may be formulated as an assignment problem and is solvable
in O(n3m + n2m log(nm)) time. For problem Rm|pj = bj − uj |ΣwjCj + Σvjuj ,
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a 3/2-approximation algorithm was proposed in [83]. In [74], [72] approximation
algorithms were proposed for the problem Rm|pj = bj − ajuj |Cmax + Σvjuj .

4.2. FLOW SHOP

We start our considerations from problems with Cmax criterion function.
Recall that the classical two stage flow shop problem with Cmax criterion without

additional resource is solvable by Johnson’s algorithm in O(nlogn) time, [50]. The case
with three stages is strongly NP-hard [15]. So, the problems with resource allocation
are at least as difficult as their classical counterparts, which is shown in Table 2.

Table 2 Complexity results for multi processor problems

Problem Complexity Reference
P |rj , sj = b′j − a′jvj , pj = bj − ajuj , 0 ≤ vj ≤ β′

j , 0 ≤
uj ≤ βj , Σvj ≤ R̂1, Σuj ≤ R̂2|F where
F ∈ {Cmax, Lmax, Tmax, ΣwjCj , ΣαjEj + ΣγjTj} and
the job sequence is fixed

solvable as Linear
Programming
task

[45]

Pm|pmtn, pj = bj − uj |Cmax ∧ Σvjuj O(n2) [68]

Pm|pmtn, pj = bj − ajuj , Cmax ≤ bC|Σvjuj O(n) [49]

Pm|pj = bj − ajuj , Cmax ≤ bC|Σvjuj PTAS [49]

Pm||pj = bj − ajuj , Σvjuj ≤ bU |Cmax PTAS [49]
Pm|pj = bj − ajuj |Cmax + Σvjuj PTAS [49]

Pm|rj , pj = bj − ajuj , Σvjuj ≤ bU |ΣCj NP-hard [62]

Pm|pmtn, rj , pj = bj − ajuj , Σvjuj ≤ bU |ΣCj Lin. Prog. [62]
Pm|pj = bj − ajuj |ΣwjCj + Σvjuj NP-hard [3]
Pm|pj = bj − ajuj |ΣwjUj + Σvjuj NP-hard [3]
Pm|pij = aij − uij , 0 ≤ uij ≤ βij |Σfijuij + ΣCj and
f()-is convex

O(n3m +
n2m log(nm))

[6]

Pm|pij = aij − uij , 0 ≤ uij ≤ βij , d ≥
Σaij |Σfij(uij) + Σ(vEj + wTj) and f() is convex

O(n3m +
n2m log(nm))

[6]

Qm|pmtn, pj = bj − uj , Cmax ≤ bC|Σvjuj O(n max(m, log n))[68]
Qm|pmtn, pj = bj − uj |Cmax ∧ Σvjuj Open [68]
Rm|pj = bj − uj |ΣCj + Σvjuj O(n3m +

n2m log(nm))
[1]

Rm|pj = bj − ajuj |Cmax + Σvjuj [74], [72]

F2|pj1 = bj1 − a1uj1, pj2 = bj2, Σuj ≤ R̂|Cmax NP-hard [32], [37], [39]

F2|pj1 = bj1 − a1uj1, pj2 = b2, Σuj ≤ R̂|Cmax O(n2) [32], [37], [39]

F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 = bj2, Σuj ≤ R̂|Cmax O(n log n) [32], [37], [39]

F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 = b2, Σuj ≤ R̂|Cmax O(n log n) [32], [37], [39]

F2|pj1 = bj1 − a1uj1, pj2 = bj2, Cmax ≤ Ĉ|Σuj NP-hard [30], [39]

F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 = bj2, Cmax ≤ Ĉ|Σuj O(n log n) [30], [39]
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Table 2 (continued)

Problem Complexity Reference
F2|pj1 = b1 − a1uj1, pj2 = b2, Cmax ≤ Ĉ|Σuj O(n log n) [30], [39]

F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = bj2, Cmax ≤ Ĉ|Σuj O(n log n) [30], [39]

F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = b2, Cmax ≤ Ĉ|Σuj O(n log n) [30], [39]
F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = b2 − a1uj2, βj2 =
β2, Cmax ≤ Ĉ|Σuj

O(n) [30], [39]

F2|pj1 = bj1 − a1uj1, pj2 = bj2|Cmax ∧ Σuj at least as hard
as NP-hard
F2|pj1 =
bj1 − a1uj1, pj2 =
bj2, Cmax ≤
Ĉ|Σuj

[30], [39]

F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = b2|Cmax ∧ Σuj O(n log n) [30], [39]
F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 = b2|Cmax ∧ Σuj O(n log n) [30], [39]
F2|pj1 = b1 − a1uj1, pj2 = b2|Cmax ∧ Σuj O(n log n) [30], [39]
F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = bj2|Cmax ∧ Σuj O(n log n) [30], [39]
F2|pj1 = b1 − a1uj1, βj1 = β1, pj2 = b2 − a1uj2, βj2 =
β2|Cmax ∧ Σuj

O(n) [30], [39]

F2|p1j = aj − xj , p2j = aj − yj , 0 ≤ xj ≤ uj , 0 ≤ yj ≤
vj |Cmax + Σ(cjxj + djyj)

NP-hard [66]

Fm|pij = pj − uj |Cmax ∧ Σvjuj O(n log n) [13]

FP |prec, pj = fw
j (uj), Σuj ≤ R̂|Cmax for m ≥ 3 at least

as hard as
strongly NP-hard
FP3||Cmax

[30], [39]

FP |prec, pj = fw
j (uj), Cmax ≤ Ĉ|Σuj as above [30], [39]

FP |prec, pj = fw
j (uj)|Cmax ∧ Σuj as above [30], [39]

FP |pjv = b− aujv, βjv = β, j = 1, . . . , n; v =
1, . . . , m|Cmax ∧ Σuj

O(nm) [39]

FP |pij = aij − xij , 0 ≤ xij ≤ uij |Cmax + Σcijxij NP-hard [64]

