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A Loss Function
for Box-Constrained Inverses Problems

Kiyoshi Yoneda∗

Abstract. A loss function is proposed for solving box-constrained inverse problems. Given
causality mechanisms between inputs and outputs as smooth functions, an inverse problem
demands to adjust the input levels to make the output levels as close as possible to the target
values; box-constrained refers to the requirement that all outcome levels remain within their
respective permissible intervals. A feasible solution is assumed known, which is often the
status quo. We propose a loss function which avoids activation of the constraints. A practical
advantage of this approach over the usual weighted least squares is that permissible outcome
intervals are required in place of target importance weights, facilitating data acquisition.
The proposed loss function is smooth and strictly convex with closed-form gradient and
Hessian, permitting Newton family algorithms. The author has not been able to locate in
the literature the Gibbs distribution corresponding to the loss function. The loss function is
closely related to the generalized matching law in psychology.
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1. INTRODUCTION

An inverse problem demands that given a causality mechanism and a number of
resulting effects their causes be identified. The causality is modeled as a finite di-
mensional input-output system Rm 3 x f7→ y ∈ Rn or, writing for each output item,
fi : Rm 3 x 7→ yi ∈ R, 1 ≤ i ≤ n: The vector of causes x goes through causality
mechanisms fi and results in the effects fi(x); although the causes always precede
the effects in time the model does not express this feature explicitly. Throughout
this paper the vectors are in bold face letters and their elements are in corresponding
normal letters. The input itself is to be considered a part of the output: “If I decide
to do something, everything that follows is a consequence, including the action itself”
(Layard, 2006) p. 119, viz., fj : xj 7→ yj = xj , 1 ≤ j ≤ m implying m ≤ n. The
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present input and output values, x0 and y0, and the mechanism f() which links them
are assumed known.

Suppose the circumstances have changed so that the desired output values are
now y1, which represents small deviations from the present values y0 in the sense
that the linear approximation:

y1 ≈ f(x0) + Jf (x0)(x1 − x0) 1 ≤ i ≤ n

holds, where:

Jf (x0) :=


...

∇fi(x0)
...

 =



1 0
. . .

0 1
...

· · · ∂fi
∂xj

(x0) · · ·
...


is the Jacobian matrix of f at x0; “≈” indicates near-equality. The top identity part is
for fj : xj 7→ xj . The decision maker controls n aspects of life by adjusting its subset
of size m (≤ n), with no such rigid budget constraint as found in microeconomics
model of individual behavior, e.g. (Wichers, 1996).

Now the problem is to find an x such that J x ≈ y1−(y0−J x0) given J := Jf (x0)
and y1 − (y0 − J x0). This is an ordinary linear inverse problem aside from the top
part of J being a unit matrix. The usual method of solution would be the least
squares with special considerations to the stability of the solution, i.e., that a small
change in y1 should not incur a huge change in the solution x.

A problem with using the least squares method to solve such inverse problems is
that the solution often lies beyond the practical limits. In practice the acceptable
input values x and corresponding output values y0 + J (x − x0) are bounded, more
often than not: one cannot, for instance, purchase a negative amount of product or
sleep more than 24 hours a day. That kind of knowledge may be incorporated into a
formulation by requiring that the output values remain within permissible intervals:

Definition 1. Box-constrained inverse problem
Given J , x0, y0, and y1 find an x such that:(

y0 − J x0
)

+ J x ≈ y1 (1)

satisfying the box-constraints:

a <
(
y0 − J x0

)
+ J x < b (2)

Finding a feasible solution is trivial when the status quo is within the permissi-
ble range and that only the target values y change from y0 to y1 within the box
constraints, which is often the case, but can be difficult otherwise.
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Two successful lines of attack to such problems are generalized linear models
(McCullagh and Nelder, 1989) and maximum entropy models (Campbell and Hill,
2006), (Golan et al., 1996). They both are conceptually clear but not quite compu-
tationally efficient since the former reduces to iterated least squares and the latter
requires two or more support variables to represent a single parameter xj in the
equations.

This paper proposes a method which is both conceptually clear and computation-
ally more efficient. The approach consists of designing a smooth strictly convex loss
function such that attains a minimum of zero when all targets are met and diverges
at the box constraints avoiding them to become active.

