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Abstract. The portfolio selection problem presented in this paper is formulated as a bi-
objective mixed integer program. The portfolio selection problem considered is based on
a dynamic model of investment, in which the investor buys and sells securities in successive
investment periods. The problem objective is to dynamically allocate the wealth on differ-
ent securities to optimize by reference point method the portfolio expected return and the
probability that the return is not less than a required level. In computational experiments
the dataset of daily quotations from the Warsaw Stock Exchange were used.
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1. INTRODUCTION

The optimal security selection is a classical portfolio problem since the seminal work
of Markowitz (Markowitz, 1952, 1997). In the standard approach, the decision maker
selects the securities in such a way that the portfolio expectation is maximized, under
the constraint that risk (variance) must be kept under a fixed threshold (Benati, 2007,
Lin, 2009). The problem consists in picking the best amount of securities, with the
aim of maximizing future returns. It is a typical multivariate problem: the only way to
improve future returns is to increase the risk level that the decision maker is disposed
to accept (Ogryczak, 2000, Young, 1998).

In Markowitz’s approach the problem is formulated as an optimization problem
involving two criteria: the reward of a portfolio, which is measured by the mean and
should be maximized, and the risk of the portfolio (measured by the variance of
return) that should by minimized. In the presence of two criteria there is not a single
optimal solution (portfolio), which represents the tradeoff between risk and return
(Anagnostopoulos, 2010).
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While the original Markowitz model forms a quadratic programming problem,
many attempts have been made to linearize the portfolio optimization procedure
(Sawik, 2009a, 2009b, 2009c, 2009d, 2009e, 2009f, 2009g, 2008, Speranza, 1993, Young,
1998). The linear program solvability is very important for applications to real-life
financial and other decisions where the constructed portfolios have to meet numer-
ous side constraints. Examples of them are minimum transaction lots, transaction
costs or mutual funds characteristics etc. The introduction of these features leads to
mixed integer program problems. This paper presents a bi-criterion extension of the
Markowitz portfolio optimization model, in which the variance has been replaced with
the Value-at-Risk (VaR). The VaR is a quantile of the return distribution function
(Benati, 2007, Sawik, 2009a, 2008).

The advantage of using VaR measure in portfolio optimization is that this value
of risk is independent of any distribution hypothesis. It concerns only downside risk,
namely the risk of loss. This index measures the loss in question in a certain way.
Finally VaR is valid for all types of securities and therefore either involve the various
valuation models or be independent of these models (Esch, 2005, Gaivoronski 2005).

This portfolio optimization problem is formulated as a bi-objective mixed integer
program. The portfolio selection problem considered is based on a dynamic model of
investment, in which the investor buys and sells securities in successive investment
periods. The problem objective is to dynamically allocate the wealth on different
securities to optimize by reference point method of the portfolio expected return and
the probability that the return is not less than a required level.

The results of some computational experiments with the mixed integer program-
ming approach modeled on a real data from the Warsaw Stock Exchange are reported.
The input dataset consist of time series of the daily quotation of returns of securities
from the Warsaw Stock Exchange.

2. REFERENCE POINT METHOD

The reference point method is based on the Tchebycheff metric (Alves, 2007, Bow-
man, 1976). Let us denote by

∥∥f (x)− f
∥∥
λ

the λ-weighted Tchebycheff metric, i.e.,

min1¬l¬q
{
λl

∣∣∣fl (x)− f
∣∣∣}, where λl  0 ∀

q∑
l=1

λl = 1, and f denotes a reference

point of the criteria space. Considering f(x) > f for all x ∈ X, it has been proven
(Bowman, 1976) that the parametrization on λ of minx∈X

∥∥fl (x)− f
∥∥
λ

generates
the non-dominated set. The program minx∈X

∥∥fl (x)− f
∥∥
λ

may yield weakly non-
dominated solutions, which can be avoided by considering the augmented weighted
Tchebycheff program:

Minimize δ + γ

q∑
l=1

fl (x)

subject to λl
(
fl (x)− f

)
¬ δ, 1 ¬ l ¬ q

x ∈ X,
δ  0,
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where γ is a small positive value. It has been proven (Steuer, 1986) that there always
exists γ small enough that enable to reach all the non-dominated set for the finite-
discrete and polyhedral feasible region cases (Alves, 2007).