F |prec, pj = fw
j (uj), Σuj ≤ R̂|Cmax for m=2 at least

as hard as
NP-hard
F2|pj1 =
bj1 − a1uj1, pj2 =
bj2, Σuj ≤
R̂|Cmax; for
m ≥ 3 at least as
hard as strongly
NP-hard
FP3||Cmax

[27], [39]

F |prec, pj = fw
j (uj), Cmax ≤ Ĉ|Σuj as above [28], [39]

F |prec, pj = fw
j (uj)|Cmax ∧ Σuj as above [32], [39]
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Table 2 (continued)

Problem Complexity Reference
J |prec, pj = fw

j (uj), Σuj ≤ R̂|Cmax for m ≥ 2 at least
as hard as
strongly NP-hard
J2|pj ∈ 1, 2|Cmax

[21], [39]

J |prec, pj = fw
j (uj), Cmax ≤ Ĉ|Σuj for m ≥ 2 at least

as hard as
NP-hard
F2|pj1 =
bj1 − a1uj1, pj2 =
bj2, Cmax ≤
Ĉ|Σuj

[47], [39]

J |prec, pj = fw
j (uj)|Cmax ∧ Σuj as above [47], [39]

Some properties for non-permutational flow shop problem are presented in [27].
The first result is that for problem F |prec, pj = fj(uj),Σuj ≤ R̂|Cmax where fj(·)
is a non-increasing, convex function there exists some optimal solution where the
sequence of jobs is the same on the first two processors and the sequence of jobs is
the same on the last two processors. The second result states that if all of the jobs
are available at the same time and the criterion function is regular and the processing
times of jobs are non-increasing convex functions of the resource, then there exists an
optimal solution such that the sequence of jobs is the same on the first and the second
processor. The examples of regular criterion functions are Cmax and Σuj . From the
above results we may deduce that there exist an optimal permutation schedule,(i.e.,
job sequence is the same on each processor) for two and three stage flow shop with
makespan criterion[39].

Problem F2|pj1 = bj1 − a1uj1, pj2 = bj2,Σuj ≤ R̂|Cmax is NP-hard (see Table 2).
Hence, more general problem F2|pj = bj −auj ,Σuj ≤ R̂|Cmax is also NP-hard. How-
ever, there are many cases solvable in polynomial time. The optimal resource alloca-
tion for a given job sequence may be obtained by algorithm with the complexity O(n)
for problem F2|pj1 = bj1 − a1uj1, pj2 = bj2,Σuj ≤ R̂|Cmax. Optimal polynomial al-
gorithm with the complexity O(n2) for problem F2|pj1 = bj1−a1uj1, pj2 = bj2,Σuj ≤
R̂|Cmax was presented in [32],[37],[39]. In these papers, an algorithms with the com-
plexity O(n log n) were presented for problems F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 =
bj2,Σuj ≤ R̂|Cmax and F2|pj1 = bj1 − a1uj1, βj1 = β1, pj2 = b2,Σuj ≤ R̂|Cmax.

For more general NP-hard problem F2|pj = bj − auj ,Σuj ≤ R̂|Cmax there exists
an algorithm of optimal resource allocation with respect to a given sequence that
runs in O(n3) time. Eight different 2-approximation algorithms were presented in
[32] and this estimation is tight. Author also presents some numerical experiments
and proposes a very fast branch and bound algorithm.

Flow shop problems with more than 2 stages are NP-hard as mentioned in the
beginning of this paragraph. Hence, the existence of polynomial algorithms for these
problem is highly unlikely. Approximation algorithms, optimal enumerative algo-
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rithms, and algorithms for resource allocation for a given job sequence are mostly
constructed. Many elimination properties which allow to bound the solution space for
the search of the optimal solution are presented in [32],[39],[9]. These properties allow
to construct more efficient approximation and optimal non-polynomial algorithms. A
branch and bound algorithm which can solve the instances with up to 100 jobs and
some approximation algorithms are presented in [32],[9]. Genetic algorithms are pre-
sented in [40],[46],[39]. Resource allocation algorithms for a given permutation are
considered in [32]. For linear resource functions f(·), the problem may be transformed
into the network programming problem. Modified pseudopolynomial algorithm from
[18] is used to solve the problem. For more general problem, where f(·) is convex, the
optimal solution may be obtained by convex programming algorithms.

Non-permutation flow shop is considered in [27]. An approximation algorithm and
a branch and bound algorithm are proposed. The author also presets some specific
problem properties on the basis of the graph representation of the schedule.

In the sequel we present the results obtained for the problems with Σuj criterion
under a given constraint on the makespan value.

Recall that for the two stage flow shop problems with regular criterion we can
restrict the search of an optimal solution to permutation schedules only.

Problem F2|pj1 = bj1 − a1uj1, pj2 = bj2, Cmax ≤ Ĉ|Σuj (or more generally,
F2|pj = bj − auj , Cmax ≤ Ĉ|Σuj) is NP-hard as shown in [31]. Some special cases
are solvable in polynomial time. An optimal resource allocation for a given job se-
quence may be obtained in O(n) time by the algorithm proposed in[39]. In [30] it was
shown that problem F2|pj1 = bj1 − a1uj1, pj2 = bj2, Cmax ≤ Ĉ|Σuj may be solved in
O(n log n) time if one of the following relations hold:

1) βj1 = β1, pj2 = bj2;
2) bj1 = b1, pj2 = bj2;
3) bj1 = b1, βj1 = β1.

The special cases of the general two processor flow shop problem, in which the
following relations hold 1) bj1 = b1, βj1 = β1, βj2 = 0, pj2 = bj2; 2) bj1 = b1, bj2 = b2,
aj1 = a1, aj2 = a2, βj1 = β1, βj2 = β2 may be resolved in time O(n log n) and O(n),
respectively. For problem F2|pj = bj − auj , Cmax ≤ Ĉ|Σuj eight heuristic algorithms
are proposed in [32] and experimentally analyzed, however, worst-case performance
of these algorithms is still an open question [39].

