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Sequential Simulated Annealing
for the Vehicle Routing Problem with Time Windows

Marcin Woch?, Piotr Łebkowski?

Abstract. This article presents a new simulated annealing algorithm that provides very high
quality solutions to the vehicle routing problem. The aim of described algorithm is to solve
the vehicle routing problem with time windows. The tests were carried out with use of some
well known instances of the problem defined by M. Solomon. The empirical evidence indicates
that simulated annealing can be successfully applied to bi-criterion optimization problems.
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1. INTRODUCTION

The aim of a typical Vehicle Routing Problem (VRP) is to design least cost routes
from one central depot to a set of geographically scattered points, so called clients.
Each point on the routes has to be visited only once by exactly one vehicle. All routes
start and end at the central depot and the total demand of all the clients on one route
must not exceed vehicle capacity.

The Vehicle Routing Problem with Time Windows (VRPTW) is a generalization
of the VRP involving the additional constraint that every customer must be served
within a given time window. Time window requirement does not prevent any vehicle
from arriving before the allowed start of service at a customer location. The fleet of ve-
hicles is homogenous. The primary objective is minimization of the number of routes,
total travelled distance and total duration of routes are considered as secondary aim.

Thus the VRPTW is a bi-criterion optimization problem. The practical applica-
tion of the VRPTW includes school bus routing, deliveries of goods to department
stores, newspaper, mail distribution, maintenance services, etc. The previous works
on the VRPTW can be split into two categories: exact optimization and approximate
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algorithms (heuristics). Surveys on exact methods are described in works Desrochers,
Desrosiers and Solomon (1992), Halse (1992), Fisher, Jorsten and Madsen (1997),
Kohl and Madsen (1997), Kohl et al. (1999).

In the second category works by Cordeau et al. (2001) and Bräysy and Gen-
dreau (2001a and 2001b) can be cited. Other works worth mentioning describe Tabu
Search (Taillard et al. 1997, Cordeau, Laporte and Mericier 2000), simulated anneal-
ing (Chiang and Russel 1996), genetic algorithms (Berger, Barkaoui and Braysy 2000),
evolution strategies (Homberger and Gehring 1999), local search (Shaw 1997, Li, Lim
and Huang 2001, Ibaraki et al. 2001), constraint programming (Shaw 1998) and ant
colony systems (Gambardella, Taillard and Agazzi 1999). The methods described by
these papers have been able to solve some of the Solomon (1987) tests sized up to 100
customers. In particular simulated annealing algorithms have been among the most
suitable approaches to tackle the VRPTW.

This paper presents a simulated annealing algorithm to solve the VRPTW. The
objective is to find the best possible solutions to some Solomon (1987) instances.

In section 2 the VRPTW is formulated. Section 3 describes a sequential annealing
algorithm. Section 4 presents the empirical results and the algorithm description,
section 5 presents computational results and section 6 concludes the work. It can
be concluded that the results obtained with our algorithm are competitive with the
other approaches results. For fourteen instances we found the best solutions known so
far for three instances we managed to improve current best results (see Table 1 and
Appendix).

2. PROBLEM DESCRIPTION

The VRPTW can be described as follows. Given a fleet of homogenous vehicles housed
at a central depot and a set of customers requiring goods delivery (or pick up). A set
of feasible routes starting from and terminating at the depot must be constructed
so that each customer is visited exactly once, and the total distance travelled by the
vehicles is minimized.

Each feasible route must also satisfy three types of constraints:

– the total load on a route cannot exceed the capacity of the vehicle servicing
the route.

– the time of beginning of service at each customer location must occur before the
upper bound of its time window. A vehicle is allowed to arrive before the lower
bound but in such a case the vehicle must wait.

– each vehicle must begin and terminate its route within given boundaries defined
by a central depot’s time window.

Two variants of this problem may be defined by introducing either hard or soft
time windows at the customer locations. In the latter scheme the time of beginning of
service at any given customer location can occur after the time window’s upper bound
(although the time window at the central depot must still be strictly satisfied). The
variant with soft time windows reduces to the hard one, by adding a large penalty to
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the objective value when the time window constraints are not satisfied. Our problem-
solving methodology addresses problems with hard time windows.