3. PROBLEM FORMULATION

Let n be the number of securities available in the market with historical quotations
in t investment periods, each consisting of h historical periods.

Let rij be the random variable representing the future daily return of security j
in historical time period i.

The portfolio optimization problem with Value-at-Risk constraint is formulated
as the classic Markowitz approach, but with Value-at-Risk instead of variance as a
risk measure.

Table 1. Notation

Indices

i = historical time period i, i = 1, . . . ,m (i.e. day)
j = security j, j = 1, . . . , n
k = historical successive investment period k, k = 1, . . . , t (i.e. year, quarter or month,

etc)

Input parameters

h = number of historical quotations in each successive investment period
pi = probability assigned to the occurrence of past realization i
rij = observed return of security j in historical time period i
rMin = minimum return observed in the market
rV aR = return Value-at-Risk
v = accepted number of securities in portfolio in each successive investment period
λ = weight for the objective functions f1
γ = small positive value
fopt1 = ideal solution value of average return
fopt2 = ideal solution value of average risk probability

Variables

xjk = percentage of capital invested in successive investment period k in security j
xbuyjk = percentage of capital invested in successive investment period k for bought secu-

rity j
xselljk = percentage of capital invested in successive investment period k for sold security

j
= 1, if return of portfolio in historical time period i of successive investment period

k is not less than rV aR

0, otherwise
αV aRk = probability that return of investment is not less than rV aR in successive invest-

ment period k
zjk = 1, if in successive investment period k capital is invested in stock j

0, otherwise
δ = deviation from the reference solution
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The decision maker fixes the lower bound rV aR for successful returns – any in-
vestments whose Value-at-Risk is less than rV aR will be not acceptable.

Let rMin be the minimum return that can be observed in the market, for example
the biggest possible loss of money invested in portfolio. In the worst case it is the whole
amount of capital, so for instance it can be equal – 100% (Benati, 2007, Lin, 2009).

The bi-objective dynamic portfolio optimization model with Value-at-Risk is an
NP-hard problem even when future returns are described by discrete uniform distri-
butions (Ehrgott, 2000, Nemhauser, 1999, Steuer, 1986).

The seven types of variables for each successive investment period are introduced
in the model: a continuous wealth allocation variable that represents the percentage
of wealth allocated to each security, a continuous wealth allocation variable for buying
amount of each security, a continuous wealth allocation variable for selling amount of
each security, a binary selection variable that prevents the choice of portfolios whose
VaR is below the fixed threshold and a binary selection variable for selecting each
security to the portfolio and finally continuous variable represents deviation from the
reference solution.

4. OPTIMIZATION MODEL

In the approach proposed in this paper, the portfolio optimization problem is
formulated as reference point method dynamic bi-objective mixed integer program,
which allows commercially available software (e.g. AMPL/CPLEX (Fourer, 1990) to
be applied for solving medium size, yet practical instances. The problem formulation
is presented below.

Minimize

δ + γ

− t∑
k=1

 kh∑
i=(k−1)h+1

pi

n∑
j=1

rijxjk

+
t∑

k=1

αaV aRk

 (1)

subject to

λ

− t∑
k=1

 kh∑
i=(k−1)h+1

pi

n∑
j=1

rijxjk

+ fopt1

 ¬ δ (2)

(1− λ)

(
t∑

k=1

αaV aRk − fopt2

)
¬ δ (3)

yik ¬

n∑
j=1

rijxjk − rMin

rV aR − rMin
, i = (k − 1)h+ 1, . . . , kh, k = 1, . . . , t (4)

yik 

n∑
j=1

rijxjk − rMin

rV aR − rMin
− 1, i = (k − 1)h+ 1, ..., kh, k = 1, . . . , t (5)



A Reference Point Approach to Bi-Objective . . . 77

kh∑
i=(k−1)h+1

pi (1− yik) ¬ ααV aRk , k = 1, . . . , t (6)

The objective function (1) represents the weighted deviation from the reference
point for the portfolio expected return and the probability that the return is not less
than a required level. The deviations are defined in constraints (2), (3).

