
Decision Making in Manufacturing and Services
Vol. 3 • 2009 • No. 1–2 • pp. 37–48

Practical Tips for Modelling
Lot-Sizing and Scheduling Problems

Waldemar Kaczmarczyk?

Abstract. This paper presents some important alternatives for modelling Lot-Sizing and
Scheduling Problems. First, the accuracy of models can improved by using short time buckets,
which allow more detailed planning but lead to higher computational effort. Next, valid
inequalities make the models tighter but increase their size. Sometimes it is possible to find
a good balance between the size and tightness of a model by limiting a priori the number of
valid inequalities. Finally, a special normalization of the variables simplifies the presentation
of results and validation of models.
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1. INTRODUCTION

This paper considers various mixed-integer programming (MIP) models of lot-sizing
and scheduling problems, for several products with deterministic, dynamic demand,
on machines with limited capacity. Increasing the capabilities of computers and MIP
solvers increases the possibility of applying standard MIP methods to solve real plan-
ning problems. It is however necessary to describe them using appropriate model
formulations (Belvaux and Wolsey, 2001).

Below, two models are discussed, the Capacitated Lot Sizing Problem with Linked
lots (CLSPL) proposed by Suerie and Stadtler (2003) and the Proportional Lot-sizing
and Scheduling Problem (PLSP) proposed by Haase (1994), see also Drexl and Haase
(1995). The CLSPL belongs to the class of large bucket problems, which allow many
set-up operations within a single period.

The PLSP is a small bucket problem, i.e. it allows only one set-up operation
within a single period. It allows the processing of two products in a single period, one
before and one after the set-up operation. Small bucket models allow the sequence of
products to be controlled in contrast to the CLSPL. This is an important advantage,
e.g. in the case of sequence-dependent set-up costs or times.
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In general, large bucket models are more appropriate for planning problems with
long periods and small bucket models for problems with short periods. There exists
however a grey area where both types of model may be applied.

Independent of the choice of model, the period length must be chosen. Usually
that choice is limited, i.e. one may choose periods equal to a week, day or shift. There
is also the possibility of splitting real periods (macro-periods) into several fictitious
micro-periods. Small periods allow more detailed planning, among others more de-
tailed accounting of inventory holding costs, but lead to models with a larger number
of variables which are harder to solve. In this paper, the trade-off between accuracy
and complexity of models resulting from the choice of period length is studied.

Micro-periods are mentioned in several papers (Fleischmann, 1990; Fleischmann,
1994; Drexl and Kimms, 1997) but their number has not been a subject of research
yet. Suerie (2005) compared results of the CLSPL and PLSP models but only for an
identical number of periods.

Adding valid inequalities is one of the methods used to make MIP models easier to
solve (Belvaux and Wolsey, 2001; Wolsey, 2002; Pochet and Wolsey, 2006). The number
of all possible valid inequalities may however be very high. Therefore it is often not
practical to add all the valid inequalities a priori to the model (Pochet and Wolsey,
2006; Belvaux and Wolsey, 2001, p. 101).

In such cases, there are three options. Firstly, one may rely only on the capabilities
of solvers to generate various cuts, which is straightforward, but does not always
ensure short computation times. Next, one may write one’s own separation procedure,
to choose inequalities which should be added to the model at a given node of the
branch and cut method. This is a really challenging task, but is most likely to yield an
efficient solving procedure. Finally, one may a priori limit the number of inequalities.
The last option is easy to apply and will be presented in this paper.

Visualization of solutions and validation of models are seldom subjects of discus-
sion. In this paper, a special normalization of parameters and variables is presented
which makes them much easier visualize for a wide class of problems.

The next section presents data parameters, variables and both discussed models.
Section 3 presents a trade-off driven by the size of time buckets. Section 4 shows
computational results for various numbers of valid inequalities. Section 5 presents the
normalization of parameters and variables. Finally, Section 6 gives conclusions.

2. MODELS

The dynamic lot-sizing problem, also called the Wagner-Whitin problem (Wagner and
Whitin, 1958), assumes a discrete planning horizon, i.e. time is modelled as a finite
number of time points. The intervals between the time points are called time periods
or time buckets. Demand is given per period and varies over time. All changes in the
system are assumed to occur at the time points themselves. A discrete-time model can
be employed to approximate a continuous-time system but in many cases it describes
reality better than continuous time.

