

A Reference Point Approach to Bi-Objective Dynamic Portfolio Optimization

Bartosz Sawik*

Abstract. The portfolio selection problem presented in this paper is formulated as a biobjective mixed integer program. The portfolio selection problem considered is based on a dynamic model of investment, in which the investor buys and sells securities in successive investment periods. The problem objective is to dynamically allocate the wealth on different securities to optimize by reference point method the portfolio expected return and the probability that the return is not less than a required level. In computational experiments the dataset of daily quotations from the Warsaw Stock Exchange were used.

Keywords: Dynamic Portfolio, Mixed Integer Programming, Reference Point Method, Bi-Objective Optimization, Value-at-Risk

Mathematics Subject Classification: 90C11, 90C90, 91G10

Revised: 21 October 2009

1. INTRODUCTION

The optimal security selection is a classical portfolio problem since the seminal work of Markowitz (Markowitz, 1952, 1997). In the standard approach, the decision maker selects the securities in such a way that the portfolio expectation is maximized, under the constraint that risk (variance) must be kept under a fixed threshold (Benati, 2007, Lin, 2009). The problem consists in picking the best amount of securities, with the aim of maximizing future returns. It is a typical multivariate problem: the only way to improve future returns is to increase the risk level that the decision maker is disposed to accept (Ogryczak, 2000, Young, 1998).

In Markowitz's approach the problem is formulated as an optimization problem involving two criteria: the reward of a portfolio, which is measured by the mean and should be maximized, and the risk of the portfolio (measured by the variance of return) that should by minimized. In the presence of two criteria there is not a single optimal solution (portfolio), which represents the tradeoff between risk and return (Anagnostopoulos, 2010).

^{*} Department of Applied Computer Science, Faculty of Management, AGH University of Science and Technology, Kraków, Poland. E-mail: b_sawik@yahoo.com

While the original Markowitz model forms a quadratic programming problem, many attempts have been made to linearize the portfolio optimization procedure (Sawik, 2009a, 2009b, 2009c, 2009d, 2009e, 2009f, 2009g, 2008, Speranza, 1993, Young, 1998). The linear program solvability is very important for applications to real-life financial and other decisions where the constructed portfolios have to meet numerous side constraints. Examples of them are minimum transaction lots, transaction costs or mutual funds characteristics etc. The introduction of these features leads to mixed integer program problems. This paper presents a bi-criterion extension of the Markowitz portfolio optimization model, in which the variance has been replaced with the Value-at-Risk (VaR). The VaR is a quantile of the return distribution function (Benati, 2007, Sawik, 2009a, 2008).

The advantage of using VaR measure in portfolio optimization is that this value of risk is independent of any distribution hypothesis. It concerns only downside risk, namely the risk of loss. This index measures the loss in question in a certain way. Finally VaR is valid for all types of securities and therefore either involve the various valuation models or be independent of these models (Esch, 2005, Gaivoronski 2005).

This portfolio optimization problem is formulated as a bi-objective mixed integer program. The portfolio selection problem considered is based on a dynamic model of investment, in which the investor buys and sells securities in successive investment periods. The problem objective is to dynamically allocate the wealth on different securities to optimize by reference point method of the portfolio expected return and the probability that the return is not less than a required level.

The results of some computational experiments with the mixed integer programming approach modeled on a real data from the Warsaw Stock Exchange are reported. The input dataset consist of time series of the daily quotation of returns of securities from the Warsaw Stock Exchange.

2. REFERENCE POINT METHOD

The reference point method is based on the Tchebycheff metric (Alves, 2007, Bowman, 1976). Let us denote by $||f(x) - \underline{f}||_{\lambda}$ the λ -weighted Tchebycheff metric, i.e., $\min_{1 \leq l \leq q} \left\{ \lambda_l \left| f_l(x) - \underline{f} \right| \right\}$, where $\lambda_l \geq 0 \quad \forall \sum_{l=1}^{q} \lambda_l = 1$, and \underline{f} denotes a reference point of the criteria space. Considering $f(x) > \underline{f}$ for all $x \in X$, it has been proven (Bowman, 1976) that the parametrization on λ of $\min_{x \in X} ||f_l(x) - \underline{f}||_{\lambda}$ generates the non-dominated set. The program $\min_{x \in X} ||f_l(x) - \underline{f}||_{\lambda}$ may yield weakly nondominated solutions, which can be avoided by considering the *augmented weighted Tchebycheff* program:

$$\begin{array}{ll} \text{Minimize} & \delta + \gamma \sum_{l=1}^{q} f_l\left(x\right) \\ \text{subject to} & \lambda_l\left(f_l\left(x\right) - \underline{f}\right) \leqslant \delta, \qquad 1 \leqslant l \leqslant q \\ & x \in X, \\ & \delta \geqslant 0, \end{array}$$

where γ is a small positive value. It has been proven (Steuer, 1986) that there always exists γ small enough that enable to reach all the non-dominated set for the finite-discrete and polyhedral feasible region cases (Alves, 2007).