Constraints (4), (5) and (6) prevent the choice of portfolios whose V aR is below
the fixed threshold. Every time expected portfolio return is below rV aR, then yik must
be equal to 0 and 1− yik = 1 in constraint (6). Therefore, all probabilities of events i
whose returns are below the V aR threshold was summed up. If the result is greater
than αV aR, then the portfolio is not feasible.

n∑
j=1

xjk = 1, k = 1, . . . , t (7)

Constraint (7) requires that in each investment period all capital must be allo-
cated on different securities with positive expected return.

xbuyj1 = xj1, j = 1, . . . , n :
h∑
i=1

pirij > 0 (8)

xsellj1 = 0, j = 1, . . . , n (9)

xjk = xjk−1 + xbuyjk − x
sell
jk , j = 1, . . . , n, k = 2, . . . , t (10)

Constraints (8), (9) and (10) are responsible for a dynamic balance among xjk,
xbuyjk , xselljk for each successive investment period k.

n∑
j=1

zjk  v, k = 1, ..., t (11)

Constraint (11) ensures that the number of stocks in optimal portfolio must be
greater than or equal to the accepted number of assets in the selected portfolio.

kh∑
i=(k−1)h+1

pi

n∑
j=1

rijxjk >= rV aR, k = 1, ..., t (12)

Constraint (12) imposes the minimum portfolio expected return equal rV aR that
the decision maker is prepared to accept for each successive investment period k.

xjk ¬ zjk, j = 1, ..., n :
kh∑

i=(k−1)h+1

pirij > 0, k = 1, ..., t (13)
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xbuyjk ¬ zjk, j = 1, ..., n :
kh∑

i=(k−1)h+1

pirij > 0, k = 1, ..., t (14)

xselljk ¬ zjk, j = 1, ..., n, k = 1, ..., t (15)

Constraints (13), (14) and (15) are responsible for relations between variables
xjk, xbuyjk , xselljk and zjk .

zjk
100
¬ xjk, j = 1, ..., n :

kh∑
i=(k−1)h+1

pirij > 0, k = 1, ..., t (16)

zjk
100
¬ xbuyjk , j = 1, ..., n :

kh∑
i=(k−1)h+1

pirij > 0, k = 1, ..., t (17)

Constraints (16) and (17) ensure the addition to portfolio and buying of some
amount of security j in successive investment period k.

0 ¬ αV aRk ¬ 1, k = 1, ..., t (18)

Constraint (18) defines continuous variable αV aRk – probability that return of
investment is not less than rV aR of successive investment period k.

xjk = 0, j = 1, ..., n :
kh∑

i=(k−1)h+1

pirij ¬ 0, k = 1, ..., t (19)

Constraint (19) defines continuous variable xjk – percentage of capital invested
in successive investment period k in security j and, in addition, eliminates securities
with a non-positive expected return.

xbuyjk = 0, j = 1, ..., n :
kh∑

i=(k−1)h+1

pirij ¬ 0, k = 1, ..., t (20)

xselljk  0, j = 1, ..., n, k = 1, ..., t (21)

yik ∈ {0, 1} , i = (k − 1)h+ 1, ..., kh, k = 1, ..., t (22)

zjk ∈ {0, 1} , j = 1, ..., n, k = 1, ..., t (23)

δ  0 (24)
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Finally, constraints (20)–(24) define variables xbuyjk , xselljk , zjk, δ and eliminate
securities with a non-positive expected return. Variables xjk are percentage of capital
invested in security j in successive investment period k.