The remainder of this paper is organized as follows. To simplify notation Section 2
defines a standard form for the box-constrained inverse problems. A minimal numer-
ical example is introduced. The near-equality is specified in Section 3 by defining
a loss function. Section 4 discusses how to convert the target positions relative to
their bounds into the importance weight parameters in the loss function. Section 5
points out some properties of the loss function. The paper is summarized in Section 6.
Appendix A calculates the gradient and the Hessian of the proposed loss function.
Appendix B attempts to endow a geometric interpretation to the loss function.

2. THE STANDARD FORM

This section puts the problem into a standard form involving no constants ai and bi
in order to simplify notation. We use dot subscripts for writing matrices in row and
column vectors:

J =


...

· · · Jij · · ·
...

 =


...

Ji·
...

 =
[
· · · J·j · · ·

]
.

Since (y0
i − Ji· x0) + Ji· x ≈ y1

i and ai < y1
i < bi,

(y0
i − Ji· x0)− ai + Ji· x

bi − ai
≈ y1

i − ai
bi − ai

.

The right hand side of the near-equation fits into the open unit interval ]0, 1[ ; the
left hand side must also fit into the same open unit interval. By letting:

zi :=
y1
i − ai
bi − ai

0 < zi < 1 1 ≤ i ≤ n

θj :=
xj − aj
bj − aj

0 < θj < 1 1 ≤ j ≤ m ,

y0
i − Ji· x0 − ai +

∑
j Jijaj +

∑
j Jij (bj − aj)θj

bi − ai
≈ zi.

The box-constrained inverse problem (1) with (2) has been reduced to:
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Definition 2. The standard form box-constrained linear inverse problem

c +D θ ≈ z or ζi := ẑi(θ) := ci +Di · θ ≈ zi
ζi, ẑi(θ), zi, θj ∈]0, 1[ 1 ≤ i ≤ n 1 ≤ j ≤ m ≤ n.

Here:

c := L


...

y0
i − Ji· x0 +

∑m
j=1 Jijaj − ai

...

 D := LJ R z = L(y − a)

L :=

b1 − a1

. . .
bn − an


−1

R :=

b1 − a1

. . .
bm − am


and we assume to have a feasible solution θ0 available, where θ0j := x0

j−aj
bj−aj ∈]0, 1[ for

1 ≤ j ≤ m. Once the solution θ̂ is found, the solution to the original problem (1)
with (2) may be secured by:

x̂ := am +R θ̂ , am := [a1 · · · am]′ (3)

provided that the transformation preserves the optimality of the solution.
The rest of this section comprises a numerical example to be used throughout this

paper.

2.1. A MINIMAL LINEAR INVERSE PROBLEM

In your company a quantity x1 of ingredient 1 and a quantity x2 of ingredient 2 are
processed into a quantity 2x1 + x2 of product. The purchase department is going to
place orders of the ingredients for the coming period. You normally place an order
of a unit of each ingredients to manufacture three units of product. However, the
sale predicted for this coming period is low, with only one unit. To stabilize the
relationship with the ingredient suppliers the purchase department wishes to order
the same amount of ingredients as usual, whereas the sales department demands that
the production be reduced to one unit.

The usual purchase is x0 = [1 1]′ and y0 = Jx0 = [1 1 3]′, where the prime
denotes transposition. Now y1

1 = y1
2 = 1 by the purchase department but the sales

department says y1
3 = 1. So the system of approximate equations to solve is1 0

0 1
2 1

[x1

x2

]
≈

1
1
1

 .
The direction of causality is unspecified among the near-equations, whether the cost
of two ingredients sum up to the total y1

3 or the budget y1
3 is to be allocated to both

ingredients.
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2.2. A WEIGHTED LEAST SQUARES SOLUTION

The first two equations are approximate since your order can differ from the usual.
The last equation is also approximate since the prediction may be inaccurate and
stock may absorb unsold or excessive product.

Suppose your purchase department considers a ±1/5 fluctuation from y1 to be
normal. The tolerance is higher for y2, which is ±1/2. As with the production you
want to allow a ±1/10 standard error. Treating these values as standard deviations
σ := [1/5 1/2 1/10]′, the usual weights for the weighted least squares are [25 4 100]′.
The weighted least squares solution for this problem is x̂ = [0.62 −0.19]′: even though
all numbers appearing in the problem are nonnegative, the amount of ingredient 2
to purchase is negative. The common practice of coercing negative values into zero,
like x2 := 0, causes difficulties: the balance of quantity between ingredients 1 and 2
will be disrupted; the purchase department will worry about the relationship with the
suppliers of ingredient 2 which would be cut altogether.