The classical permutation flow shop problems with three or more processors are
strongly NP-hard [15]. Thus, the case with processing times linearly dependent on the
resources are also strongly NP-hard. However, in [39] the author proposes an O(nm)
time optimal algorithm of resource allocation with respect to a given job permutation,
where m is the number of processing stages. Also heuristic algorithm is presented for
the general permutation problem with linear models of processing times in [28].

In what follows, we present the results obtained for the two-criteria flow shop
problems, i.e., with Cmax ∧ uj criterion.

Problem F2|pj = bj − auj |Cmax ∧ uj is at least as difficult as F2|pj = bj −
auj , Cmax ≤ Ĉ|Σuj which is NP-hard [32]. Similarly to the problems with Cmax and
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∑
uj criteria, in two-criteria approach, the search may be restricted to the permuta-

tion schedules only.
In [32] it was shown that the following special cases may be solved in polynomial

time:

1) aj1 = a1, βj1 = β1, βj2 = 0, pj2 = p2;
2) aj1 = a1, βj2 = 0, bj1 = b1, pj2 = p2;
3) aj1 = a1, βj2 = 0, bj1 = b1, βj1 = β1;
4) βj2 = 0, bj1 = b1, βj1 = β1, pj2 = p2;
5) bj1 = b1, bj2 = b2, aj1 = a1, aj2 = a2, βj1 = β1, βj2 = β2.

The proportionate flow shop problem Fm|pij = pj − uj |Cmax ∧Σvjuj was consid-
ered in [13]. The authors showed that this problem is solvable in polynomial time and
propose an algorithm which requires O(n log n) time to find optimal solution. Recall
that in proportionate flow shop problems, each job has the same processing time at
each stage.

Problem F2|p1j = aj−uj , p2j = aj−u′j , 0 ≤ uj ≤ βj , 0 ≤ u′j ≤ β′j |Cmax+Σ(vjuj +
v′ju

′
j) was considered in [66]. The authors prove that the problem is NP-hard and

propose some heuristic algorithms.
In [64], problem FP |pij = aij − uij , 0 ≤ uij ≤ βij |Cmax + Σvijuij was considered.

Author proves that the problem is NP-hard and propose some approximation algo-
rithms. To the best of our knowledge, the only polynomially solvable case of the hybrid
flow shop problem is FP |pji = b−auji, βji = β, j = 1, . . . , n, i = 1, . . . ,m|Cmax∧Σuj ,
considered in [39]. The author proposed an optimal algorithm with complexity equal
to O(nm). Notice, that in this problem any permutation of jobs is optimal, because
the resource functions are identical for each job.

4.3. JOB SHOP

The job shop scheduling problems are at lest as difficult as flow shop problem because
the flow shop is a special case of the job shop.

Problem J |prec, pj = fw
j (uj),Σuj ≤ R̂|Cmax, where fj(·) are convex,

non-increasing functions have been studied in [21] where the author proposes a repre-
sentation of the schedule by a disjunctive graph. Some properties for this graph may
be found in [32], [47], [39]. These properties are used in construction of branch and
bound algorithms proposed in [21], [16], [32], [47]. The most efficient is the algorithm
presented in [47]. The experimental comparison of above algorithms is presented in
[32] and [47].

The hybrid job shop problem with resource dependent job processing time is con-
sidered in [28]. Some properties of the problem are proved and these properties
are used to construct an algorithm solving this problem. The algorithm uses the
disjunctive graph schedule representation and branch and bound technique.

The polynomial time approximation schemes (PTAS) for job shop scheduling prob-
lems with makespan plus total resource consumption criterion, are presented in [48].
The authors, however, assume that the number of processors and the number of
operations per job are the fixed given values.
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5. SINGLE PROCESSOR PROBLEMS
WITH THE RESOURCE DEPENDENT RELEASE DATES

Scheduling problems with resource dependent release dates were introduced by Janiak
in late 80’s. Problem 1|prec, rj = bj − ajuj ,Σuj ≤ R̂|Cmax was considered in [31],
[34] and [39]. If resource allocation is given then the problem may be reduced to the
classical 1|prec, rj |Cmax problem which is solvable in O(n log n) time by the modified
Jackson’s algorithm [19]. On the other hand, if the sequence of jobs is given then the
optimal resource allocation may be found in O(n2) time by the algorithm proposed
in [31]. Nevertheless, it was shown in [34] that the problem is NP-hard. Some special
cases of the problem were considered in [31] and [39]. If we assume that bj = b for
j ∈ J then the optimal resource allocation for fixed job sequence can be obtained in
O(n) time [31]. Problem 1|prec, rj = b − auj , βj = β, pj = p, Σuj ≤ R̂|Cmax may
be solved optimally by an algorithm which runs in O(n) time [39]. For the general
problem 1|prec, rj = bj − ajuj ,Σuj ≤ R̂|Cmax two approximation 2-algorithms are
proposed in [39] and the estimation of the upper bound of relative error for both of
them is tight.

Problem 1|prec, rj = bj − ajuj , Cmax ≤ Ĉ|Σuj is NP-hard even if the functions of
the release dates are identical for all the jobs [35]. An approximation algorithm for this
problem is proposed in [39]. However, the worst case performance for this algorithm
is still an open question. The special case: 1|prec, rj = b − auj , βj = β, pj = p,
Cmax ≤ Ĉ|Σuj may be solved in time O(n) [35].

Problem 1|prec, rj = bj−ajuj |Cmax∧Σuj is NP-hard [36] and the only case which
may be solved in polynomial time is 1|prec, rj = b− auj , βj = β, pj = p|Cmax ∧ Σuj

[36].
Problem 1|rj = bj − ajuj ,Σuj ≤ R̂|Cmax is strongly NP-hard [31],[38]. However,

some of its special cases may be solved in polynomial time by the algorithm based on
a sorting procedure:

a) bj = b, aj = a, βj = β – pj ↘,
b) bj = b, βj = β, pj = p – aj ↘,
c) bj = b, aj = a, pj = p – βj ↘,
d) bj = b, aj = a, pj = p – bj ↘,

where the term xj ↘ means that the optimal sequence of jobs can be obtained
by ordering the jobs according to non-increasing values of the parameter xj ∈
{pj , aj , βj , bj}.