In this paper, models are discussed which adopt the dynamic lot-sizing prob-
lem for the case with many products and a limited capacity of resources. They are
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usually called lot-sizing and scheduling problems (Drexl and Kimms, 1997; Jans and
Degraeve, 2008).

Parameters and variables common to both models discussed in this paper are
presented in Tables 1 and 2.

Table 1. Parameters

T = (1, . . . , T ) – set of days, T – number of days,
N = (1, . . . , n) – set of products, n – number of products,
Ct – length of period t,
djt – demand of product j in period t,
pj – processing time of product j,
hjt – unit holding cost of product j in period t,
SCj – set-up cost of product j,
STRj ¬ Ct – set-up time of product j,

Table 2. Variables

Ijt – inventory of product j in period t, Ij0 – initial inventory,
xjt – relative share of capacity in period t used to process product j,
yjt = 1, if at the end of period t machine is set up for product j, 0 otherwise, yj0 – initial

state of machine,
zjt = 1, if in period t machine starts up to process product j, 0 otherwise,
vjt = 1, if in period t− 1 machine is set up to execute product j and this state is carried

over to period t, 0 otherwise,
δjt = 1, if in period t only one product is produced, 0 otherwise,

In all models described in this paper, all variables with period index t ¬ 0 are
assumed to be equal to 0. There are only two exceptions. First, the inventory variables
Ij0 represent non-zero initial inventories. Second, the set-up state variables yj0 define
the initial state of the machine.

2.1. THE CAPACITATED LOT SIZING PROBLEM

The basic large bucket model is called the Capacitated Lot Sizing Problem (CLSP). It
allows many set-up operations in a single period but does not take into account the
possibility of set-up carry-over between periods. One may save set-up costs if some
product j is processed at the end of a period t and then, at the beginning of the
next period t + 1, the same product j may be produced without additional set-up
operation. This is called set-up carry over or lot-linking. Sometimes it is even possible
to carry over the same state to two consecutive periods, i.e. from period t−1 to t and
t+ 1, and to process only a single product in period t.

Various models have been developed which allow set-up carry-over (Haase, 1994;
Haase, 1996; Sox and Gao, 1999; Suerie and Stadtler, 2003). Below a model is pre-
sented that was proposed by Suerie and Stadtler (2003) called the CLSP with Linked
lots (CLSPL).
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A mixed-integer programming model of the CLSPL can be stated as follows:

min
∑
t∈T

∑
j∈N

(SCjzjt + hjtIjt) (1.1)

Ijt−1 + xjt − djt = Ijt, t ∈ T , j ∈ N (1.2)

pjxjt + STRj zjt ¬ Ct yjt, t ∈ T , j ∈ N (1.3)∑
j∈N

(
pjxjt + STRj zjt

)
¬ Ct, t ∈ T (1.4)

∑
j∈N

vjt ¬ 1, t ∈ T , (1.5)

vjt ¬ yj,t−1, t ∈ T , j ∈ N (1.6)

zjt + vjt = yjt, t ∈ T (1.7)

vj,t−1 + vjt ¬ δjt + 1, t ∈ T \ {1}, j ∈ N (1.8)

zjt + δt  1, t ∈ T , j ∈ N (1.9)

Ijt, xjt  0, t ∈ T , j ∈ N (1.10)

vjt ∈ [0, 1], t ∈ T , j ∈ N (1.11)

yjt, zjt, δt ∈ {0, 1}, t ∈ T , j ∈ N (1.12)

The objective function (1.1) represents the total set-up and inventory costs. Con-
straint (1.2) describes the inventory, production and demand balance. Constraint (1.3)
allows non-zero production volumes only if the machine is set up for that product.
Constraint (1.4) ensures that the workload does not exceed capacity. Constraint (1.5)
ensures that the set-up of at most one product may be carried over from the pre-
vious period. According to (1.6), the set-up of a product may be carried over from
period t− 1 to period t if the machine was set up to process that product in pe-
riod t− 1. Equality (1.7) declares that the set-up state may be either carried over
from the previous period or started up in the current one. Constraint (1.8) ensures
that two consecutive carry-overs of the same product j, i.e. from period t − 1 to t
and t + 1, are allowed only if in the middle period t only one product is processed.
Constraint (1.9) ensures that either a single product is processed during the whole
period or some product is started up in that period.