2.3. A BOX-CONSTRAINED FORMULATION

The purchase department considers that ordering 0.20 units or less of ingredient 1 will
be harmful to the relationship with the suppliers, and that ordering twice the usual
amount or more would also be unrealistic. Ingredient 2 should be ordered a positive
amount, but not two or more units. The sales department accepts that the production
be between 0.70 and 1.30 units. You wish to place an order of the ingredients so that:1 0

0 1
2 1

[x1

x2

]
≈

1
1
1

 ,

0.20
0.00
0.70

 <
1 0

0 1
2 1

[x1

x2

]
<

2.00
2.00
1.30

 .
The usual amount x0 = [1 1]′ does not satisfy the box constraints, whereas reducing
it to about 1/3, x0 = [0.3 0.3]′ does.

2.4. IN STANDARD FORM

Since:

L =

0.556 0 0
0 0.500 0
0 0 1.667

 J =

1 0
0 1
2 1

 R =
[
1.8 0
0 2

]
,

D = LJ R =

1 0
0 1
6 3.333

 c = −

 0
0

0.3

 z =

.444
.500
.500


the problem in the standard form is:

−

 0
0

0.3

+

1 0
0 1
6 3.333

[θ1
θ2

]
≈

.444
.500
.500

 ,
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with the initial value θ0 = R−1(x0 − am) = [.056 .15]′ which is feasible: c + D θ0 =
[.056 .15 .33]′ ∈]0, 1[3.

3. THE LOSS FUNCTION

Assume an additive loss function and define the solution by:

θ̂ := arg min
θ∈]0,1[m

∑
d(ζi, zi) ζi := ẑi(θ) := ci +Di·θ 0 ≤ d(·, ·).

For the method of least squares d(ζi, zi) := (ζi − zi)2, but this is inadequate for our
case since θ ∈]0, 1[m may not be met, as has been illustrated by the example in the
previous section. One could set up brute force constraints, but that would imply extra
computational complexity in addition to the necessity of a convincing interpretation
of the method: e.g., what does it mean to coerce a quantity into a nonnegative value
when the objective function does permit a negative argument? Our task now is to
find a reasonable individual loss function d(ζi, zi) which measures how far ζi ∈]0, 1[
is from zi ∈]0, 1[, such that avoids activation of the constraints. This section derives
the individual loss function d(·, ·) in an intuitive way.

The conventional individual loss functions used to satisfy 0 ≤ ζj , but not neces-

sarily ζj < 1, is the χ2 defined by d(ζi, zi) =
(
ζi−zi
zi

)2

= (ri − 1)2 where ri := ζi
zi

.

For strict positivity 0 < ζj the log-square d(ζi, zi) = (log ζi − log zi)2 = (log ri)2 is
popular. Their hybrid:

d(ζi, zi) =
(
ζi − zi
zi

)
(log ζi − log zi) = (ri − 1) log ri (4)

called the semilog loss has been proposed in (Yoneda, 2006). The three are illustrated
in Figure 1.

Since the logarithmic function is defined only for the positive reals, 0 < ri must
be satisfied in the rightmost expression in (4). The semilog loss (4) is asymmetric,
i.e., d(ẑi, zi) generally differs from d(zi, ẑi). The intuitive meaning of this function is
as follows. While ri − 1 ≈ 0 states that ζi is close to zi in terms of the Euclidean
distance measured by zi as the unit, log ri ≈ 0 states that ζi is close to zi in terms
of ratio of ζi against zi. The hybrid (ri − 1) log ri ≈ 0 states that ζi is close to zi in
both senses. Dropping the subscripts, schematically:

r ≈ 1 ⇔ [ r − 1 ≈ 0 and log r ≈ 0 ] ⇒ (r − 1) log r ≈ 0,

since all functions involved are smooth. Note that since r−1 and log r have the same
sign, 0 ≤ (r − 1) log r.