3. PROBLEM FORMULATION

Let n be the number of securities available in the market with historical quotations in t investment periods, each consisting of h historical periods.

Let r_{ij} be the random variable representing the future daily return of security j in historical time period i.

The portfolio optimization problem with Value-at-Risk constraint is formulated as the classic Markowitz approach, but with Value-at-Risk instead of variance as a risk measure.

		Indices
i	=	historical time period $i, i = 1,, m$ (i.e. day)
j	=	security $j, j = 1, \ldots, n$
k	=	historical successive investment period $k, k = 1,, t$ (i.e. year, quarter or month,
		etc)
		Input parameters
h	=	number of historical quotations in each successive investment period
p_i	=	probability assigned to the occurrence of past realization i
r_{ij}	=	observed return of security j in historical time period i
r^{Min}	=	minimum return observed in the market
r^{VaR}	=	return Value-at-Risk
v	=	accepted number of securities in portfolio in each successive investment period
λ	=	weight for the objective functions f_1
γ	=	small positive value
f_1^{opt}	=	ideal solution value of average return
f_2^{opt}	=	ideal solution value of average risk probability
		Variables
x_{jk}	=	percentage of capital invested in successive investment period k in security j
$\begin{array}{c} x_{jk} \\ x_{jk}^{buy} \end{array}$	=	percentage of capital invested in successive investment period k for bought secu-
<i>.</i>		rity j
x_{jk}^{sell}	=	percentage of capital invested in successive investment period k for sold security
5		j
	=	1, if return of portfolio in historical time period i of successive investment period
		k is not less than r^{VaR}
		0, otherwise
α_k^{VaR}	=	probability that return of investment is not less than r^{VaR} in successive invest-
		ment period k
z_{jk}	=	1, if in successive investment period k capital is invested in stock j
		0, otherwise
δ	=	deviation from the reference solution

Table 1. Notation

The decision maker fixes the lower bound r^{VaR} for successful returns – any investments whose Value-at-Risk is less than r^{VaR} will be not acceptable.

Let r^{Min} be the minimum return that can be observed in the market, for example the biggest possible loss of money invested in portfolio. In the worst case it is the whole amount of capital, so for instance it can be equal -100% (Benati, 2007, Lin, 2009).

The bi-objective dynamic portfolio optimization model with Value-at-Risk is an NP-hard problem even when future returns are described by discrete uniform distributions (Ehrgott, 2000, Nemhauser, 1999, Steuer, 1986).

The seven types of variables for each successive investment period are introduced in the model: a continuous wealth allocation variable that represents the percentage of wealth allocated to each security, a continuous wealth allocation variable for buying amount of each security, a continuous wealth allocation variable for selling amount of each security, a binary selection variable that prevents the choice of portfolios whose VaR is below the fixed threshold and a binary selection variable for selecting each security to the portfolio and finally continuous variable represents deviation from the reference solution.

4. OPTIMIZATION MODEL

In the approach proposed in this paper, the portfolio optimization problem is formulated as reference point method dynamic bi-objective mixed integer program, which allows commercially available software (e.g. AMPL/CPLEX (Fourer, 1990) to be applied for solving medium size, yet practical instances. The problem formulation is presented below.

Minimize

$$\delta + \gamma \left(-\sum_{k=1}^{t} \left(\sum_{i=(k-1)h+1}^{kh} p_i \sum_{j=1}^{n} r_{ij} x_{jk} \right) + \sum_{k=1}^{t} \alpha_k^{aVaR} \right)$$
(1)

subject to

$$\lambda \left(-\sum_{k=1}^{t} \left(\sum_{i=(k-1)h+1}^{kh} p_i \sum_{j=1}^{n} r_{ij} x_{jk} \right) + f_1^{opt} \right) \leqslant \delta$$

$$\tag{2}$$

$$(1-\lambda)\left(\sum_{k=1}^{t} \alpha_k^{aVaR} - f_2^{opt}\right) \leqslant \delta \tag{3}$$

$$y_{ik} \leqslant \frac{\sum_{j=1}^{n} r_{ij} x_{jk} - r^{Min}}{r^{VaR} - r^{Min}}, \qquad i = (k-1)h + 1, \dots, kh, \quad k = 1, \dots, t$$
(4)

$$y_{ik} \geqslant \frac{\sum_{j=1}^{n} r_{ij} x_{jk} - r^{Min}}{r^{VaR} - r^{Min}} - 1, \quad i = (k-1)h + 1, \dots, kh, \quad k = 1, \dots, t$$
(5)

A Reference Point Approach to Bi-Objective ...

$$\sum_{i=(k-1)h+1}^{kh} p_i (1-y_{ik}) \leqslant \alpha_k^{\alpha VaR}, \ k = 1, \dots, t$$
(6)

The objective function (1) represents the weighted deviation from the reference point for the portfolio expected return and the probability that the return is not less than a required level. The deviations are defined in constraints (2), (3).