In the original model proposed by Suerie and Stadtler (2003) the set-up variable
yjt is replaced by the sum of the carry-over and start-up variables, i.e. zjt+vjt, which
makes constraint (1.7) superfluous.

2.2. THE PROPORTIONAL LOT-SIZING AND SCHEDULING PROBLEM

The small bucket models allow at most one set-up operation per period. The Pro-
portional Lot-sizing and Scheduling Problem (PLSP) is the most flexible and most
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accurate, because it allows to process two products within a single period, first before
and second after the set-up operation. A mixed-integer programming model of the
PLSP can be stated as follows:

min
∑
t∈T

∑
j∈N

(SCjzjt + hjtIjt) (2.1)

Ijt−1 + xjt − djt = Ijt, t ∈ T , j ∈ N (2.2)

pjxjt + STRj zjt ¬ Ct
(
yjt−1 + yjt

)
, t ∈ T , j ∈ N (2.3)∑

j∈N

(
pjxjt + STRj zjt

)
¬ Ct, t ∈ T (2.4)

∑
j∈N

yjt = 1, t ∈ T (2.5)

yjt − yj,t−1 ¬ zjt, t ∈ T , j ∈ N (2.6)

Ijt, xjt  0, t ∈ T , j ∈ N (2.7)

zjt ∈ [0, 1], t ∈ T , j ∈ N (2.8)

yjt ∈ {0, 1}, t ∈ T , j ∈ N (2.9)

The objective function (2.1) represents the total set-up and inventory costs. Constraint
(2.2) describes the balance of inventory, production and demand. Constraint (2.3)
allows production to take values higher than zero only if the machine is set up to
process a given product in the current or previous period. Inequality (2.4) ensures
that total production and set-up operations do not exceed period capacity. Constraint
(2.5) ensures that in every period, the set-up state variable of only one product takes
the value one, i.e. the machine is set-up to process exactly one product. Equality
(2.6) ensures that start-up variables take the value one if the machine is set up to
process a given product in the current period but not in the previous period. The
start-up variables do not have to be binary, because their values are minimized and
constraint (2.6) defines their lower bound which is equal either to 1 or 0.

In the PLSP, following valid inequalities can be applied (Belvaux and Wolsey,
2001; Wolsey, 2002; Pochet and Wolsey, 2006):

zjt ¬ yjt, t ∈ T , j ∈ N (2.10)

zjt ¬ 1− yj,t−1, t ∈ T , j ∈ N (2.11)

Ij,t−1 
t+p∑
s=t

djs

[
1− yj,t−1 −

s∑
r=t

zjr

]
, t ∈ T , p = 0, . . . , T − t, j ∈ N (2.12)

Constraint (2.10) resets start-up variables in periods without set-up. Inequality (2.11)
resets start-up variables if in the previous period the machine was already set up.

The third valid inequality (2.12) is the most important one, i.e. it has the
strongest impact on computation times. This constraint determines the lower bound
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on inventory level in period t− 1 which is necessary to satisfy demand from period t
to period t + p. The time interval [t, t + p] may be interpreted as a run-out time of
lots finished in period t− 1 or earlier.

3. SETTING OF TIME BUCKETS SIZE

Most authors do not justify the length for assumed time buckets although that choice
is difficult and important. Short periods allow more detailed and more accurate plan-
ning but lead to complex models with many variables and constraints. In this sec-
tion, some aspects of the trade-off between accuracy and complexity of lot-sizing and
scheduling models are discussed.

At first, let us describe a way to compare results of large and small bucket models.
To solve large bucket instances with a small bucket model, i.e. to approximate a large
bucket model by a small bucket model, it is necessary to prepare the demand and
unit holding costs parameters in a special way.

First, the large bucket macro-periods have to be split into several micro-periods.
Let us assume that there are 5 micro-periods within each macro-period. Next, the
demand of every macro-period has to be assigned to its last micro-period, so that
only micro-periods which are multiples of 5 have non-zero demand. Similarly, the
unit holding costs have to be set equal to zero in all micro-periods with the exception
of periods which are multiples of 5.