The graph for (r − 1) log r =
(
ζ
z − 1

)
log ζ

z , the solid line in Figure 1, appears as

the dashed line in Figure 2 for z = 1
3 . This satisfies 0 < ζ but not ζ < 1.
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Fig. 1. Individual loss function (ri − 1) log ri.
The semilog loss (4) (solid), log-squared (dashed), and χ2 (dotted)

By flipping the dashed graph in Figure 2 horizontally, then shifting it to the right
by one, and adjusting the minimum to the same z, another individual loss function(

1−ζ
1−z − 1

)
log 1−ζ

1−z may be constructed, illustrated as the dotted line in Figure 2. This
satisfies ζ < 1 but not 0 < ζ. By adding the two, a new individual loss function:

d(ζ, z) :=
(
ζ

z
− 1
)

log
ζ

z
+
(

1− ζ
1− z

− 1
)

log
1− ζ
1− z

(5)

is defined, illustrated as the solid line in Figure 2, which is the sum of the dashed and
the dotted lines. This satisfies 0 < ζ < 1. Geometric interpretations of the semilog (4)
and the proposed loss functions are described in Appendix B.

Proposition 1. The individual loss function (5) is strictly convex in ζ ∈]0, 1[.

Proof. Since
(
ζ
z − 1

)
log ζ

z is strictly convex in ζ ∈]0,∞[ and
(

1−ζ
1−z − 1

)
log 1−ζ

1−z is
strictly convex in ζ ∈]−∞, 1[, their sum (5) is strictly convex in ζ ∈]0, 1[.

Figure 3 illustrates w d(ζ, z), where d is defined by (5), for different values of
w: a larger w corresponds to a steeper loss function; the parameter w represents
the importance of the target. Since the permissible interval for outcome ζ has been
standardized, the weight w depends solely on the location of the target z within
the unit interval ]0, 1[. The problem of converting the target position z into the
importance weight w will be considered in the next section.
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Fig. 2. Loss function over the open unit interval.
The loss (5) (solid), its first term (dashed), and the second term (dotted),

all with z = 1
3
∈]0, 1[
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Fig. 3. w d(ζ, 1
3
) (dotdash) w = 4 (dashed), = 1 (solid), = 1

4
(dotted).

The lines correspond to the distributions in Figure 4
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Definition 3. A solution θ̂ to the standard form box-constrained linear inverse prob-
lem is defined by:

θ̂ := arg min
θ∈]0,1[m

`(θ) , `(θ) :=
∑

`i(θ) (6)

`i(θ) := wi

{(
ζi
zi
− 1
)

log
ζi
zi

+
(

1− ζi
1− zi

− 1
)

log
1− ζi
1− zi

}
(7)

ζi := ci +Di· θ

where:

ζi, zi, θj ∈]0, 1[ 1 ≤ i ≤ n 1 ≤ j ≤ m ≤ n.

Proposition 2. If a feasible solution exists, then θ̂ exists uniquely.

This is obvious since the loss function is strictly convex. Now it remains to check
that (3) provides a solution to the original problem:

Proposition 3. The standard form solution θ̂ together with (3) uniquely determines
a solution x̂ to the original box-constrained inverse problem such that minimizes the
loss function.

Proof. Since (3) is a non-degenerate affine transformation, the loss function `(θ(x))

in x is strictly convex. Now ∂`(θ(x))
∂xk

=
∑
i
∂`i(θ)
∂θj

∂θj
∂xk

=
∑
i
∂`i(θ)
∂θj

R−1
jk , it follows that[

∀j ∂`(θ(x))
∂xj

= 0
]
⇔
[
∀j ∂`(θ)

∂θj
= 0
]
.

Proposition 4. The Gibbs distribution corresponding to the individual loss function
(7) is:

ϕ(ζ) ∝


(
ζ
z

) 1
z

(
1−ζ
1−z

) 1
1−z


w(z−ζ) ∫ 1

0

ϕ(ζ)dζ = 1. (8)

Proof.

ϕ(ζ) ∝ e−w d(ζ,z) = e−w {(
ζ
z−1) log ζ

z+( 1−ζ
1−z−1) log 1−ζ

1−z} =

{(
ζ

z

) 1
z
(

1− ζ
1− z

)− 1
1−z
}w(z−ζ)

The resulting distribution (8) is similar to but differs from the beta distribution.
Figure 4 illustrates how the weight w affects the shape of (8).
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Fig. 4. Pdf ∝ e−wd(ζ,z), z = 1
3

(dotdash) w = 4 (dashed), = 1 (solid), = 1
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(dotted).
The lines correspond to the loss functions in Figure 3

Remark.

ϕ(ζ; z, w) w−→0−−−−→ Uniform distribution in ]0, 1[

ϕ(ζ; z, w) w−→∞−−−−−→ δ(ζ − z); Dirac’s delta.