The combination of continuous variables xjk, xbuyjk , xselljk and binary variables yik,
zjk leads an NP-hard mixed integer programming problem (Nemhauser, 1999). If the
number of historical observations m is bounded by a constant, there are 2m ways of
fixing the variables yik, zjk for each successive investment period k.

5. COMPUTATIONAL RESULTS

In this section numerical examples and some computational results are presented
to illustrate possible applications of the proposed formulations of this multi-period
optimization model. The examples are modeled on a real data form the Warsaw Stock
Exchange.

Suppose that n securities with historical quotations in t investment periods, each
of h days, in total 4020 samples. The eighteen years horizon from 30th Jan 1991 to
30th Jan 2009 – consists of m = 4020 historic daily quotations divided into t=20
investment periods (h = 201 daily quotations each), with the selection of n = 241
input securities for portfolio, quoted each day in the historical horizon. Probability of
realization for expected securities returns is the same for each day and summed up
for whole period to one. The accepted number of securities in portfolio is at least one
security in each successive investment period. The basic parameters for the reference
point method take on the following values: fopt1 = 1, fopt2 = 0.05, λ = 0.5, γ = 0.01.

The computational experiments have been performed using AMPL programming
language (Fourer, 1990) and the CPLEX v.11 solver (with the default settings) on a
laptop with Intel R© Core 2 Duo T9300 processor running at 2.5GHz and with 4GB
RAM. The computational time limit was set to 10800 CPU seconds (three CPU
hours).

Table 2 presents the solution results for objective function αV aRk probability that
return of investment is not less than in each successive investment period k. Table 3
presents the solution results for the objective function of expected portfolios return
in each successive investment period k.

Table 4 presents number of securities in the computed portfolios for each succes-
sive investment period k.

Table 5 presents computational time range and the solution values of δ – the
deviation from the reference solution. In the table 5, column ”MIP simplex iteration”
shows the number of mixed integer programming simplex iterations until presented
solution. Column ”B–&–B” shows the number of searched nodes in the branch and
bound tree until presented solution. Column ”CPU” shows CPU seconds required for
proving optimality on a laptop with Intel R© Core 2 Duo T9300 processor running at
2.5GHz and with 4GB RAM using the solver CPLEX v.11.
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Table 4. The solution results for objective function – the expected portfolios return

rVaR -10.00 -7.50 -5.00 -2.50 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 -0.05 0.00

historical
successive
investment
period k

Number of securities in each portfolio

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 5 3 4 4 3 3 6 7 5 1 1
3 2 2 2 4 2 2 3 2 4 5 6 5 1 1
4 2 3 2 5 3 5 6 3 5 8 8 6 1 1
5 3 4 3 5 5 7 8 4 7 10 12 6 3 1
6 3 6 7 12 13 14 12 9 11 11 11 7 2 1
7 1 1 2 5 4 4 6 5 4 5 4 1 1 1
8 2 4 5 10 10 9 13 13 12 16 17 5 14 1
9 1 6 7 9 7 9 8 12 7 10 8 2 22 1
10 1 2 4 6 6 6 9 10 12 11 10 14 2 1
11 2 3 4 6 10 6 12 10 11 15 16 13 4 1
12 1 1 2 4 4 5 6 8 7 10 11 8 4 1
13 2 2 3 5 7 9 8 9 10 13 18 7 14 1
14 5 6 9 10 15 17 15 12 15 20 20 22 18 1
15 4 5 5 9 9 12 8 12 12 17 14 24 10 1
16 6 4 5 6 7 9 6 5 7 11 10 14 3 1
17 6 6 8 6 10 12 8 9 9 11 13 22 24 1
18 6 6 7 7 9 12 10 10 14 17 18 35 31 3
19 1 4 2 11 10 9 9 13 15 20 15 19 3 1
20 1 2 2 5 6 7 8 11 8 11 12 5 2 1