Since the general problem 1|rj = bj − ajuj ,Σuj ≤ R̂|Cmax is NP-hard, some
general approximation scheme is proposed in [32] for this problem. The scheme is as
follows:

1) construct the sequence of the jobs according to one of the 26 rules presented
in [32] - the complexity O(n log n),

2) allocate the resource optimally by the algorithm for 1|prec, rj = bj −
ajuj ,Σuj ≤ R̂|Cmax - the complexity O(n2).
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Notice that the complexity of each algorithm constructed according to presented
above scheme equals O(n2). In [32], the author proves that every algorithm based on
presented above scheme is a 2-approximation algorithm and this estimation is tight.
Numerical experiments, however, show that solutions delivered by the algorithms are
significantly better than the worst case performance ratio.

Problem 1|rj = bj−ajuj , Cmax ≤ Ĉ|Σuj is strongly NP-hard [33]. However, some
cases mentioned bellow below may be solved in time O(n log n) by a simple sorting
algorithm:

a) bj = b, aj = a, βj = β – pj ↘,
b) bj = b, βj = β, pj = p – aj ↘,
c) bj = b, aj = a, pj = p – βj ↘,
d) bj = b, βj = β, pj = p – bj ↘.

The optimal resource allocation may be obtained in O(n) steps by the algorithm
proposed for 1|prec, rj = bj −ajuj , Cmax ≤ Ĉ|Σuj . Some heuristic algorithms for the
general case of the problem are proposed in [33], but their worst case performance is
an open question.

Problem 1|rj = bj − ajuj |Cmax ∧ Σuj is strongly NP-hard [33]. However, some
cases mentioned below can be solved in time O(n log n) by sorting-type algorithms:

a) bj = b, aj = a, βj = β – pj ↘,
b) bj = b, βj = β, pj = p – aj ↘,
c) bj = b, aj = a, pj = p – βj ↘,
d) bj = b, aj = a, pj = p – bj ↘,

and the application of the resource allocation algorithm. The resource allocation is
reduced to constructing a time-resource trade-off curve. The curve is convex, de-
creasing, piecewise linear and may be determined in O(n) time for cases a), b), c) and
O(n log n) time for the case d) [39].

Problems:

a) 1|rj = bj − uj ,Σuj ≤ R̂|Cmax,
b) 1|rj = bj − uj , Cmax ≤ Ĉ|Σuj ,
c) 1|rj = bj − uj |Cmax ∧ Σuj ,

were considered in [67]. The authors prove that all of them are strongly NP-hard.
For problem a), the family of ten 2-approximation algorithms based on same scheme
is presented. The scheme is similar to the scheme for 1|rj = bj −ajuj ,Σuj ≤ R̂|Cmax

mentioned above. In step 2, the optimal resource allocation is done by solving an
appropriate linear programming task. The author proves that the worst case perfor-
mance ratio 2 is the tight estimation.

There are some results in the literature for more general function for the release
dates: rj = f(uj), α ≤ uj ≤ β for j ∈ J where f(j) is a continuous, strictly decreasing
and nonnegative function.

Problem 1|prec, rj = f(uj),Σuj ≤ R̂|Cmax was considered in [39]. The author
proved that the problem is NP-hard and developed optimal resource allocation al-
gorithm which runs in O(max{g(n), n}) steps, where O(g(n)) is the time required
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to calculate the values of f ,and the values of f−1 [24]. The author also showed
that problem 1|prec, rj = f(uj), pj = p, Σuj ≤ R̂|Cmax may be solved optimally
by taking any feasible sequence of jobs and calculating optimal resource allocation
in the same way as for the previous problem [39]. In [24], the author showed that
problem 1|rj = f(uj),Σuj ≤ R̂|Cmax may be solved by sequencing the jobs according
to nondecreasing values of pj and calculating the optimal resource allocation by the
algorithm with the complexity O(max{g(n), n log n}), where g(n) is defined in the
same way as previously.

Problem 1|prec, rj = f(uj), Cmax ≤ Ĉ|Σuj is NP-hard [39]. Similar to the previ-
ous group of problems, for a given sequence of jobs, the optimal resource allocation
can be obtained in O(max{g(n), n}) time, where g(n) is defined in the same way as
previously [8]. Similarly, problem 1|prec, rj = f(uj), pj = p, Cmax ≤ Ĉ|Σuj may be
solved by taking any feasible sequence of jobs and perform resource allocation [39].

Analogously problem 1|rj = f(uj), Cmax ≤ Ĉ|Σuj may be solved by sequencing
the jobs in nondecreasing order of pj and next by allocating the resource optimally
in O(max{g(n), n}) time [8].

Problem 1|prec, rj = f(uj)|Cmax ∧ Σuj is NP-hard [39]. However, problem
1|prec, rj = f(uj)|Cmax ∧ Σuj is easy to solve. The optimal sequence of jobs can
be obtained by sorting them according to the nondecreasing values of pj and then,
the problem is reduced to calculate the time-cost trade-off curve. This may be
calculated in O(max{g(n), n log n}) where g(n) is defined as above [32]. Problem
1|prec, rj = f(uj), pj = p|Cmax ∧ Σuj may be solved in the analogous way [39].

Problem 1|rj = f(uj),ΣCj ≤ Ĉ|Σuj is NP-hard [60]. The case with linear resource
function, i.e., 1|rj = b− auj ,ΣCj ≤ Ĉ|Σuj may be solved by an algorithm proposed
in [60] that requires O(n log n) time. The extension of the results obtained in [60] are
presented in [76], where some properties are proved for the convex decreasing resource
function.