Since the Gibbs distribution ∝ e−`(θ) is the maximum entropy distribution satis-
fying E[`(θ)] = constant, a reasonable interpretation of the solution x̂ would be that
the decision maker chooses those parameter values with highest probability under
the same circumstances but the actual values chosen will vary, rather than that the
individual invariably chooses the prescribed parameter values.

4. TARGET-TO-WEIGHT CONVERSION

In order to fix a solution of (6) we need to determine the weights w := [· · · wi · · · ]
as has been pointed out in the previous section. The triangular distribution:

τ(ζ) :=

{
2 ζ
z 0 ≤ ζ ≤ z

2 1−ζ
1−z z ≤ ζ ≤ 1,

(9)
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illustrated by the dotted line in Figure 6 is arguably the simplest model of a continuous
pdf with a peak at z and fades to zero at both ends 0 and 1. Hence its corresponding
loss function:

`τ (ζ) :=

{
− log ζ

z 0 < ζ ≤ z
− log 1−ζ

1−z z ≤ ζ < 1

is a natural candidate to adopt instead of (5).
There are two reasons why we do not simply do so. The first is computational

convenience. A smooth strictly convex loss function permits highly efficient Newton
family of minimization methods while the above loss function requires subgradient
methods for minimization, impeding solution of large problems. The second is that
results in psychology called the modern matching law (Prelec, 1984), which is a gen-
eralization of the classic matching law (Herrnstein et al., 1997), seem to support the
proposed pdf better than the triangular pdf. For these reasons we approximate the
triangular distribution τ() in (9), illustrated by the dotted line in Figure 6, by the
smooth Gibbs distribution ϕ() in (8), , illustrated in Figure 4 and as the solid line in
Figure 6.

The weight w is set so that the distribution corresponding to the loss function best
approximates the triangular distribution in the sense of Kullback-Leibler information:

K(τ, ϕ) := Eτ

[
log

τ(ζ̃)
ϕ(ζ̃)

]
=
∫ ∞
−∞

τ(ζ) log
τ(ζ)
ϕ(ζ)

dζ.

Note that K(τ, ϕ) may be negative.

Proposition 5. For Gibbs distributions τ(ζ) = e−`τ (ζ)/Zτ and ϕ(ζ) = e−`ϕ(ζ)/Zϕ,

Eτ [`ϕ(ζ̃)− `τ (ζ̃)] = K(τ, ϕ) + log
Zτ
Zϕ

(10)

where ζ̃ is a random variable; Zτ and Zϕ are normalization constants.

Proof.

K(τ, ϕ) =
∫ ∞
−∞
{`ϕ(ζ) + logZϕ − `τ (ζ)− logZτ}τ(ζ)dζ

= Eτ [`ϕ(ζ̃)− `τ (ζ̃)] + log(Zϕ/Zτ ).

This implies that the following are equivalent: to approximate a loss function by
another by minimizing the expected difference between the two, and to approximate
the distribution corresponding to a loss function by the distribution corresponding
to another loss function by information minimization. The triangular distribution τ
may now be approximated by the distribution ϕ corresponding to the loss function
`ϕ := ` by requiring the best fit:
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Proposition 6.

Eτ
[
`ϕ(ζ̃)

]
= Eτ

[
`τ (ζ̃)

]
⇒ w = w(z) :=

9z(1− z)
6{(3z − 1) log z − (3z − 2) log(1− z)}+ 44z(1− z)− 5

(11)

Proof. Since:

Eτ
[
`τ (ζ̃)

]
= 2

(
−
∫ z

0

ζ

z
log

ζ

z
dζ +

∫ 1

z

1− ζ
1− z

log
1− ζ
1− z

dζ

)
= 2

(
z

4
− 1− z

4

)
=
z − (z − 1)

2
=

1
2
,

by:

Eτ
[
`ϕ(ζ̃)

]
= Eτ

[
`τ (ζ̃)

]
,

Eτ
[
`ϕ(ζ̃)

]
= wEτ

[(
ζ

z
− 1
)

log
ζ

z
+
(

1− ζ
1− z

− 1
)

log
1− ζ
1− z

]
=

1
2

(12)

Now
∫
tn log t dt = tn+1

n+1

(
log t− 1

n+1

)
+ constant for 0 ≤ n, so that:

Eτ

[(
ζ

z
− 1
)

log
ζ

z
+
(

1− ζ
1− z

− 1
)

log
1− ζ
1− z

]
=

=
∫ 1

0

τ(ζ)
{(

ζ

z
− 1
)

log
ζ

z
+
(

1− ζ
1− z

− 1
)

log
1− ζ
1− z

}
dζ =

=
∫ 1

0

τ(ζ)
ζ

z
log

ζ

z
dζ −

∫ 1

0

τ(ζ) log
ζ

z
dζ

+
∫ 1

0

τ(ζ)
1− ζ
1− z

log
1− ζ
1− z

dζ −
∫ 1

0

τ(ζ) log
1− ζ
1− z

dζ =

= 2
[ ∫ z

0

(
ζ

z

)2

log
ζ

z
dζ +

∫ 1

z

1− z
1− z

· ζ
z

log
ζ

z
dζ

−
∫ z

0

ζ

z
log

ζ

z
dζ −

∫ 1

z

1− ζ
1− z

log
ζ

z
dζ

+
∫ z

0

ζ

z
· 1− ζ

1− z
log

1− ζ
1− z

dζ +
∫ 1

z

(
1− ζ
1− z

)2

log
1− ζ
1− z

dζ

−
∫ z

0

ζ

z
log

1− ζ
1− z

dζ −
∫ 1

z

1− ζ
1− z

log
1− ζ
1− z

dζ

]
=

=
6{(3z − 1) log z − (3z − 2) log(1− z)}+ 44z(1− z)− 5

18z(1− z)
(13)

Substituting (13) into (12) yields (11).
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The shape w(z) takes is as in Figure 5. The figure seems to state: if the desired
value z is in the middle of the permissible range ]0, 1[ it is important where ζ will fall;
otherwise it doesn’t matter much so long as ζ falls within the range. The resulting
distribution for z = 1/3 with w given by (11) is illustrated in Figure 6.
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Fig. 5. Weight as a function of the mode
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Fig. 6. Bounded semilog distribution ϕ(ζ) (solid), τ(ζ) (dashed), `ϕ (dotted)
z = 1

3
∈]0, 1[ (dotdash), w ≈ 0.853
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EXAMPLE (CONTINUED FROM 2.4)

From z = [0.444 0.500 0.500]′ and (11), w = [1.17 1.22 1.22].

5. PROPERTIES OF THE LOSS FUNCTION

Proposition 7. The gradient g and the Hessian H of `(θ) are:

g = D′W
[
· · · 1

zi

(
1− 1

r0i
+ log r0i

)
− 1

1−zi

(
1− 1

r1i
+ log r1i

)
· · ·
]′

H = D′W diag
[
· · · 1+r0i

ζ2i
+ 1+r1i

(1−ζi)2 · · ·
]
D,

where:

`(θ) :=
∑
i

`i(θ) `i(θ) := wi{(r0i − 1) log r0i + (r1i − 1) log r1i}

r0i :=
ζi
zi

r1i :=
1− ζi
1− zi

ζi := ci +Di·θ W := diag [· · · wi · · · ]

Proof. is by straightforward calculation as shown in Appendix A.

This permits efficient solution of the problem, including the Newton family of
algorithms.

EXAMPLE (CONTINUED FROM 2.4)

From (7),

θ̂ := arg min
θ∈]0,1[2

{`1(θ) + `2(θ) + `3(θ)}

`1(θ) := 1.17
{(

θ1
0.444

− 1
)

log
θ1

0.444
+
(

1− θ1
1− 0.444

− 1
)

log
1− θ1

1− 0.444

}
`2(θ) := 1.22

{(
θ2

0.500
− 1
)

log
θ2

0.500
+
(

1− θ2
1− 0.500

− 1
)

log
1− θ2

1− 0.500

}
`3(θ) := 1.22

{(
−0.3 + (2θ1 + θ2)

0.500
− 1
)

log
−0.3 + (2θ1 + θ2)

0.500
+(

1− {−0.3 + (2θ1 + θ2)}
1− 0.500

− 1
)

log
1− {−0.3 + (2θ1 + θ2)}

1− 0.500

}
.

The solution is θ̂ = [0.090 0.178]′ with `(θ̂) = 3.25. The corresponding solution
to the original problem is ŷ := (y0 − J x0) + J x̂ = (y0 − J x0) + J (am + R θ̂) =
[0.362 0.355 1.080]′, or buy 0.362 and 0.355 units of ingredients 1 and 2 respectively
to make 1.080 units of product.