The formal definition of VRPTW is as follows (Bräysy and Gendreau, 2001).
The VRPTW is defined on a graph (N,A). The node set N is composed of the set of
customers C, and the central depot which is denoted as nodes 0 and n+ 1, where n
represents the total number of customers |C| = {1, 2, . . . , n}.
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C3
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1

Fig. 1. Graphical representation of delivery problem

Table 1. Data parameters

(N,A) – a graph representing the VRPTW

N – node set composed of customers and a depot

A – arc set representing connection between nodes

C = 1, 2, . . . , n – set of customers

C0 – central depot

cij – travel cost between customer Ci and Cj

tij – travel time between customer Ci and Cj

V – set of homogenous vehicles

q – capacity of a vehicle

di – demand of customer Ci

[ai, bi] – time window of customer Ci

[a0, b0] – depot’s time window
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The arc set A represents possible connections between the nodes. All routes (arcs)
start at central depot – node 0 and end at node n + 1. A cost cij and travel time
tij are associated with each arc (i, j) ∈ A of the network. The travel time tij also
includes a service time at customer i.

The set of homogenous vehicles is denoted by V . Each vehicle has a given capacity
q and each customer a demand di, i ∈ C. At each customer, the start of the service
must be within a given time interval named a time window, [ai, bi], i ∈ C. Vehicles
must also leave the depot within the time window [a0, b0] and return during its time
window [an+1, bn+1]. A vehicle is permitted to arrive before the opening of the time
window, and wait at no cost until service becomes possible, but it is not permitted to
arrive after the latest time window (hard time windows version of the problem).

Table 2. Variables

Xkij = ∀(i, j) ∈ A,∀k ∈ V = 1 when vehicle k goes from node i to j, 0 otherwise

Ski – ∀i ∈ N,∀k ∈ V – time where vehicle k starts service at customer i, i ∈ C

The model contains two types of decision variables. The decision variable Xk
ij

(defined ∀(i, j) ∈ A,∀k ∈ V ) is equal 1 if vehicle k drives from node i to node j, and 0
otherwise. The decision variable Ski (defined ∀i ∈ N, ∀k ∈ V ) denotes the time vehicle
k, k ∈ V , starts service at customer i, i ∈ C. If vehicle k does not service customer
i, Ski has no meaning. We may assume that Sk0 = 0,∀k, and Skn+1 denotes the arrival
time of vehicle k at the depot. The objective is to design a set of minimal cost routes,
one for each vehicle, such that all customers are serviced exactly once. Hence, split
deliveries are not allowed. The routes must be feasible with respect to the capacity
of the vehicles and the time windows of the customers serviced. The VRPTW can be
formulated as a mixed integer program:

minimize
∑
k∈V

∑
(i,j)∈A

cijX
k
ij (1)

subject to∑
k∈V

∑
j∈N

Xk
ij = 1, ∀i ∈ C (2)

∑
i∈C

di
∑
j∈N

Xk
ij ¬ q, ∀k ∈ V (3)

∑
j∈N

Xk
0j = 1, ∀k ∈ V (4)

∑
i∈N

Xk
ih −

∑
j∈N

Xk
hj = 0, ∀h ∈ C, ∀k ∈ V (5)

∑
i∈N

Xk
i,n+1 = 1, ∀k ∈ V (6)
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Xk
ij(S

k
i + tij − Skj ) ¬ 0, ∀(i, j) ∈ A, ∀k ∈ V (7)

ai ¬ Ski ¬ bi, ∀i ∈ N, ∀k ∈ V (8)

Xk
ij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ V (9)

The objective function (1) represents the costs that should be minimized. Constraint
(2) ensures that each customer is assigned to exactly one vehicle, and constraint (3)
states that no vehicle can service more customers than its capacity. Constraints (4),
(5) and (6) are the flow constraints requiring that each vehicle k leaves node 0 once,
leaves node h, h ∈ C if and only if it enters that node, and returns to node n + 1.
Note that constraint (6) is redundant, but is maintained in the model to underline
the network structure.