Constraints (4), (5) and (6) prevent the choice of portfolios whose VaR is below the fixed threshold. Every time expected portfolio return is below r^{VaR} , then y_{ik} must be equal to 0 and $1 - y_{ik} = 1$ in constraint (6). Therefore, all probabilities of events *i* whose returns are below the VaR threshold was summed up. If the result is greater than α^{VaR} , then the portfolio is not feasible.

$$\sum_{j=1}^{n} x_{jk} = 1, \quad k = 1, \dots, t \tag{7}$$

Constraint (7) requires that in each investment period all capital must be allocated on different securities with positive expected return.

$$x_{j1}^{buy} = x_{j1},$$
 $j = 1, \dots, n : \sum_{i=1}^{h} p_i r_{ij} > 0$ (8)

$$x_{j1}^{sell} = 0, j = 1, \dots, n$$
 (9)

$$x_{jk} = x_{jk-1} + x_{jk}^{buy} - x_{jk}^{sell}, \qquad j = 1, \dots, n, \ k = 2, \dots, t$$
(10)

Constraints (8), (9) and (10) are responsible for a dynamic balance among x_{jk} , x_{jk}^{buy} , x_{jk}^{sell} for each successive investment period k.

$$\sum_{j=1}^{n} z_{jk} \ge v, \ k = 1, ..., t$$
(11)

Constraint (11) ensures that the number of stocks in optimal portfolio must be greater than or equal to the accepted number of assets in the selected portfolio.

$$\sum_{i=(k-1)h+1}^{kh} p_i \sum_{j=1}^n r_{ij} x_{jk} >= r^{VaR}, \ k = 1, ..., t$$
(12)

Constraint (12) imposes the minimum portfolio expected return equal r^{VaR} that the decision maker is prepared to accept for each successive investment period k.

$$x_{jk} \leq z_{jk}, \quad j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} > 0, \ k = 1, ..., t$$
 (13)

$$x_{jk}^{buy} \leqslant z_{jk}, \quad j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} > 0, \ k = 1, ..., t$$
 (14)

$$x_{jk}^{sell} \le z_{jk}, \quad j = 1, ..., n, \quad k = 1, ..., t$$
 (15)

Constraints (13), (14) and (15) are responsible for relations between variables $x_{jk}, x_{jk}^{buy}, x_{jk}^{sell}$ and z_{jk} .

$$\frac{z_{jk}}{100} \le x_{jk}, \quad j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} > 0, \ k = 1, ..., t$$
(16)

$$\frac{z_{jk}}{100} \leqslant x_{jk}^{buy}, \quad j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} > 0, \ k = 1, ..., t$$
(17)

Constraints (16) and (17) ensure the addition to portfolio and buying of some amount of security j in successive investment period k.

$$0 \leqslant \alpha_k^{VaR} \leqslant 1, \quad k = 1, ..., t \tag{18}$$

Constraint (18) defines continuous variable α_k^{VaR} – probability that return of investment is not less than r^{VaR} of successive investment period k.

$$x_{jk} = 0, \ j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} \leqslant 0, \ k = 1, ..., t$$
 (19)

Constraint (19) defines continuous variable x_{jk} – percentage of capital invested in successive investment period k in security j and, in addition, eliminates securities with a non-positive expected return.

$$x_{jk}^{buy} = 0, \qquad j = 1, ..., n : \sum_{i=(k-1)h+1}^{kh} p_i r_{ij} \le 0, \ k = 1, ..., t$$
 (20)

$$x_{jk}^{sell} \ge 0, \qquad j = 1, ..., n, \ k = 1, ..., t$$
 (21)

$$y_{ik} \in \{0, 1\}, \quad i = (k-1)h + 1, ..., kh, \quad k = 1, ..., t$$
 (22)

$$z_{jk} \in \{0,1\}, \quad j = 1, ..., n, \quad k = 1, ..., t$$
 (23)

$$\delta \ge 0 \tag{24}$$

Finally, constraints (20)–(24) define variables x_{jk}^{buy} , x_{jk}^{sell} , z_{jk} , δ and eliminate securities with a non-positive expected return. Variables x_{jk} are percentage of capital invested in security j in successive investment period k.

The combination of continuous variables x_{jk}^{i} , x_{jk}^{buy} , x_{jk}^{sell} and binary variables y_{ik} , z_{jk} leads an NP-hard mixed integer programming problem (Nemhauser, 1999). If the number of historical observations m is bounded by a constant, there are 2^m ways of fixing the variables y_{ik} , z_{jk} for each successive investment period k.

5. COMPUTATIONAL RESULTS

In this section numerical examples and some computational results are presented to illustrate possible applications of the proposed formulations of this multi-period optimization model. The examples are modeled on a real data form the Warsaw Stock Exchange.