To estimate the impact of period length on the accuracy of the PLSP model,
the following experiments were executed. For several randomly generated data sets,
solutions for two models were obtained, the CLSPL and PLSP with (macro-)periods
subdivided into many micro-periods. The PLSP with single micro-period is identical
with the model in which macro-periods are not split into micro-periods. Optimal
objective values of the CLSPL served as comparative values for the PLSP.

Five data sets were randomly generated according to the following procedure. All
problem instances had 12 (macro-)periods and 5 products. The demand djt was drawn
from the range [10, 300] and next with probability 0.3 set equal to 0. To preserve the
existence of a feasible solution, the demand of the first two days for all products
was set equal to 0. Processing times pj of all products were equal to 1 and set-up
times STj equal to 0. The constant capacity of a single machine C was chosen in
such a way as to keep the utilization of the machine equal to 80%. Unit holding costs
hj were randomly chosen from the range [1, 5]. The set-up costs were calculated as
SCj = λj ∗ hj ∗C, where λj was randomly chosen from the range [1, 15]. In this way,
the set-up costs could be 1 to 15 times higher than the holding cost of the maximal
single period throughput.

All instances were solved for the PLSP with 1, 2 or 3 micro-periods and for set-up
costs equal to 100%, 25% and 10% of the originally generated costs SCj .

All tests were performed with 30 minutes time limit on an Intel Pentium IV
processor with a 1.66 MHz clock speed and 0.5 GB RAM running ILOG OPL Studio
6.0.1 (CPLEX 11) with standard settings.

In Table 3 all results are presented. For all cases, the average number of start-ups
(set-up operations) increases as set-up costs decrease and as number of micro-periods
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increases. Small set-up costs make frequent set-up operations less costly and numerous
micro-periods allow to schedule more start-ups.

Table 3. Average results for the CLSPL and PLSP

Number of Set-up costs
Model micro-periods SCj 0.25 SCj 0.1 SCj

Number CLSPL 1 7.8 10.4 14.0

of start-ups PLSP 1 7.3 10.0 10.8
2 7.8 10.4 13.8
3 7.8 10.4 13.8

Relative error CLSPL 1 0.0% 0.0% 0.0%

vs CLSPL PLSP 1 0.2% 2.7% 8.2%
2 0.1% 0.2% 0.9%
3 0.1% 0.3% 0.8%

MIP Gap CLSPL 1 0.0% 0.0% 0.0%

PLSP 1 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.5%
3 0.2% 1.9% 3.2%

Time [s] CLSPL 1 4 5 7
PLSP 1 2 2 3

2 64 247 504
3 850 1029 1464

The relative error versus the CLSPL was calculated as(
f∗(PLSP)/f∗(CLSPL)− 1

)
∗ 100%,

where f∗() means the best objective value found for a given model. This error is high
for small a number of micro-periods and small set-up costs, in the worst case even
8.2% percent. This is easy to explain why.

A small bucket model cannot guarantee the same quality of solution as a large
bucket model because it allows only one set-up operation within a period. Moreover
micro-periods constitute specific additional boundaries for lot sizes and timing. Espe-
cially in the case with the smallest set-up costs and single micro-periods for which the
number of start-ups in the large bucket solution is higher than the number of periods.

Already for two micro-periods, the solutions of the PLSP are close to the solutions
of the CLSPL. It seems that PLSP results in a solution of good quality if the number
of set-up operations is clearly smaller than the number of periods.

The MIP gap was calculated using the following formula:
(
f∗(PLSP)/LB − 1

)
∗

100%, where LB stands for the lower bound of the solution. For three micro-periods,
the MIP gap is not equal to zero and the solutions could possibly be improved further.
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This may explain why for three micro-periods the objective values are worse than
for two.

Finally, a decrease in set-up costs, i.e. increase of the number of start-ups in
optimal solutions, and increase in the number of micro-periods radically increase the
computations times.

There is an evident trade-off between the accuracy and complexity of the PLSP
model driven by period length. For the data sets tested, two micro-periods would be
a good compromise because the quality of the solution is already very good and the
complexity much smaller than for three micro-periods.