The arc (0, n+1) is included in the network, to allow empty tours. More precisely,
we permit an unrestricted number of vehicles, but a cost cv is put on each vehicle used.
This is done by setting c0,n+1 = −cv. The value of cv is sufficiently large to primarily
minimize the number of vehicles and secondarily minimize travel costs. Constraint set
(7) states that vehicle k cannot arrive at j before Ski + tij if it travels from i to j.
Constraint (8) ensures that all time windows are respected and (9) are of integrality
conditions.

Lenstra and Rinnooy Kan (1981) proved that the VRP and the VRPTW are NP-
-hard combinatorial optimization problems and the best possible solutions are found
by heuristic algorithms.

3. SIMULATED ANNEALING

The algorithm of simulated annealing was first introduced by Metropolis et al. (1953),
and then used to solve optimization problems by Kirkpatrick, Gellat and Vecchi
(1983), and Cerny (1985).

Simulated annealing is a generalization of a Monte Carlo method for examin-
ing the equations of state and frozen states of systems (Metropolis et al. 1953). The
concept is based on the manner in which metals re-crystallize in the process of an-
nealing. In an annealing process a disordered melt, which starts at high temperature
is slowly cooled so that the system at any time is approximately in thermodynamic
equilibrium. As cooling proceeds, the system becomes more ordered and approaches
a ”frozen” ground state at a minimal temperature. Hence the process can be thought
of as an adiabatic approach to the lowest energy state. If the initial temperature of
the system is too low or cooling is done either too slowly or too fast the system may
become quenched forming defects or freezing out in unstable states (i.e. trapped in
a local minimum energy state).

The original Metropolis scheme was that an initial state of a thermodynamic
system was chosen at energy E and temperature T , holding T constant the initial
configuration is perturbed and the change in energy dE = Ei −Ei−1 is calculated. If
the change in energy is negative the new configuration is accepted. If the change in
energy is positive it is accepted with a probability given by the Boltzmann factor:

P = e−(dE/T ) (10)
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This process is repeated sufficient times to give good sampling statistics for the
current temperature, and then the temperature is decreased and the entire process
repeated until a frozen state is achieved at T = 0.

The state of the thermodynamic system is analogical to the current solution of a
combinatorial problem (Kirkpatrick et al. 1983, Cerny 1985), the energy equation for
the thermodynamic system is analogical to the objective function, and ground state
is analogous to the global minimum. Avoidance of confinement in a local minimum
depends on the annealing schedule, the choice of initial temperature, the number of
iterations, epoch length and also on temperature change function.

A comprehensive and detailed description of the subject can be found in Reeves
(1995). Concluding, the simulated annealing algorithm performs the search by sam-
pling the neighbourhood randomly. It attempts to avoid becoming prematurely
trapped in a local optimum by sometimes accepting an inferior solution. The level
of this acceptance depends on the magnitude of the increase in solution cost and on
the search time to date (Czech, 2001).

The theoretical behaviour of simulated annealing can be modelled using a non-
homogeneous Markov chain in which the probability of moving from solution (state)
i to solution j depends on i, j and the current value of the temperature of annealing.
The results concerning optimal convergence of such chains can be found in Aarts and
Laarhoven (1987), Aarts and Korst (1989), and Hajek (1988).

In the worst case scenario, time complexity T (n) of the sequential simulated
annealing algorithm for the VRPTW is

T (n) ¬ an3 = O(n3) (11)

where a is the number of cooling stages (Czech, 2001).