The general case of the problems with ΣwjCj criterion with nonlinear models of
the release dates are NP-hard or strongly NP-hard as it is presented in Table 3. Some
special cases, however, may be solved in polynomial time.

Problems 1|rj = b−a(δjuj), 1/δj = wj ,Σuj ≤ R̂|ΣwjCj , 1|rj = b−a(δjuj), 1/δj =
wj ,ΣwjCj ≤ Ĉ|Σuj , and 1|rj = b− a(δjuj), 1/δj = wj |ΣwjCj ∧ Σuj , may be solved
optimally in O(n log n) steps [39]. The algorithms use the SWPT rule, i.e., the optimal
sequence of jobs may be obtained by sorting them according to the nondecreasing
values of pj/wj .

The optimal algorithms with complexity O(n log n) are presented in [59] for the
following problems:
1|rj = fj(uj), f−1

j (uj) = pjf
−1
j (uj)|Cmax ≤ Ĉ|Σuj ,

1|rj = fj(uj), f−1
j (uj) = pjf

−1
j (uj)|ΣCj ≤ Ĉ|Σuj , and

1|rj = fj(uj), f−1
j (uj) = pjf

−1
j (uj)|vΣuj + wCmax.

Problem 1|rj = fj(uj)|vΣuj + wΣCj is shown in [59] to be NP-hard.
Problems 1|rj = fj(uj), dj = d|Σuj + ΣwTj and 1|rj = fj(uj), dj = d, f−1

j (uj) =
pjf

−1
j (uj)|wj = kpj |Σuj + ΣwTj are NP-hard [61].
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Some properties of the optimal solution and some dynamic programming algo-
rithms are presented in [61].

The results presented in this section are summarized in Table 3.

Table 3. The complexity of problems with resource dependent
release dates

Problem Complexity Reference
1|rj = bj − ajuj , Σuj ≤ R̂|Cmax strongly NP-hard [31], [38]

1|rj = bj − ajuj , Cmax ≤ Ĉ|Σuj strongly NP-hard [33]

1|rj = bj − ajuj |Cmax ∧ Σuj strongly NP-hard [33]

1|rj = bj − auj , Σuj ≤ R̂|Cmax NP-hard [31], [38]

1|rj = bj − auj , Cmax ≤ Ĉ|Σuj NP-hard [33]

1|rj = bj − auj |Cmax ∧ Σuj NP-hard [33]

1|rj = b− auj , βj = β, Σuj ≤ R̂|Cmax O(n log n) [31], [38]

1|rj = b− auj , βj = β, Cmax ≤ Ĉ|Σuj O(n log n) [33]

1|rj = b− auj , βj = β|Cmax ∧ Σuj O(n log n) [39]

1|rj = b− ajuj , βj = β, pj = p, Σuj ≤ R̂|Cmax O(n log n) [31], [38]

1|rj = b− ajuj , βj = β, pj = p, Cmax ≤ Ĉ|Σuj O(n log n) [33]

1|rj = b− ajuj , βj = β, pj = p|Cmax ∧ Σuj O(n log n) [39]

1|rj = b− auj , pj = p, Σuj ≤ R̂|Cmax O(n log n) [31], [38]

1|rj = b− auj , pj = p, Cmax ≤ Ĉ|Σuj O(n log n) [33]

1|rj = b− auj , pj = p|Cmax ∧ Σuj O(n log n) [39]

1|rj = b− auj , βj = β, pj = p, Σuj ≤ R̂|Cmax O(n log n) [31], [38]

1|rj = b− auj , βj = β, pj = p, Cmax ≤ Ĉ|Σuj O(n log n) [33]

1|rj = b− auj , βj = β, pj = p|Cmax ∧ Σuj O(n log n) [39]

1|prec, rj = b− auj , βj = β, Σuj ≤ R̂|Cmax NP-hard [34]

1|prec, rj = b− auj , βj = β, Cmax ≤ Ĉ|Σuj NP-hard [35]

1|prec, rj = b− auj , βj = β|Cmax ∧ Σuj NP-hard [39]

1|prec, rj = b− auj , βj = β, pj = p, Σuj ≤ R̂|Cmax O(n) [39]

1|prec, rj = b− auj , βj = β, pj = p, Cmax ≤ Ĉ|Σuj O(n) [35]

1|prec, rj = b− auj , βj = β, pj = p|Cmax ∧ Σuj O(n) [36]

1|rj = bj − uj , Σuj ≤ R̂|Cmax strongly NP-hard [67]

1|rj = bj − uj , Cmax ≤ Ĉ|Σuj strongly NP-hard [67]

1|rj = bj − uj |Cmax ∧ Σuj strongly NP-hard [67]
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Table 3 (continued)

Problem Complexity Reference
1|rj = f(uj), Σuj ≤ R̂|Cmax O(max{g(n), nlog n}) where

O(g(n)) is the complexity
of calculation of f−1()

[24]

1|rj = f(uj), Cmax ≤ Ĉ|Σuj as above [8]

1|rj = f(uj)|Cmax ∧ Σuj as above [32]

1|rj = f(uj), pj = p, Σuj ≤ R̂|Cmax as above [39]

1|rj = f(uj), pj = p, Cmax ≤ Ĉ|Σuj as above [39]

1|rj = f(uj), pj = p|Cmax ∧ Σuj as above [39]

1|rj = g(uj), Σuj ≤ R̂|ΣCj NP-hard [39]

1|rj = g(uj), ΣCj ≤ Ĉ|Σuj NP-hard [60], [39]

1|rj = g(uj)|ΣCj ∧ Σuj NP-hard [39]

1|rj = g(δjuj), Σuj ≤ R̂|ΣwjCj strongly NP-hard [44]

1|rj = g(δjuj), ΣwjCj ≤ Ĉ|Σuj strongly NP-hard [39]

1|rj = g(δjuj)|ΣwjCj ∧ Σuj strongly NP-hard [39]

1|rj = b− auj , ΣCj ≤ Ĉ|Σuj O(n log n) [60]