Average number of securities

-10.00 -7.50 -5.00 -2.50 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 -0.05 0.00
3 4 4 7 7 8 8 8 9 11 12 11 8 1

Maximal number of securities

6 6 9 12 15 17 15 13 15 20 20 35 31 3

Minimal number of securities

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. Computational time range and the solution results for δ

rVaR δ MIP simplex branch-and- CPU GAP
iterations bound nodes [%]

−10.00 0.067711 15,104 805 43.1 –
−7.50 0.071381 3,182,319 441,196 10,800.0 1.85
−5.00 0.077699 3,169,107 195,210 10,800.1 8.72
−2.50 0.089562 1,668,609 116,278 10,800.1 29.31
−2.00 0.098133 1,554,694 76,373 10,800.2 32.57
−1.75 0.097387 1,177,463 69,993 10,800.3 36.15
−1.50 0.100295 1,162,975 65,026 10,800.3 38.61
−1.25 0.101089 1,713,553 71,822 10,800.4 39.98
−1.00 0.099639 2,744,317 95,456 10,800.1 42.44
−0.75 0.124678 2,730,531 101,598 10,800.1 47.37
−0.50 0.127738 2,824,989 84,196 10,800.4 51.10
−0.25 0.307067 3,022,921 76,426 10,800.1 65.44
−0.05 0.344089 3,027,166 71,625 10,800.1 67.75
0.00 0.369005 3,561,349 84,385 10,800.0 71.55
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Table 6 presents optimization problem size after presolving.

Table 6. Problem size after presolving

rVaR Size of adjusted problem Eliminated by presolving

constraints variables binary linear constraints variables
variables variables

−10.00 15,509 12,305 7,865 4,440 19,344 87,396
−7.50 15,722 12,416 7,976 4,440 19,131 87,285
−5.00 15,927 12,526 8,086 4,440 18,926 87,175
−2.50 16,180 12,655 8,215 4,440 18,673 87,046
−2.00 16,203 12,667 8,227 4,440 18,650 87,034
−1.75 16,216 12,674 8,234 4,440 18,637 87,027
−1.50 16,238 12,685 8,245 4,440 18,615 87,016
−1.25 16,261 12,698 8,258 4,440 18,592 87,003
−1.00 16,280 12,708 8,268 4,440 18,573 86,993
−0.75 16,308 12,722 8,282 4,440 18,545 86,979
−0.50 16,333 12,735 8,295 4,440 18,520 86,966
−0.25 16,353 12,745 8,305 4,440 18,500 86,956
−0.05 16,353 12,745 8,305 4,440 18,500 86,956
0.00 16,360 12,866 8,426 4,440 18,493 86,835

In the computational experiments the dataset of daily quotations from the War-
saw Stock Exchange were used. The computational time for the optimization model
depends strongly on return Value-at-Risk parameter. The bigger value of rVaR is set,
the more CPU seconds is required for proving optimality. The computed values of
expected portfolio return and the probability that return of investment is not less
than rVaR also depend on rVaR. Increasing the value of rV aR results in decreasing of
expected portfolio return and increasing of probability that the return of investment
is not less than rVaR. Number of securities in obtained portfolios varies between one
and thirty five.

6. CONCLUSIONS

In this paper a bi-objective portfolio selection by mixed integer programming has
been proposed. The considered problem is based on a dynamic model of investment,
in which the investor buys and sells securities in successive investment periods. The
problem objective is to dynamically allocate the wealth on different securities to opti-
mize by reference point method the portfolio expected return and the probability that
the return is not less than a required level. The model incorporates dynamic balance
constraints that allow the short-selling variables to take on non-negative values.

The computational experiments modeled on a real data from the Warsaw Stock
Exchange have indicated that the approach is capable of finding optimal solutions for
medium size problems in a reasonable computation time using commercially available
software for mixed integer programming. The total computation time ranges from
minutes to hours depending on the number of historical quotations in the optimization
problem.
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