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Models and Tools for Improving Efficiency
in Constraint Logic Programming
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Abstract. Constraint Satisfaction Problems typically exhibit strong combinatorial explosion.
In this paper we present some models and techniques aimed at improving efficiency in Con-
straint Logic Programming. A hypergraph model of constraints is presented and an outline
of strategy planning approach focused on entropy minimization is put forward. An example
cryptoaritmetic problem is explored in order to explain the proposed approach.
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1. INTRODUCTION

A Constraint Satisfaction Problem (CSP, for short) (Dechter 2003, Apt 2006) is a task
consisting in finding an assignment of values to given variables. The assigned values
are restricted to belong to predefined sets — variable domains. The key issue is that
the assignment must satisfy a set of predefined constraints. Constraint processing is
often done with logical methods and tools (Apt 2006). Practical solutions are based
on Prolog search an backtracking mechanism and take the form of Constraint Logic
Programming.
CSP is a common model for diversity of practical, theoretical, toy and entertain-

ment problems, with cryptoarithmetic puzzles and Sudoku being some perfect exam-
ples. In industrial practice CSP may serve as a generic model for design, planning,
scheduling, etc. In theoretical research it is a model for logical formulae satisfaction
checking (the so-called SAT problem) and mathematical programming.
Solving a generic CSP is both conceptually simple and intractable. It is concep-

tually simple since it can be accomplished — well, at least in theory — by consecutive
scanning of all the elements of the Cartesian Product of all the domains. Such a Carte-
sian Product defines the search space for the solutions. By checking for each element
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all the constraints, all the potential solutions can be found. If all the domains are
finite, so is the Cartesian Product of them. Hence the algorithm for finite domains
always finds all the solutions, provided that it is not an over-constrained problem. The
real problem is that CSP suffers from combinatorial explosion with respect to size of
the search-space of potential solutions. Such problems are referred to as intractable.
More precisely, intractable problems are ones for which it is known that there is no
polynomial algorithm for finding the solution (Dechter 2003).
The general idea behind solving CSP consist in (i) ordering the variables along

with some criteria of preference, (ii) subsequent selection of values from their domains
and assignment of one value to each of the variables at a time, and (iii) checking if
some of the constraints are not satisfied at any stage when it is possible. Whenever
an inconsistent assignment is found, whether partial or complete one, backtracking is
enforced, and a subsequent potential solution is explored. This is backtracking which
is responsible for inefficiency, but for a number of problems backtrack-free solution
does not exist.
In the literature the search is organized with use of the Constraint Graph, i.e.

a graph modelling the structure of the constraints (Dechter 2003). In such a graph
nodes represent the variables and vertices show that two variables are within the
scope of the same constraint. A constraint graph can be used to help manage the
order of variable assignment but we miss the precise knowledge about the structure
of the constraints. For example, if some k variables are bound by two or more different
constraints it is not visible from the constraint graph.
In some former works (Ligęza & Kościelny 2008, Ligęza 2009b, Ligęza 2009a) we

have applied the constraint processing techniques to refining the set of potential diag-
noses. An approach incorporating a special AND-OR graph for constraint modeling
and rules for modeling constraint related qualitative knowledge was proposed. In this
paper an attempt at extending these techniques towards a classical CSP problem is
discussed.
The explicit representation of constraints in the form of inference rules has an

obvious advantage: once the values assigned to variables occurring in preconditions are
known, such a rule can be fired and values of the variables occurring in the consequent
part become known. They can be immediately used either in further search or – in
case of inconsistency – for enforcing immediate backtracking.
The proposed approach is illustrated with practical solving an example of a well-

known cryptoarithmetic problem.