Suppose that n securities with historical quotations in t investment periods, each of h days, in total 4020 samples. The eighteen years horizon from 30th Jan 1991 to 30th Jan 2009 – consists of m = 4020 historic daily quotations divided into t=20 investment periods (h = 201 daily quotations each), with the selection of n = 241 input securities for portfolio, quoted each day in the historical horizon. Probability of realization for expected securities returns is the same for each day and summed up for whole period to one. The accepted number of securities in portfolio is at least one security in each successive investment period. The basic parameters for the reference point method take on the following values: $f_1^{opt} = 1$, $f_2^{opt} = 0.05$, $\lambda = 0.5$, $\gamma = 0.01$.

The computational experiments have been performed using AMPL programming language (Fourer, 1990) and the CPLEX v.11 solver (with the default settings) on a laptop with Intel® Core 2 Duo T9300 processor running at 2.5GHz and with 4GB RAM. The computational time limit was set to 10800 CPU seconds (three CPU hours).

Table 2 presents the solution results for objective function α_k^{VaR} probability that return of investment is not less than in each successive investment period k. Table 3 presents the solution results for the objective function of expected portfolios return in each successive investment period k.

Table 4 presents number of securities in the computed portfolios for each successive investment period k.

Table 5 presents computational time range and the solution values of δ – the deviation from the reference solution. In the table 5, column "MIP simplex iteration" shows the number of mixed integer programming simplex iterations until presented solution. Column "B–&–B" shows the number of searched nodes in the branch and bound tree until presented solution. Column "CPU" shows CPU seconds required for proving optimality on a laptop with Intel® Core 2 Duo T9300 processor running at 2.5GHz and with 4GB RAM using the solver CPLEX v.11.

r^{VaR} -]	-10.00	-7.50	-5.00	-2.50	-2.00	-1.75	-1.50	-1.25	-1.00	-0.75	-0.50	-0.25	-0.05	0.00
historic	historical successive	ssive		Comput	ational re	sults for o	Computational results for objective function α_k^{VaR}	action α_k^V		bility that 1	- probability that return of investment	vestment		
investment period k	$_k$					is not less	than r^{VaR}	in succes	is not less than r^{VaR} in successive investment period	nent perioc	1 <i>k</i>			
1 0	0.000249	0.008955	0.011940	0.014179	0.015920	0.015920	0.016169	0.016915	5 0.017413	3 0.017413	3 0.017413	0.017413	0.017413	0.017413
2 0	0.000498	0.007960	0.010199	0.011940	0.012687	0.013433	0.014428	0.014925	5 0.015920	0.016169) 0.016418	0.017413	0.017910	0.017910
3 0	0.000000	0.000995	0.002736	0.007214	0.008458	0.008706	0.008955	0.009204	4 0.010199	9 0.011443	3 0.012189	0.022886	0.021144	0.023632
	0.00000.0	0.000000	0.000000	0.001741	0.003483	0.004229	0.005721	0.008458	8 0.008955	5 0.008458	3 0.011940	0.013433	0.015423	0.021891
5 0	0.000000	0.002736	0.003731	0.009453	0.010697	0.012189	0.013682	0.015174	4 0.015423	3 0.011194	1 0.012935	0.019154	0.020149	0.016667
	0.000000	0.000249	0.000249	0.002239	0.002488	0.004478	0.006965	0.006716	6 0.007463	3 0.010697	7 0.013682	0.017910	0.020149	0.024627
	0.000249	0.001244	0.002239	0.004726	0.005473	0.007214	0.007463	0.010199	9 0.013184	4 0.015920	0.019403	0.025373	0.022139	0.022637
	0.000000	0.000000	0.000000	0.003234	0.003483	0.003483	0.004726	0.003980	0 0.006468	8 0.006965	5 0.009204	0.017910	0.014925	0.023881
0 6	0.000000	0.000249	0.000746	0.008955	0.011940	0.012438	0.013930	0.012935	5 0.015423	3 0.015672	2 0.016667	0.017910	0.013930	0.022637
10 0	0.000000	0.000000	0.000000	0.001493	0.002985	0.004975	0.004229	0.005721	1 0.005473	3 0.009701	l 0.010199	0.013930	0.012687	0.017164
11 0	0.000000	0.000249	0.000746	0.004229	0.002736	0.006716	0.002985	0.001990	0 0.009701	1 0.010448	3 0.012189	0.015174	0.016667	0.021642
12 0	0.000000	0.000249	0.000000	0.000746	0.001990	0.001741	0.000995	0.001990	0 0.004229	9 0.006468	8 0.009453	0.008209	0.015920	0.021642
13 0	0.000498	0.000746	0.001493	0.002736	0.003980	0.004975	0.005721	0.006468	8 0.007711	1 0.008706	3 0.010945	0.014179	0.011443	0.018657
14 0	0.000000	0.000000	0.000249	0.004478	0.002239	0.005473	0.005970	0.009950	0 0.008706	5 0.009950	0.012687	0.008209	0.013184	0.021891
15 0	0.000498	0.002239	0.004229	0.007463	0.009701	0.009950	0.011940	0.011194	4 0.012935	5 0.014179) 0.017164	0.008706	0.020149	0.012438
16 0	0.00000.0	0.000995	0.002736	0.009701	0.010697	0.011194	0.013682	0.014677	7 0.014925	5 0.016169	0.018159	0.012687	0.021891	0.019403
17 0	0.000249	0.000498	0.002488	0.008458	0.009701	0.009453	0.011692	0.014428	8 0.015672	2 0.016667	7 0.017413	0.007214	0.008955	0.021393
18 0	0.00000.0	0.000000	0.000995	0.002985	0.003483	0.003731	0.005473	0.006965	5 0.006965	5 0.008706	0.009950	0.005473	0.007214	0.025373
19 0 20 0	0.000249	0.000249	0.000995	0.002239	0.002239	0.004726	0.005970	0.006219	9 0.007214 8 0.007260	4 0.007711	L 0.011692	0.014179	0.022139	0.022886
	00000	000000	00000		10000			value					000100	0010100
-10.00	-7 50	-5.00	-2.50	00 6-	-1 75	-150		-1.25	-1 00	-0.75	-0.50	-0.25	-0.05	00.0
0.00012			П			45	27	23	60	30	58	0.01460	0.01650	0.02060
							Maximal value	value						
0.00050	0.00896	6 0.01194	94 0.01418	18 0.01592	92 0.01592		0.01617 0.0	0.01692 (0.01741 (0.01741	0.01940	0.02537	0.02214	0.02537
							Minimal value	value						
0.00000	0.00000 0.00000	0 0.00000	00 0.00075	75 0.00199	99 0.00174		0.00100 0.0	0.00199 (0.00423	0.00647	0.00920	0.00547	0.00721	0.01244