4. NUMBER OF VALID INEQUALITIES

Valid inequalities are constraints which are not necessary to define a correct model
but make it more tight (Belvaux and Wolsey, 2001;Wolsey, 2002; Pochet and Wolsey,
2006). Firstly, they ensure that in linear relaxations of the model, integer variables
are more likely to take integer values. Secondly, they improve the lower bounds of
nodes in the branch and bound algorithm. In this way, valid inequalities reduce the
number of nodes needed to solve a MIP problem and may speed up execution of the
branch and bound algorithm.

On the one hand, valid inequalities tighten the model, but on the other hand,
they also increase its size and each iteration of the algorithm takes more time. The
number of valid inequalities may grow very fast with the number of variables. Because
of this, it is often not practical to add all the valid inequalities a priori to the model.
In addition, only a limited number of them are really necessary to tighten the model
(Pochet and Wolsey, 2006, p. 101).

Programming a special separation algorithm to choose valid inequalities which
should be added to the model at given nodes of the branching algorithm is a challeng-
ing task. Commercial branch-and-cut systems are able to generate some of the valid
inequalities automatically as cutting planes, but not all of them.

Finally, one may try to limit the number of valid inequalities a priori. Let us
discuss this taking as example constraint (2.12). The number of such inequalities may
be significantly reduced by the introduction of an upper bound Pmax for parameter p
as presented below:

Ij,t−1 
t+p∑
s=t

djs

[
1− yj,t−1 −

s∑
r=t

zjr

]
,

t ∈ T , p = 0, . . . ,min{Pmax − 1, T − t}, j ∈ N (3)

To justify such a modification, one has to explain at first the sense of that inequality. It
sets a lower bound on the inventory level at the end of period t−1 if in the time interval
from period t to period t+ p the machine is not set up to process given product. One
may say that the parameter p describes the run-out time of the inventory. In general,
it may reach the end of the planning horizon, but in practice this not very likely.

To verify the impact of Pmax on the PLSP, the following experiments were ex-
ecuted. Five data sets were randomly generated using a procedure identical to that
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from the previous section with a few differences. All problem instances had 30 peri-
ods. The demand djt was set equal to 0 with a product-dependent probability chosen
randomly from the range [0, 0.8]. To preserve the existence of feasible solutions, the
demand of the four first days for all product was set equal to 0. Set-up times pj were
randomly chosen from the range [60%, 80%] of period length.

For every data set, the PLSP has been solved with Pmax taking values from
0 to T . Pmax was always the same for all products. All tests were performed with a 5
minute time limit on an Intel Pentium IV processor with a 1.66 MHz clock speed and
0.5 GB RAM running ILOG OPL Studio 6.0.1 (CPLEX 11) with standard settings.

In Figure 1, the results of all computational experiments are presented. The rel-
ative error describes the average relative difference between the optimal val-
ues of the objective function and the values obtained within the time limit for
various Pmax values. 1
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Fig. 1. Impact of number of valid inequalities

If the model does not contain any valid inequalities (3), i.e. for Pmax = 0, then
its results are 4% worse than the optimal ones. For Pmax = 1 solutions are not much
better. Only Pmax = 2 ensures that the distance to the optimal value is on average
smaller than 1%. The best objective values have been obtained for Pmax = 5. The
shortest average computation time was obtained for Pmax = 8.

From these results, one may draw the conclusion that limiting a priori the number
of valid inequalities may be a useful technique for making the lot-sizing and scheduling
models easier to solve.

5. NORMALIZATION OF VARIABLES

Let us assume that all time buckets have the same length C, which is fully justified in
short-term manufacturing planning and very common in computational experiments.
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In such cases, it is possible to normalize lot-sizing and scheduling models in such a way
that the values of the demand, production and inventory variables are expressed in
units equal to maximal throughput during a single period:

THj = C/pj (4)

In the normalized model several variables and parameters are replaced by their
normalized versions:

ST
′

j = STRj /C (5.1)

d′j = djt/THj (5.2)

I ′jt = Ijt/THj (5.3)

x′jt = xjt/THj (5.4)

and two parameters, pj and C, are replaced by 1, i.e. become equal to 1.
In the normalized PLSP model, compared to (2), the objective function (2.1) and

two constraints, (2.3) and (2.4), have different forms:

min
∑
t∈T

∑
j∈N

(SCjzjt + hjt THj I
′
jt) (6.1)

x′jt + ST
′

jzjt ¬ yjt−1 + yjt, t ∈ T , j ∈ N (6.2)∑
j∈N

(
x′jt + ST

′

jzjt
)
¬ 1, t ∈ T (6.3)

Moreover, the production variables xjt may take values only from the range [0, 1].
The CLSPL model may be normalized in a similar way.