1|rj = b− a(δjuj), 1/δj = wj , Σuj ≤ R̂|ΣwjCj O(n log n) [39]

1|rj = b− a(δjuj), 1/δj = wj , ΣwjCj ≤ Ĉ|Σuj O(n log n) [39]

1|rj = b− a(δjuj), 1/δj = wj |ΣwjCj ∧ Σuj O(n log n) [39]

1|rj = fj(uj), dj = d|Σuj + ΣwTj NP-hard [61]

1|rj = fj(uj), dj = d, f−1
j (uj) = pjf

−1
j (uj), wj =

kpj |Σuj + ΣwTj

NP-hard [61]

1|rj = fj(uj), f
−1
j (uj) = pjf

−1
j (uj), Cmax ≤ Ĉ|Σuj O(n log n) [59]

1|rj = fj(uj), f
−1
j (uj) = pjf

−1
j (uj), ΣCj ≤ Ĉ|Σuj O(n log n) [59]

1|rj = fj(uj), f
−1
j (uj) = pjf

−1
j (uj)|vΣuj + wCmax O(n log n) [59]

1|rj = fj(uj)|vΣuj + wΣCj NP-hard [59]

1|uj = fj(rj), ΣCj ≤ Ĉ|Σf(rj) and f() is
decreasing and convex

NP-hard [76]

6. SCHEDULING PROBLEMS WITH CONVEX FUNCTION
OF JOB PROCESSING TIMES

In this section we present the results for the problems with job processing times given
as a convex functions, i.e., the processing time, pj , of job j is given by the following
formulae:
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pj =
(

aj

uj

)k

,

where aj and k are the resource consumption parameters.
Problem 1|pj = (aj/uj)k,Σuj ≤ U |Lmax was considered in [70]. In this problem,

the optimal sequence of jobs does not depend on the resource allocation and may
be found by applying the EDD rule [12], i.e., by sorting the jobs in nondecreasing
order of dj . Then the optimal resource allocation may be found by the algorithm
which requires O(n3) time proposed in [70]. It is easy to notice that in problem
1|pj = bj/uj |Cmax + Σvjuj , the optimal sequence of jobs also does not depend on the
resource allocation. Hence, the algorithm proposed in [70] can be applied to solve the
makespan minimization problem.

In [70] authors consider also two-resource allocation problem 1|pj =
max{(a1j/u1j)k, (a2j/u2j)k},Σu1j ≤ U1,Σu2j ≤ U2|Lmax. The algorithm with the
complexity O(n3 log 1/ε), where ε is a given accuracy, was proposed.

Problem 1|pj = bj + aj/uj ,Σuj ≤ U |ΣCj was considered in [57]. In general the
problem is NP-hard. However, some special cases of the problem are solvable in
O(n log n) time, namely the case with parameter aj identical for all the jobs (aj = a)
and the case with parameter bj identical for all the jobs (bj = b).

Problem 1|pj = (aj/uj)k,Σuj ≤ U |ΣwjCj was considered in [71]. The problem
was reduced to discrete optimization problem, however, the computational complexity
of the problem remains an open question. A dynamic programming algorithm and
approximation algorithms were proposed.

Five polynomially solvable special cases of the problem were identified:

1) wj = w,
2) aj = a,
3) wj = αaj ,
4) ai ≤ aj ∧ wi ≥ wj for each i 6= j

5) (ak/(k+1)
i /w

k/(k+1)
i ) ≤ (ak/(k+1)

j /w
k/(k+1)
j ) ∧ ai ≥ aj for each i 6= j.

All these cases are solvable in O(n log n) time.
Problem 1|rj = (bj/vj)k, pj = (aj/uj)k|Cmax ∧ Σuj + Σvj was considered in [54].

The optimal resource allocation as a function of the job sequence can be determined
in a linear time, and the optimal job sequence is independent of the total resources
being used. Thereby, the problem may be reduced to the sequencing one. However,
the computational complexity of presented problem is open. A dynamic programming
algorithm and approximation algorithms were proposed.

Some special cases of the presented problem are solvable in O(n log n) time:

1) bj = b,
2) aj = a,
3) aj = αbj ,
4) bi ≤ bj ∧ ai ≥ aj for each i 6= j
5) ai ≤ aj ∧ bi/ai ≥ bj/aj for each i 6= j.
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We summarize the results presented in this section in Table 4.

Table 4. The computational complexity of the problems
with convex function of job processing times

Problem Complexity Reference
1|pj = (aj/uj)

k, Σuj ≤ U |Lmax O(n log n) [70]

1|pj = max{(a1j/u1j)
k, (a2j/u2j)

k}, Σu1j ≤ U1, Σu2j ≤
U2|Lmax

O(n3 log 1/ε) [70]

1|pj = bj + aj/uj , Σuj ≤ U |ΣCj NP-hard [57]
1|pj = b + aj/uj , Σuj ≤ U |ΣCj O(n log n) [57]
1|pj = bj + a/uj , Σuj ≤ U |ΣCj O(n log n) [57]

1|pj = (aj/uj)
k, Σuj ≤ U |ΣwjCj Open [71]

1|pj = (aj/uj)
k, Σuj ≤ U |ΣCj O(n log n) [71]

1|pj = (a/uj)
k, Σuj ≤ U |ΣwjCj O(n log n) [71]

1|pj = (aj/uj)
k, wj = αaj , Σuj ≤ U |ΣwjCj O(n log n) [71]

1|pj = (aj/uj)
k, Σuj ≤ U |ΣwjCj and bi ≤ bj ∧ ai ≥ aj

for each i 6= j
O(n log n) [71]

1|pj = (aj/uj)
k, Σuj ≤ U |ΣwjCj and

(a
k/(k+1)
i /w

k/(k+1)
i ) ≤ (a

k/(k+1)
j /w

k/(k+1)
j ) ∧ ai ≥ aj for

each i 6= j

O(n log n) [71]

1|rj = (bj/vj)
k, pj = (aj/uj)

k|Cmax ∧ Σuj + Σvj Open [54]