Table 2. The solution results for objective function $\alpha_k^{\rm VaR}$

80

B. Sawik

		Та	ble 3. T	Table 3. The solution results for objective function – the expected portfolios return	$n \ results$.	for objec	tive funct	ion – the	expected	port folios	return			
r^{VaR}	-10.00	-7.50	-5.00	-2.50	-2.00	-1.75	-1.50 -	-1.25 -:	-1.00 -0	-0.75 -0.	-0.50 -0	-0.25	-0.05	0.00
historical successive investment period k	-	omputation	nal results	Computational results for objective function	ve function	$\sum_{i=(k-1)h+1}^{kh}$	$p_i \sum_{j=1}^n$	$r_{ij}x_{jk}$ – expected portfolios return	ected portf	olios returi	-			
	0.0177 0.0777 0.0277 0.0275 0.0259 0.0250 0.0280 0.0318 0.0328 0	0.01772 0.0776 0.02484 0.02484 0.02546 0.025546 0.01592 0.013135 0.013135 0.013135 0.013135 0.02568 0.02568 0.02568 0.02568 0.02568 0.05601 0.05617 0.05581 0.05581 0.07588 0.075688 0.075772 0.075688 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.075688 0.07772 0.07778 0.07778 0.075688 0.07778 0.07778 0.07778 0.075688 0.07778		0.017724 0.017724 0.017724 0.017724 0.017724 0.017724 0.017724 0.017724 0.017724 0.017724 0.017244 0.027444 0.027444 0.027444 0.0228559 0.0233259 0.0233259 0.0233908 0.02 0.0559566 0.0559566 0.0555966 0.055219 0.0236955 0.011936 0.013085 $0.010.014679$ 0.012419 0.0016566 0.011936 0.013085 $0.010.013087$ 0.023037 0.023037 0.023958 0.02 0.0230917 0.025638 $0.010.0130917$ 0.043258 0.045411 0.053835 $0.020.0330917$ 0.043258 0.0270766 0.024558 $0.020.0330917$ 0.043258 0.047365 0.044365 0.044344 $0.020.026827$ 0.024002 0.025575 0.025197 0.022398 $0.020.025548$ 0.024655 0.024555 0.024165 0.012398 $0.020.025548$ 0.024555 0.024555 0.024658 0.021084 $0.020.025548$ 0.053334 0.052851 0.052476 0.021084 $0.020.0255445$ 0.055334 0.0523905 0.053446 $0.020.0255452$ 0.0532451 0.052108 0.076789 $0.070.0255452$ 0.075568 0.0775261 0.0776789 $0.070.073669$ 0.075568 0.0775261 0.0776789 $0.070.073669$ 0.075568 0.0775516 0.0776789 0.0776789 $0.010.075833$ 0.0775511 0.077864 0.074755 $0.0010.0775635$ 0.0175781 0.0178977 0.017895 0.012093 $0.010.0756655$ 0.0175556 0.01776769 0.0174755 $0.010.073669$ 0.0775555 0.0177659 0.0178755 0.0178755 $0.00170810.0776789$ 0.01767891 0.0177654 0.0178755 0.0178755 $0.00170810.017081$ 0.0155555 0.013707 0.014389 0.0128355 $0.0010.017081$ 0.0155555 0.013707 0.014389 0.0128355 0.01	0.017724 0.067635 0.067635 0.053645 0.023955 0.010556 0.015565 0.015555 0.024519 0.024519 0.024519 0.024519 0.024519 0.024519 0.024519 0.078377 0.078377 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.0783168 0.078377 0.0783168 