4. ALGORITHM DESCRIPTION

The creation of initial solution is performed in the beginning of the simulated anneal-
ing algorithm. In current work we used our own method and its algorithm is:

1. Order all clients ascending by time window
2. Repeat until client list is empty
2.1. For i = 1 to MT_CLIENT
2.1.1. For each route
2.1.1.1. Find best insertion place for current client on the route
2.1.1.2. If new route is feasible and total cost < old total cost

Save the route and best insertion place
2.1.2. If the best place for the client is found

Insert the client in to the best place
2.1.3. Otherwise

Insert the client in to the beginning of the new route
2.1.4. Delete current client from the list
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2.2. For i = Last client number down to LT_CLIENT
2.2.1. For each route
2.2.1.1. Find best insertion place for current client on the route
2.2.1.2. If new route is feasible and total cost < old total cost

Save the route and best insertion place
2.2.2. If the best place for the client is found

Insert the client in to the best place
2.2.3. Otherwise

Insert the client in to the beginning of the new route
2.2.4. Delete current client from the list

3. Save found solution

In first step all the clients are ordered by time window, the smaller time window
the higher position in the list. Thanks to this, the most ”problematic” clients are
processed first. Time window is calculated according to the formula: Due Date –
Ready Time – Service Time.

This method in step 2.1 takes into consideration the clients with the smallest
time windows. The number of such clients in single iteration is defined by parameter
MT CLIENT. It is unlikely too many clients with small time windows be packed
into one route. That is why in step 2.2 clients with wider time windows are tried to
be inserted into the existing routes. The number of clients with wider time window
considered in single iteration is defined by parameter LT CLIENT.

After many experiments we realised that best results are obtained for
MT CLIENT equal 5 and LT CLIENT equal 2. Matching clients with small time
windows to the clients with wider time window allow reducing number of routes in
the initial step of simulated annealing. Steps 2.1 and 2.2 are repeated until all clients
are inserted on routes. Procedure to find best insertion place of a current client on
the route is as follows (Czech 2001):

1. For each client C on the current route
1.1. Insert client C behind current client on the route
1.2. If the new route is feasible and

new cost < old cost then
Save best place of client C

2. Save found solution

This function inserts current client behind every client on the route. Then a check
is performed if the route is feasible. If so, then algorithm compares costs of previous
and new found solutions. Best insertion place is saved provided new solution cost is
smaller than previously.

Transfer function is one of basic elements which ensure efficiency of the simulated
annealing algorithm. Ability of an algorithm to accept a worse solution and escape
local minima depends on annealing parameters as well as a transfer function. This
feature is especially important for small temperature values. In current paper own
transfer function is presented. The main advantage of described function is its speed
and ability to thorough exploration of search space.
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The algorithm is:

1. Randomly select max. CNUMBER clients from the client list, to do that:
1.1. Randomly select route R1
1.2. Randomly select client C on the route R1
1.3. Find feasible neighbourhood of client C using

the Increment Radius Method
1.4. Delete selected clients from the list
1.5. If only one client has been found then randomly

select another route R2
1.6. If possible insert client C in to route R2
1.7. Otherwise try to replace either client on route R2

with the client C. Mark found client C2 to deletion.
1.8. Repeat steps 1.3 - 1.8 for client C2
1.9. If no. of selected client < CNUMBER

return to step 1.1
1.10. If no. of selected clients > CNUMBER

terminate transfer function
return to previous feasible solution

2. With probability P order all the routes ascending
by no. of clients on each route

3. For each selected client C
3.1. For each route R
3.1.1. Find best place of client C on route R
3.1.2. If new distance < old distance

Remember a route and an insertion position of
client C on route R

3.2. If the best place on route R found for client C
Insert client C on to route R

3.3. Otherwise
3.3.1. Create a new route
3.3.2. Insert client C at the beginning of the new route

4. For each route
4.1. Try to improve the route replacing clients

positions
5. With probability 0.75 order all the routes by no. of
clients ascending

6. Improve all the routes

The major part of described algorithm relies on grouping clients by their distance
from the current client (step 1.3). The idea derives from ”first cluster then route”
algorithm described by Sariklis and Powell (2000).