In Table 4 a solution of a normalized PLSP model with 4 products, 4 days and 2
shifts per day is presented. The set-up times of all products are equal to 25% of the
period. Thanks to the normalization, it is easier to analyze the solution and to check
various conditions. Let us look at some examples.

Normalized production variable x′jt represents the relative share of period t used
for production of product j. Normalized set-up time ST

′

j is equal to the fraction of a
period necessary to set up the machine for product j. For example, in the third period,
60% of the capacity is utilized for production of product 1, 15% for production of prod-
uct 2, and the rest is long enough to execute a single set-up operation (ST

′

j = 0.25).
The sum of the total production and set-ups times in every period has to be

smaller than or equal to 1. The total demand of a product (minus its initial inventory)
is equal to the number of days necessary to satisfy it. The total workload is equal to
the sum of the total production volume and number of set-up operations multiplied
by normalized set-up time, i.e. 5.60 + 7 ∗ 0.25 = 7.35. Utilization of the machine over
the whole planning horizon is equal to the total workload divided by the number of
periods: 7.35/8 ≈ 92%.
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Such a normalization may also be easily adopted to the case with m identical
parallel machines (Kaczmarczyk, 2010). In such models, the total production during
a single period takes values from the range [0,m].

Table 4. An example of a normalized solution of the PLSP model

Period 0 1 2 3 4 5 6 7 8

Day 1 2 3 4

Product Shift 1 2 1 2 1 2 1 2 Total

StartUp 1 1 1 2
2 1 1 2
3 1 1 2
4 1 1

Total 1 1 1 1 1 1 1 7

Setup 1 1 1 2
2 1 1 1 3
3 1 1 2
4 1 1 2

Total 1 1 1 1 1 1 1 1 1 9

Production 1 0.30 0.60 0.50 1.40
2 0.05 0.95 0.50 1.50
3 0.15 0.25 0.25 0.65
4 0.55 0.75 0.75 2.05

Total 0.55 0.35 0.75 0.75 0.75 0.95 0.75 0.75 5.60

Demand 1 0.45 0.45 0.50 1.40
2 0.55 0.70 0.75 2.00
3 0.65 0.55 0.45 0.50 2.15
4 0.30 0.80 0.50 0.45 2.05

Total 1.50 1.80 2.10 2.20 7.60

Inventory 1 0.30 0.90 0.45 0.45 2.10
2 0.50 0.50 0.25 0.75 2.00
3 1.50 1.50 0.85 1.00 0.45 0.45 0.25 6.00
4 0.55 0.25 0.25 0.20 0.95 0.45 0.45 3.10

Total 2.00 2.55 1.40 2.15 1.10 1.85 0.70 1.45 13.20

6. CONCLUSIONS

In this paper, three issues connected with of modelling lot-sizing and scheduling prob-
lems are presented. Firstly, the size of time buckets is discussed. The results presented
show that the accuracy of small bucket models may rapidly increase with a decrease
in the length of periods and with an increase in their number. Unfortunately, the
complexity of models also grows very fast. Therefore, it is always necessary to find a
good trade-off between accuracy and complexity.
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Next, valid inequalities are discussed which set lower bounds on inventories for
all possible run-out times. The number of these inequalities may be limited by the
restriction on the length of verified run-out intervals. The results presented prove that
neither the minimal nor maximal length is the best choice. The best solutions or the
smallest computations times are on average obtained for run-out times between 5 and
8 periods. In further research, one may evaluate more sophisticated strategies, e.g.
taking into account product-specific information or demand profiles.

Finally, the normalization proposed simplifies the analysis of results and valida-
tion of models by presenting the solutions in an informative way.
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