0.078377 0.078377 0.078377 0.078377 0.0778777 0.0778777 0.0778777 0.0778777 0.0778777 0.0778777 0.0778777 0.07787777 0.07787777 0.07787775 0.077777777777777777777777777777777	0.017724 0.067371 0.065371 0.054111 0.011936 0.021936 0.021639 0.027076 0.024365 0.024365 0.024365 0.024365 0.024365 0.024365 0.025197 0.024365 0.025197 0.024365 0.025197 0.027874 0.017869 0.077874 0.017869 0.017866 0.0000000000000000000000000000000000	0.017724 (0.067544 (0.067544 (0.0675345 (0.053835 (0.053835 (0.053835 (0.013385 (0.013385 (0.013385 (0.014344 (0.025398 (0.0143344 (0.022398 (0.0143344 (0.022398 (0.0123346 (0.053446 (0.0533446 (0.0533445 (0.01283	$\sum_{k=1}^{77724} \frac{77724}{6}$		$\begin{array}{c} 0.017724 & 0.01\\ 0.067240 & 0.06\\ 0.067240 & 0.06\\ 0.0192373 & 0.02\\ 0.0192373 & 0.02\\ 0.012338 & 0.01\\ 0.015112 & 0.00\\ 0.015112 & 0.00\\ 0.0165142 & 0.02\\ 0.026790 & 0.01\\ 0.026790 & 0.01\\ 0.0261924 & 0.02\\ 0.0651942 & 0.06\\ 0.012908 & 0.01\\ 0.0651942 & 0.06\\ 0.012908 & 0.01\\ 0.009589 & 0.00\\ 0.009589 & 0.00\\ 0.009580 & 0.00\\ 0.0009580 & 0.00\\ 0.0009580 & 0.00\\ 0.0009580 & 0.00\\ 0.0009580 & 0.00\\ 0.0009$	7724 7694 3463 2895 2295 2549 2549 2549 11124 1124 11427 5403 0103 8884 1400 11437 7503 0103 80363 0365 7503 0103 0365 7503 0365 7503 0365 7503 0365 7503 0365 7503 11427 114777 114777 114777 114777 114777 114777 1147777 1147777 1147777 11477777777	017724 030125 0301255 007076 023383 004557 012430 012430 012430 012430 007076 012430 000849 0000849 000949 000000000000000000000000000000000000	117724 28664 28664 117101 11053 000996 000835 03166 005586	0.017724 0.028644 0.028644 0.010134 0.0101355 0.001355 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.006316 0.003612 0.003602 0.003602 0.003602 0.003602 0.003602
-10.00 - 0.86458 (-7.50 -50.85724 0	-5.00 0.84460 (-2.50 0.82088	-2.00 0.80374	-1.75 0.80523	-1.50 0.79941	-1.25 0.79782	-1.00 0.80072	-0.75 0.75064	-0.50 0.74452	-0.25 2 0.38587	87	-0.05 0.31182	0.00 0.26199
					Average	value of e:	value of expected portfolio return	rtfolio retu	un					
0.04323 (0.04286 0	0.04223	0.04104	0.04019	0.04026 Marinol	0.03997	.04026 0.03997 0.03989 0.04004	0.04004	0.03753	0.03723	3 0.01929		0.01559	0.01310
0.08557 (0.08581 0	0.08506	0.08457	0.08217	0.07944	0.08213	0.08363	0.08298	0.08191	0.08036	0.04945		0.05065	0.05031
					Minimal	value of e:	Minimal value of expected portfolio return	rtfolio retu	Irn					
0.01676 (0.01592 0	0.01468 (0.01242	0.01056	0.01194	0.01283	0.01242	0.01099	0.00959	0.00255	0.00227		0.00083	0.00135

A Reference Point Approach to Bi-Objective ...