This method is composed of predefined number of iterations. After many experi-
ments we decided to set maximum number of iterations within step 1.3 to 20. In each
iteration, distance (so called radius) is calculated based on equation:

ri = ari−1 (12)

where i denotes current iteration, a is a parameter which we decided to set to 1.15.
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In next step a list of clients which are located in a distance less or equal radius r is
created. Such clients are marked to deletion from routes based on probabilit P which
is inversely proportional to the radius. This procedure was called by us Increment
Radius Method.

Increment Radius Method ”prefers” clients which are located near current client.
This ensures the groups (clusters) of clients are moved between routes.

Parameter CNUMBER denotes maximum number of clients which can be re-
moved from the routes in order to find another location for them. The experiments
showed that best result were achieved when CNUMER was equal 10–15% of all clients.

In step 4 each single route is being improved. Each client from current route is
removed and a new better place for it on same route is searched for. The search starts
from first client on the route.

In routes improvement step (step 6) the best place for each client is searched
for. In order to achieve this, a client is removed from its current position and new
feasible insertion place is looked for. If new place is better than old one, new routes
are accepted. In step 5 routes are ordered with probability 0.75 by number of clients
on route. This allows routes with small number of clients to be removed from the list
if new best places are found for their clients.

In order to achieve good optimization results the simulated annealing meta-
heuristic has to be adjusted to a specific problem. With respect to the VRPTW
following parameters have to be taken into consideration:

a. Initial temperature of annealing T0. If T0 is too high then almost all new solutions
are accepted and the search produces a series of random solutions. When T0 is
too low, very few movements are allowed which reduces the scope of the search.
After a series of experiments we decided to set constant initial temperature T0 =
100.

b. Cooling schedule. The most popular temperature reduction function was described
by Laarhoven and Aarts (1987) and it bases on geometric reduction Ti = rTi−1.
Osman (1993) proposed to increase a temperature when the solution had not been
improved after the certain number of steps. In presented algorithm we decided to
set parameter r = 0.965 and when current solution is not improved after 20% of
all the iterations the temperature is adjusted by factor = 1.1.

c. Number of annealing steps executed in each temperature. It is usually related
to the size of a solution neighbourhood. In our computational experiments we
adopted method proposed by Czech (2001) and the number of annealing steps
between n2 and 10n2 were tried out.

d. Termination condition. We experimented with constant number of iterations be-
tween 200 - 600 were tried out.

e. Solution Cost. For bi-criterion optimization problems the most frequently used
solution cost is calculated according to the equation:

Cost = aR+ bD (13)

This model (equation (1)) is very simple to be implemented and we also decided to
adopt this model. Many authors recommend to set constant parameters a = 10 000
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and b = 1 and we adopted this as well. Setting parameter a >> b ensures that a
primary objective is reduction of number of the vehicles. Secondary objective is to
reduce the total travelled distance. R is a number of routes within a solution, D
denotes the total distance of all routes.

5. COMPUTATIONAL EXPERIMENTS

The purpose of this study was to create a new algorithm based on the simulated
annealing heuristic for solving the vehicle routing problems with time windows. Com-
putational testing of the proposed method was carried out with some test problems
of Solomon (1987) (Table 3).

Table 3. Experimental results

Problem Instance
Best Published Solution Best Computed Solutions

No. of Vehicles Distance No. of Vehicles Distance

RC101 14 1,696.94 14 1,696.94
RC102 12 1,554.75 12 1,554.75
RC103 11 1,261.67 11 1,261.67
RC104 10 1,135.48 10 1,135.48
RC105 13 1,629.44 13 1,631.18
RC106 11 1,424.73 11 1,424.73
RC107 11 1,230.48 11 1,230.48
RC108 10 1,139.82 10 1,139.82
R201 4 1,252.37 4 1,252.37
R202 3 1,191.70 3 1,191.70
R203 3 939.54 3 939.50
R204 2 825.52 2 825.52
R205 3 994.42 3 994.42
R206 3 906.14 3 906.14
R207 2 890.61 2 890.61
R208 2 726.75 2 726.82
R209 3 909.16 3 909.16
R210 3 939.34 3 939.37
R211 2 892.71 2 885.71

The simulated annealing algorithm presented in this paper, proved its effective-
ness to solve the vehicle routing problem with time windows. By making use of it
excellent solutions to some instances of Solomon (1987) benchmark set have been
found. This ensures that the simulated annealing can be applied with success to bi-
criterion optimization problems.
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6. CONCLUSION

The simulated annealing algorithm described in this paper was implemented using
C\AL language which is built-in in Microsoft Dynamics NAV system. The tests were
carried out on the Intel 2Duo T9400 2.53 GHz computer with 4GB RAM with the
problem instances published by Solomon (1987).