1|rj = (b/vj)
k, pj = (aj/uj)

k|Cmax ∧ Σuj + Σvj O(n log n) [54]

1|rj = (bj/vj)
k, pj = (a/uj)

k|Cmax ∧ Σuj + Σvj O(n log n) [54]

1|rj = (bj/vj)
k, pj = (aj/uj)

k, aj = αbj |Cmax∧Σuj+Σvj O(n log n) [54]

1|rj = (bj/vj)
k, pj = (aj/uj)

k|Cmax ∧ Σuj + Σvj and
bi ≤ bj ∧ ai ≥ aj for each i 6= j

O(n log n) [54]

1|rj = (bj/vj)
k, pj = (aj/uj)

k|Cmax ∧ Σuj + Σvj and
ai ≤ aj ∧ bi/ai ≥ bj/aj for each i 6= j

O(n log n) [54]

7. SCHEDULING PROBLEMS WITH DISCRETE RESOURCES

The problems with discrete resources were widely studied in [10] and [39]. The results
presented in [39] complement the results presented in [10]. Thus, the results from both
above mentioned publications will be presented jointly.

We consider the following problems:

1|pd
j = bj − aju

d
j , F1 ≤ Û |F2,

1|pd
j = bj − aju

d
j , F2 ≤ Ĉ|F1,

1|pd
j = bj − aju

d
j |F1 ∧ F2

where F1 is the resource penalty function, i.e., F1 ∈ {gmax,Σuj ,Σvjuj}, and F2 is
the time criterion function, i.e., F2 ∈ {Cmax, cmax,ΣUj ,ΣwjUj ,ΣCj ,ΣwjCj}, where
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gmax = maxj∈J{gj(uj)} and gj is some general nondecreasing resource consumption
cost function.

In [10] and [39] the following problems were classified as NP-hard:

1|pd
j = bj − aju

d
j , gmax ≤ K|ΣwjUj ,

1|pd
j = b− aju

d
j , βj = 1,Σvjuj ≤ K|Cmax,

1|pd
j = b− aju

d
j , βj = 1, Cmax ≤ K|Σvjuj ,

1|pd
j = b− aju

d
j , βj = 1|Σvjuj ∧ Cmax,

1|pd
j = bj − aju

d
j , βj = 1,Σvjuj ≤ K|ΣwjCj ,

1|pd
j = bj − aju

d
j , βj = 1,ΣwjCj ≤ K|Σvjuj ,

1|pd
j = bj − aud

j , dj = d, ΣUj ≤ K|Σuj ,
1|pd

j = bj − aud
j , dj = d, Σuj ≤ K|ΣUj ,

1|pd
j = bj − aud

j , dj = d|ΣUj ∧ Σuj ,
1|pd

j = bj − aju
d
j , βj = 1,Σvjuj ≤ K|ΣwjCj ,

1|pd
j = bj − aju

d
j , βj = 1,ΣwjCj ≤ K|Σvjuj ,

1|pd
j = bj − aju

d
j , βj = 1|ΣwjCj ∧ Σvjuj .

The following problems can be solved in O(n log n) time:

1|pd
j = bj − aju

d
j , gmax ≤ K|F2, where F2 ∈ {cmax,ΣUj ,ΣwjCj},

1|pd
j = bj − aud

j , cmax ≤ K|Σvjuj ,
1|pd

j = bj − aju
d
j , cmax ≤ K|Σuj ,

1|pd
j = b− aud

j , dj = d, Σuj ≤ K|ΣCj ,
1|pd

j = bj − aud
j , Cj ≤ dj |Σvjuj .

In the publication mentioned above the general schemes for the construction of
the Pareto set and the Pareto set ε-approximation are presented. The dynamic pro-
gramming algorithms and approximation algorithms are proposed for the selected
problems.

Problem with the deadlines 1|pd
j = bj−aju

d
j , Cj ≤ dj |Σvjuj was considered in [39].

The problem was proved to be NP-hard even for the case bj = b, dj = d, βj = 1 for
j = 1, 2, . . . , n. Some approximation algorithm and a fully polynomial approximation
scheme were presented. Some cases of the general problem were proved to be solvable
in O(n log n) time by the mentioned above approximation algorithm for the general
problem, namely: 1|pd

j = bj − aud
j , Cj ≤ dj |Σvjuj and 1|pd

j = bj − aju
d
j , Cj ≤ dj |Σuj .

The problems with the general resource consumption functions gj were considered
in [4]. Problems 1|pd

j = bj − aju
d
j |ΣCj + Σgj(uj) and 1|pd

j = bj − aju
d
j , dj = d >

D|ρΣEj + σΣTj + Σgj(uj) were proved to be solvable in O(n3) steps by reducing
them to an assignment problem. Problems 1|rj , p

d
j = bj − aju

d
j |Cmax + Σgj(uj),

1|pd
j = bj − aju

d
j |Tmax + Σgj(uj), 1|pd

j = bj − aju
d
j , dj = d|Tmax + Σgj(uj), 1|pd

j =
bj−aju

d
j |ΣwjUj+Σgj(uj), 1|pd

j = bj−aju
d
j , dj = d|ΣwjUj+Σgj(uj) were proved to be

NP-hard and some optimal pseudopolynomial time algorithms based on the dynamic
programming were proposed. This implies that the mentioned above problems are
not strongly NP-hard.
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The problems Pm|pd
j = bj−aju

d
j |ΣwjCj +Σvjuj and Pm|pd

j = bj−aju
d
j |ΣwjUj +

Σvjuj were considered in [3]. Since both problems are NP-hard, a column generation
branch and bound algorithm was proposed.

The results presented in this section are summarized in Table 5.