Given that usually a unit of both ingredients 1 and 2 are purchased and the
production should be reduced to a third of the normal quantity, this solution meets
the intuition. The interpretation is easy because all values fall within the reasonable
ranges; no such thing as a negative quantity.
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6. CONCLUSION

The solution method for positive inverse problems in (Yoneda, 2006) has been ex-
tended to box-constrained inverse problems, which provides a solution within a pre-
scribed hyperbox. The method is computationally more efficient than the generalized
linear models and the maximum entropy models since it requires only one variable
to represent a parameter and permits Newton family of optimization methods. An
important advantage of this method over the weighted least squares is that data
acquisition is considerably easier: while importance weight and standard deviation
are not concepts that everybody understands, almost anybody can come up with
a permissible interval.

The author has not been able to locate the probability distribution (8) in the
literature. Many problems remain, including the psychological interpretation of the
loss function and the problem of finding a feasible solution when the status quo is
unavailable.

Acknowledgments

The author is indebted to an anonymous referee for valuable suggestions regarding the
organization of this paper.

Appendixes

A. GRADIENT AND HESSIAN

Recall that the loss function is `(θ) =
∑
i `i(θ),

`i(θ) = wi

{(
ζ

z
− 1
)

log
ζ

z
+
(

1− ζ
1− z

− 1
)

log
1− ζ
1− z

}
, ζi = ci +Di· θ.

First note that ∂ζi
∂θh

= ∂
∂θh

∑
j Dijθj = Dih. Next we prepare derivatives concerning

r0i := ζi
zi

and r1i := 1−ζi
1−zi

:

∂r0i
∂θh

=
1
zi

∂ζi
∂θh

=
Dih

zi

∂r1i
∂θh

= − 1
1− zi

∂ζi
∂θh

= − Dih

1− zi
∂

∂θh
log r0i =

1
r0i

∂r0i
∂θh

=
Dih

zir0i

∂

∂θh
log r1i =

1
r1i

∂r1i
∂θh

= − Dih

(1− zi)r1i
∂

∂θh

1
r0i

= − 1
r20i

∂r0i
∂θh

= − Dih

zir20i

∂

∂θh

1
r1i

= − 1
r21i

∂r1i
∂θh

=
Dih

(1− zi)r21i
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Then `i(θ) may be differentiated componentwise:

∂

∂θh
(1− r0i) log r0i =

∂r0i
∂θh

log r0i + (r0i − 1)
∂ log r0i
∂θh

=
Dih

zi
log r0i + (r0i − 1)

Dih

zir0i

=
Dih

zi

(
1− 1

r0i
+ log r0i

)

∂

∂θh
(1− r1i) log r1i =

∂r1i
∂θh

log r1i + (r1i − 1)
∂ log r1i
∂θh

= − Dih

1− zi
log r1i + (r1i − 1)

(
− Dih

(1− zi)r1i

)
= − Dih

1− zi

(
1− 1

r1i
+ log r1i

)

∂

∂θh
{(1− r0i) log r0i + (1− r1i) log r1i}

=
Dih

zi

(
1− 1

r0i
+ log r0i

)
− Dih

1− zi

(
1− 1

r1i
+ log r1i

)
=Dih

{
1
zi

(
1− 1

r0i
+ log r0i

)
− 1

1− zi

(
1− 1

r1i
+ log r1i

)}

The first derivative of the individual loss function is:

∂

∂θh
`i(θ) =

∂

∂θh
wi{(1− r0i) log r0i + (1− r1i) log r1i}

= wiDih

{
1
zi

(
1− 1

r0i
+ log r0i

)
− 1

1− zi

(
1− 1

r1i
+ log r1i

)}
.
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The second derivative is:

∂2

∂θh∂θk
`i(θ)

=
∂

∂θk
wiDih

{
1
zi

(
1− 1

r0i
+ log r0i

)
− 1

1− zi

(
1− 1

r1i
+ log r1i

)}
=wiDih

{
1
zi

(
− ∂

∂θk

1
r0i

+
∂

∂θk
log r0i

)
− 1

1− zi

(
− ∂

∂θk

1
r1i

+
∂

∂θk
log r1i

)}
=wiDih

{
1
zi

(
Dik

zir20i
+

Dik

zir0i

)
− 1

1− zi

(
− Dik

(1− zi)r21i
− Dik

(1− zi)r1i

)}
=wiDihDik

{
1

z2
i r0i

(
1 +

1
r0i

)
+

1
(1− zi)2r1i

(
1 +

1
r1i

)}
=wiDihDik

(
1 + r0i
z2
i r

2
0i

+
1 + r1i

(1− zi)2r21i

)
=wiDihDik

(
1 + r0i
ζ2
i

+
1 + r1i

(1− ζi)2

)
.