The Solomon tests are composed of 56 instances. Each of them contains one
central depot and 100 customers. The locations are defined in Cartesian coordinate
systems. It is assumed that the travel times tij are equal the corresponding Euclidean
distances dij between the customer i and j locations.

The test problems are grouped into six types. The simplest sets C1 and C2 contain
clustered clients in terms of geographical distribution. In sets RC1 and RC2 it is semi-
clustered with a mix of randomly distributed and clustered customers whereas the
customers’ locations in problem sets R1 and R2 are generated randomly in a given
area according to a uniform distribution. The clients from problem sets R1, C1 and
RC1 have narrow time windows. Thus few clients per route are allowed. Problem sets
R2, C2 and RC2 have wider windows and more clients per route are allowed.

The objective of our work was to find as good solutions as possible to some
Solomon (1987) benchmark problems by using the simulated annealing. For this pur-
pose the problem instances RC101..RC108 and R201..R211 were selected. Table 3
contains the test results obtained. The best known solutions to the instances are
marked in bold (the details regarding the best solutions are given in the Appendix).
It can be seen (Table 3) that using the simulated annealing we were able to find new
best solution to the problem instances R203 and R211. For fourteen instances we
found the best solutions known so far. Only for three instances from these groups we
found worse solutions as compared to the best known.

Generally it can be concluded that the results obtained with our algorithm are
competitive with the other approaches results. We believe that further research on
presented algorithm may enhance the quality of solutions to the VRPTW achieved in
the present work.

APPENDIX – BEST SOLUTIONS

Problem instance: R203. Distance: 939.50. Vehicles: 3.

route 1:
27-52-18-45-46-36-64-11-62-88-31-30-76-3-79-78-9-35-34-29-68-12-26-13-58-0;
route 2:
94-95-97-92-98-37-42-57-15-43-14-44-38-86-16-85-59-99-96-6-84-83-8-48-47-49-19-10-
63-90-32-66-20-70-7-82-17-61-91-100-93-5-60-89-0;
route 3:
50-33-81-65-71-51-1-69-39-67-23-72-73-21-40-53-87-2-41-22-75-56-74-4-55-25-54-24-
80-77-28-0.
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Problem instance: R211. Distance: 885.71. Vehicles: 2.

route 1:
95-59-92-98-42-15-2-21-73-72-39-67-23-75-22-41-57-87-94-6-53-40-12-76-29-79-33-81-
9-71-65-66-20-51-35-34-78-3-77-68-80-24-54-55-25-4-56-74-58-0;
route 2:
28-27-52-69-31-30-63-64-11-19-62-88-7-82-18-83-84-5-99-85-61-16-44-14-38-86-17-45-
8-46-48-47-36-49-90-32-10-70-1-50-26-13-97-96-37-43-100-91-93-60-89-0.

REFERENCES

Aarts, E.H.L., Korst, J.H.M.(1989). Simulated annealing and Boltzmann machines. Wiley,
Chichester.

Aarts E.H.L., van Laarhoven P.J.M. (1987). Simulated annealing: Theory and applications.
Wiley, New York.

Berger, J., Barkaoui, M. (2000). An Improved Hybrid Genetic Algorithm for the Vehicle
Routing Problem with Time Windows. International ICSC Symposium on Computa-
tional Intelligence, part of the International ICSC Congress on Intelligent Systems and
Applications (ISA’2000), University of Wollongong, Wollongong, Australia.
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