81

r^{VaR}	-10.00 -7	7.50 -5.	.00 -2	.50	-2.00	-1.75	-1.50	-1.25	-1.00	-0.75 -	0.50	-0.25	-0.05	0.00
historical			Numb	er o	f secu	rities i	n each	portfo	olio					
successive														
investment														
period k														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	5	3	4	4	3	3	6	7	5	1	1
3	2	2	2	4	2	2	3	2	4	5	6	5	1	1
4	2	3	2	5	3	5	6	3	5	8	8	6	1	1
5	3	4	3	5	5	7	8	4	7	10	12	6	3	
6	3	6	7	12	13	14	12	9	11	11	11	7	2	
7	1	1	2	5	4	4	6	5	4	5	4	1	1	
8	2	4	5	10	10	9	13	13	12	16	17	5	14	
9	1	6	7	9	7	9	8	12	7	10	8	2	22	
10	1	2	4	6	6	6	9	10	12	11	10	14	2	
11	2	3	4	6	10	6	12	10	11	15	16	13	4	
12	1	1	2	4	4	5	6	8	7	10	11	8	4	-
13	2	2	3	5	7	9	8	9	10	13	18	7	14	
14	5	6	9	10	15	17	15	12	15	20	20	22	18	1
15	4	5	5	9	9	12	8	12	12	17	14	24	10	
16	6	4	5	6	7	9	6	5	7	11	10	14	3	
17	6	6	8	6	10	12	8	9	9	11	13	22	24	
18	6	6	7	7	9	12	10	10	14	17	18	35	31	3
19	1	4	2	11	10	9	9	13	15	20	15	19	3	
20	1	2	2	5	6	7	8	11	8	11	12	5	2	1
				Av	verage	numb	er of s	ecuriti	es					
-10.00 -7.	50 -5.00	-2.50	-2.00) -1	1.75	-1.50	-1.25	-1.00	-0.75	5 -0.50) -0.1	25 -0	0.05	0.00
3 4	4	7	7		8	8	8	9	11	12	1		8	1
				Ma	ximal	numb	er of s	ecuriti	es					
6 6	9	12	15		17	15	13	15	20	20	3!	5	31	3
	-		-	Mi	nimal	numb	er of s	ecuriti	es					
1 1	1	1	1	1.11	1	1	1	1	1	1	1		1	1
1	T	1	Т		T	Т	T	1	1	1	1		T	1

 Table 4. The solution results for objective function – the expected portfolios return

Table 5. Computational time range and the solution results for δ

r^{VaR}	δ	MIP simplex iterations	branch-and- bound nodes	CPU	GAP [%]
-10.00	0.067711	15,104	805	43.1	_
-7.50	0.071381	3,182,319	441,196	10,800.0	1.85
-5.00	0.077699	3,169,107	195,210	10,800.1	8.72
-2.50	0.089562	1,668,609	116,278	10,800.1	29.31
-2.00	0.098133	1,554,694	76,373	10,800.2	32.57
-1.75	0.097387	1,177,463	69,993	10,800.3	36.15
-1.50	0.100295	1,162,975	65,026	10,800.3	38.61
-1.25	0.101089	1,713,553	71,822	10,800.4	39.98
-1.00	0.099639	2,744,317	95,456	10,800.1	42.44
-0.75	0.124678	2,730,531	101,598	10,800.1	47.37
-0.50	0.127738	2,824,989	84,196	10,800.4	51.10
-0.25	0.307067	3,022,921	76,426	10,800.1	65.44
-0.05	0.344089	3,027,166	$71,\!625$	10,800.1	67.75
0.00	0.369005	3,561,349	84,385	$10,\!800.0$	71.55

Table 6 presents optimization problem size after presolving.

r^{VaR}	Siz	e of adjust	ed probler	n	Eliminated b	by presolving
	constraints	variables	binary variables	linear variables	constraints	variables
-10.00	15,509	12,305	7,865	4,440	19,344	87,396
-7.50	15,722	12,416	7,976	4,440	19,131	87,285
-5.00	15,927	$12,\!526$	8,086	4,440	18,926	87,175
-2.50	$16,\!180$	$12,\!655$	8,215	$4,\!440$	$18,\!673$	87,046
-2.00	16,203	$12,\!667$	8,227	4,440	$18,\!650$	87,034
-1.75	16,216	$12,\!674$	8,234	4,440	$18,\!637$	87,027
-1.50	16,238	$12,\!685$	8,245	$4,\!440$	$18,\!615$	87,016
-1.25	16,261	$12,\!698$	8,258	4,440	$18,\!592$	87,003
-1.00	16,280	12,708	8,268	4,440	18,573	86,993
-0.75	16,308	12,722	8,282	$4,\!440$	$18,\!545$	86,979
-0.50	16,333	12,735	8,295	$4,\!440$	18,520	86,966
-0.25	16,353	12,745	8,305	$4,\!440$	18,500	86,956
-0.05	16,353	12,745	8,305	$4,\!440$	18,500	86,956
0.00	16,360	$12,\!866$	8,426	$4,\!440$	18,493	86,835

 Table 6. Problem size after presolving

In the computational experiments the dataset of daily quotations from the Warsaw Stock Exchange were used. The computational time for the optimization model depends strongly on return Value-at-Risk parameter. The bigger value of r^{VaR} is set, the more CPU seconds is required for proving optimality. The computed values of expected portfolio return and the probability that return of investment is not less than r^{VaR} also depend on r^{VaR} . Increasing the value of r^{VaR} results in decreasing of expected portfolio return and increasing of probability that the return of investment is not less than r^{VaR} . Number of securities in obtained portfolios varies between one and thirty five.

6. CONCLUSIONS

In this paper a bi-objective portfolio selection by mixed integer programming has been proposed. The considered problem is based on a dynamic model of investment, in which the investor buys and sells securities in successive investment periods. The problem objective is to dynamically allocate the wealth on different securities to optimize by reference point method the portfolio expected return and the probability that the return is not less than a required level. The model incorporates dynamic balance constraints that allow the short-selling variables to take on non-negative values.