Table 5. The computational complexity of the problems
with discrete resources

Problem Complexity Reference
1|pd

j = bj − aju
d
j , gmax ≤ K|F2 where

F2 ∈ {cmax, ΣUj , ΣwjCj}
O(n log n) [10], [39]

1|pd
j = bj − aju

d
j , F2 ≤ K|gmax where

F2 ∈ {cmax, ΣUj , ΣwjCj}
O(n log n log(max{gj(βj)})) [10], [39]

1|pd
j = bj − aju

d
j |F2 ∧ gmax where

F2 ∈ {cmax, ΣUj , ΣwjCj}
O(|P |n(log n +
log(max{gj(βj)}))) where |P |
is the cardinality of the Pareto
set

[39]

1|pd
j = bj − aju

d
j , gmax ≤ K|ΣwjUj NP-hard [14]

1|pd
j = b− aju

d
j , βj = 1, Σvjuj ≤ K|Cmax NP-hard [10]

1|pd
j = b− aju

d
j , βj = 1, Cmax ≤ K|Σvjuj NP-hard [10]

1|pd
j = b− aju

d
j , βj = 1|Σvjuj ∧ Cmax NP-hard [39]

1|pd
j = bj − aud

j , cmax ≤ K|Σvjuj O(n log n) [10]

1|pd
j = bj − aud

j , Σvjuj ≤ K|cmax O(n log n log(max{cj(Σ
n
i=1bi)})) [10]

1|pd
j = bj − aud

j |cmax ∧ Σvjuj O(|P |n(log n +
log(max{cj(Σ

n
j=1)bj}))) where

|P | is the cardinality of the
Pareto set

[39]

1|pd
j = bj − aju

d
j , cmax ≤ K|Σuj O(n log n) [10]

1|pd
j = bj − aju

d
j , Σuj ≤ K|cmax O(n log n log(max{cj(Σ

n
i=1bi)})) [10]

1|pd
j = bj − aju

d
j |cmax ∧ Σuj O(|P |n(log n +

log(max{cj(Σ
n
j=1)bj}))) where

|P | is the cardinality of the
Pareto set

[39]

1|pd
j = bj−aju

d
j , βj = 1, Σvjuj ≤ K|ΣwjCj NP-hard [39]

1|pd
j = bj−aju

d
j , βj = 1, ΣwjCj ≤ K|Σvjuj NP-hard [39], [10]

1|pd
j = bj − aud

j , dj = d, ΣUj ≤ K|Σuj NP-hard [6]

1|pd
j = bj − aud

j , dj = d, Σuj ≤ K|ΣUj NP-hard [10]

1|pd
j = bj − aud

j , dj = d|ΣUj ∧ Σuj NP-hard [39]

1|pd
j = bj − aju

d
j , Σvjuj ≤ K|ΣwjUj O(nK(Σwj)Σβj) [39]

1|pd
j = bj − aju

d
j , ΣwjUj ≤ K|Σvjuj O(nK(Σwj)Σβj) [39]

1|pd
j = bj − aju

d
j |Σvjuj ∧ ΣwjUj O(|P |n(Σwj)Σ(wj + vjβj)Σβj) [39]

1|pd
j = b− aud

j , Σuj ≤ K|ΣCj O(n log n) [10]

1|pd
j = b− aud

j , ΣCj ≤ K|Σuj O(n log n log(Σβj)) [10]
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Table 5 (continued)

Problem Complexity Reference
1|pd

j = b− aud
j |ΣCj ∧ Σuj O(|P |n(log n + log(Σβj)))

where |P | is the cardinality of
the Pareto set

[39]

1|pd
j = bj−aju

d
j , βj = 1, Σvjuj ≤ K|ΣwjCj NP-hard [39]

1|pd
j = bj−aju

d
j , βj = 1, ΣwjCj ≤ K|Σvjuj NP-hard [39]

1|pd
j = bj − aju

d
j , βj = 1|ΣwjCj ∧ Σvjuj NP-hard [39]

1|pd
j = bj − aju

d
j , βj = 1, dj = d, Cj ≤

d|Σvjuj

NP-hard [39]

1|pd
j = bj − aud

j , Cj ≤ dj |Σvjuj O(nlogn) [39]

1|pd
j = bj − aju

d
j , Cj ≤ dj |Σuj O(nlogn) [39]

1|pd
j = bj − aju

d
j |ΣCj + Σgj(uj) O(n3) [4]

1|pd
j = bj − aju

d
j ,

dj = d > D|ρΣEj + σΣTj + Σgj(uj)
O(n3) [4]

1|rj , p
d
j = bj − aju

d
j |Cmax + Σgj(uj) NP-hard [4]

1|pd
j = bj − aju

d
j |Tmax + Σgj(uj) NP-hard [4]

1|pd
j = bj − aju

d
j , dj = d|Tmax + Σgj(uj) NP-hard [4]

1|pd
j = bj − aju

d
j |ΣwjUj + Σgj(uj) NP-hard [4]

1|pd
j = bj − aju

d
j , dj = d|ΣwjUj + Σgj(uj) NP-hard [4]

Pm|pd
j = bj − aju

d
j |ΣwjCj + Σvjuj NP-hard [3]

Pm|pd
j = bj − aju

d
j |ΣwjUj + Σvjuj NP-hard [3]

8. CONCLUSIONS

Scheduling problems with additional resource allocation are quite new part of the
scheduling theory, however, high practical significance of these problems attracts many
researchers. In this paper we surveyed the results obtained in this area in available
literature. It can be observed that the computational complexity status have been
derived for most problems, but there are still some interesting open problems with
respect to NP-hardness or strong NP-hardness.

The presented results indicate that there are some practical problems which may
be resolved in the polynomial time. However, most of these problems, especially multi
processor ones, are NP-hard or strongly NP-hard. In our opinion computationally ef-
fective algorithms for these problems should be developed. Future research should
focus on problems with complex processor environment such as flow shop and job
shop. There is a broad area for using specialized algorithms and techniques as tabu
search, genetic algorithms, simulated annealing or algorithms which use artificial in-
telligence methods. The ability to allocate resources for a given job processing order
in computationally effective manner may be very useful tool for mentioned above
algorithms, and such tools should be also developed.
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