Summing up the terms and writing in matrix form, the gradient is:

g =


...∑

i wiDih

{
1
zi

(
1− 1

r0i
+ log r0i

)
− 1

1−zi

(
1− 1

r1i
+ log r1i

)}
...



= D′W


...

1
zi

(
ζi−zi
ζi

+ log ζi
zi

)
− 1

1−zi

(
zi−ζi
1−ζi + log 1−ζi

1−zi

)
...


and the Hessian is

H =


. . . ∑

i wiDihDik

(
1+r0i
ζ2i

+ 1+r1i
(1−ζi)2

)
. . .

 =

= D′W


. . .

zi+ζi
ziζ2i

+ (1−zi)+(1−ζi)
(1−zi)(1−ζi)2

. . .

D.
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B. GEOMETRICAL MEANING

A geometrical meaning of the semilog loss (4) is illustrated in Figure 7: the rectangular
area delimited by the two dotted lines (r = 1 vertical and log r = 0 horizontal) and
the two solid lines (r = 2 vertical and log r = log 2 horizontal) equals (r − 1) log r
for r = 2. So Figure 1 is the graph for such rectangular area with respect to r, as
illustrated in Figure 7.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

r

lo
g 

r

Fig. 7. Geometrical meaning of the semilog loss.
The rectangular area (r − 1) log r when r = 2

Figure 8 illustrates the meaning of the loss function (5); its interpretation is basi-
cally the same as with Figure 7. The vertical line in dotdash shows z := 1

3 where the
solid curve log ζ

z and the dashed curve log 1−ζ
1−z both hit zero, the horizontal dotdash

line. Now let ζ := 7
10 which is the vertical dotted line. Its corresponding values

of log ζ
z and log 1−ζ

1−z are shown by the upper and the lower horizontal dotted lines,
respectively. The value of the first term in the right hand side of (5) is given by the
rectangular area delimited by the upper horizontal dotted line, the vertical dotted
line, and the horizontal and the vertical dotdash lines. Similarly, the value of the
second term is given by the rectangular area delimited by the lower horizontal dotted
line, the vertical dotted line, and the horizontal and the vertical dotdash lines. Hence
the value of (5) is the rectangular area delimited by the three dotted lines and the
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vertical dotdash line. When ζ moves closer to z = 1
3 shown by the vertical dotdash

line, the rectangular area shrinks to zero. If ζ moves further to the left beyond z the
area again takes a positive value.

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1

ζ

lo
g(
ζ
z)

Fig. 8. Geometrical meaning of the proposed loss function.
z = 1

3
(dotdash), ζ = 7

10
(dotted), log ζ

z
(solid), log 1−ζ

1−z (dashed)

REFERENCES

Campbell R.C., Hill R.C., 2006: Imposing Parameter Inequality Re-
strictions Using the Principle of Maximum Entropy. Journal of
Statistical Computation and Simulation 76, 985–1000, see also
http://www.bus.lsu.edu/academics/economics/faculty/chill/personal/maxent.htm.

Golan A., Judge G., Miller D., 1996: Maximum Entropy Econometrics. Wiley.

Herrnstein R.J., Rachlin H., Laibson D.I., 1997: The Matching Law: Papers in Psychology
and Economics. Harvard University Press.

Layard R., 2006: Happiness : Lessons from a New Science. Penguin Books.

McCullagh P., Nelder J. A., 1989: Generalized Linear Models, Second Edition. Chapman &
Hall.

Prelec D., January 1984: The Assumptions Underlying the Generalized Matching Law.
Journal of the Experimental Analysis of Behavior 41 (1), 101–107.



98 K. Yoneda

Wichers R., 1996: A Theory of Individual Behavior. Academic Press.

Yoneda K., December 2006: A Parallel to the Least Squares for Positive Inverse Problems.
Journal of the Operations Research Society of Japan 49 (4), 279–289.