The computational experiments modeled on a real data from the Warsaw Stock Exchange have indicated that the approach is capable of finding optimal solutions for medium size problems in a reasonable computation time using commercially available software for mixed integer programming. The total computation time ranges from minutes to hours depending on the number of historical quotations in the optimization problem.

ACKNOWLEDGEMENTS

This work has been supported by Polish Ministry of Science and Higher Education (MNISW) grant for PhD Research #N N519 405934.

REFERENCES

- Alves, M.J., Climaco, J. (2007). A review of interactive methods for multiobjective integer and mixed-integer programming, *European Journal of Operational Research*, Vol. 180, pp 99–115.
- Anagnostopoulos, K.P., Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables, *Computers and Operations Research*, Vol. 37, pp 1285– 1297.
- Benati, S., Rizzi, R. (2007). A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem, *European Journal of Operational Research*, Vol. 176, pp 423–434.
- Bowman Jr, V.J. (1976). On the relationship of the Tchebycheff norm and the efficient frontier of multi-criteria objectives, In: Thiriez H., Zionts S. (Eds.) Multiple Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems, Vol. 130. Springer-Verlag, Berlin, Germany, pp. 76–86.
- Ehrgott, M. (2000). Multicriteria Optimization. Second edition, Springer, Berlin, Germany.
- Esch, L., Kieer, R., Lopez, T., Berb, C., Damel, P., Debay, M., Hannosset, J.-F. (2005). Asset and Risk Management. Risk Oriented Finance, John Wiley & Sons.
- Fourer, R., Gay, D.M., Kernighan, B.W. (1990). A Modeling Language for Mathematical Programming, *Management Science*, Vol. 36, pp 519–554.
- Gaivoronski, A.A., Krylov, S., Van Der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking, *European Journal of Operational Research*, Vol. 163, pp 115– 131.
- Lin, C.C. (2009). Comments on "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem", European Journal of Operational Research, Vol. 194, pp 339–341.
- Markowitz, H.M. (1952). Portfolio selection, Journal of Finance, Vol. 7, pp 77–91
- Markowitz, H.M. (1997). Portfolio Selection: Efficient Diversification of Investments. Second edition, Blackwell Publishers, Inc., Malden, Mass., USA.
- Nemhauser, G.L., Wolsey, L.A. (1999). Integer and Combinatorial Optimization, John Wiley & Sons, Toronto, Canada.
- Ogryczak, W. (2000). Multiple criteria linear programming model for portfolio selection, Annals of Operations Research Vol. 97, pp 143–16.
- Sawik, B. (2009a). Lexicographic and Weighting Approach to Multi-Criteria Portfolio Optimization by Mixed Integer Programming, In: Lawrence K. D., Kleinman G. (Eds.) *Applications of Management Science*, Vol. 13, Financial Modeling Applications and Data Envelopment Applications, Emerald Group Publishing Limited, UK, USA, pp. 3–18.
- Sawik, B. (2009b). A Multi-Objective Dynamic Portfolio Optimization with Short Selling Variables, INFORMS annual meeting, Oct 11–14, 2009, San Diego, USA.
- Sawik, B. (2009c). A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization, Semi-Annual "Automatyka" Vol. 13(2), pp 563–571.

- Sawik, B. (2009d). A Lexicographic Approach for Multi-Objective Dynamic Portfolio Optimization, The 23rd European Conference on Operational Research (EURO XXIII), Jul 5–8, 2009, Bonn, Germany.
- Sawik, B. (2009e.) Portfolio Optimization of a Multi-Period Investment by Mixed Integer Programming, In: Howaniec H., Waszkielewicz W. (Eds.) Conditions of development of management systems, Monographic of ATH University of Bielsko-Biała, Poland, pp. 112–120.
- Sawik, B. (2009f). A Dynamic MIP Approach to Multi-Objective Portfolio Optimization, CORS-INFORMS, Jun 14–17, 2009, Toronto, Canada.
- Sawik, B. (2009g). Bi-Objective Dynamic Portfolio Optimization by Mixed Integer Programming, European Chapter on Combinatorial Optimization (ECCO XXII), May 17–20, 2009, Jerusalem, Israel.
- Sawik, B. (2008). A Three Stage Lexicographic Approach for Multi-Criteria Portfolio Optimization by Mixed Integer Programming, *Przegląd Elektrotechniczny*, Vol. 84(9), pp 108–112.
- Speranza, M.G. (1993). Linear programming models for portfolio optimization, *Finance*, Vol. 14, pp 107–123.
- Steuer, R.E. (1986). Multiple Criteria Optimization: Theory, Computation and Application, John Wiley & Sons, New York, USA.
- Young, M.R. (1998). A minimax portfolio selection rule with linear programming solution, Management Science, Vol. 44, pp 673–683.