2. CONSTRAINT SATISFACTION PROBLEMS. BASIC FORMULATION

A Constraint Satisfaction Problem is one where the goal consists in finding a legal
assignment of values to a finite set of predefined variables so that a set of given
constraints is satisfied.
More formally, after (Dechter 2003), let X = {X1, X2, . . . , Xn} denote a set of

variables, D = {D1, D2, . . . , Dn} is a set of domains for the variables in X and C is
a set of constraints. Each constraint is given by a pair (Si, Ri), where Si is referred
to as the scope (or scheme) and consists of a selection of variables from X while Ri is
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a relation defined over the Cartesian Product of domains appropriate for the variables
in the scope. The relation Ri can be defined explicitly, i.e. by listing all its tuples, but
more frequently it is defined implicitly by use of logical or algebraic constraints. The
Constraint Satisfaction Problem (CSP) is given by the triple (X,D,C).
A solution to a CSP given by (X,D,C) is any assignment of values to variables of

X of the form {X1 = d1, X2 = d2, . . . , Xn = dn}, such that di ∈ Di, i ∈ {1, 2, . . . , n}
and for any constraint (Si, Ri) ∈ C, Ri is satisfied by the appropriate projection of
the solution vector (d1, d2, . . . , dn) over variables of Si. Obviously, all the constraints
must be satisfied, and there can be one or many solutions; no solution may exist for
an over-constrained problem.
The basic technique for solving a CSP given by (X,D,C) consists in subsequent

assignment of admissible values to variables of X; the order is chosen in an arbitrary
way, and it can influence how fast a solution is found.
In order to improve search efficiency both heuristics and strategies are used. The

most typical strategies are based on (i) variable ordering, (ii) values ordering, and
(iii) look-ahead techniques. Especially the look-ahead strategies can improve search
efficiency. The principal idea is that the algorithm looks how current decisions will
affect the future search.

3. EXAMPLE PROBLEM STATEMENT AND ITS MODELS

Constraint satisfaction models and techniques present relatively matured level; for
the state-of-the-art consult (Dechter 2003, Apt 2006) and for a nice review of modern
approaches to constraint propagation (Russell & Norvig 2003) (Chapter 5). Here we
examine some of them in solving a cryptoarithmetic problem.
Consider the following well-known cryptoarithmetic puzzle (Apt 2006):

SEND
+ MORE
------
MONEY

The variables – S, E, N, D, M, O, R, Y – are to be assigned digits so that the
above constraint is satisfied. Different variables are to be assigned different digits.
Leading digits (in our example S and M) are different from 0.
The simplest model for solution of this problem can be as follows:

– successively assign all the variables some digits,
– check if all the variables are assigned different digits; if no – backtrack,
– perform the final summation test.

Such an approach is called generate-and test. It is intuitive and very simple to
implement in pure Prolog. Unfortunately, it is very inefficient. Since there are 8
variables, and each can take 10 values, the overall search space contains 108 potential
solutions.
A slight modification can consist in immediate checking if different variables are

assigned different values, once some two variables are assigned values. This approach
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is also referred to as generate-or-test and it is much more reasonable. Unfortunately,
as we shall see in Section 4 it is still far from being efficient.
Another modification may consists in developing a way of variable assignment so

that a value once assigned to a variable is removed from the domains of yet-unassigned
variables. This approach is referred to as forward checking and improves efficiency in
a significant way. However, applied alone, it still exhibits high inefficiency.
A more efficient approach may consist in constraint propagation. Consider the

puzzle and let us assume that variables D and E have been assigned some values (in
fact there are 10 ∗ 9 of different possibilities). Once this is done, Y can be calculated
directly, as well as the value of C1 being the carry value for the next column. Now,
having C1 and selecting values of N and R (and note that there are 8 ∗ 7 possibilities
left) one can calculate E. There are two basic possibilities: the calculated E is con-
sistent with the value assumed in the former step — and so we can proceed, or it is
different, and backtracking must take place.
In general, consider a constraint propagation rule of the form:

Di1 = d1 ∧Di2 = d2 ∧ Ci−1 = ci−1 −→ Di =
= mod10(d1 + d2 + ci−1) ∧ Ci = div((d1 + d2 + ci−1)/10) (1)

The rule has simple meaning: having two digits Di1 and D
i
2 to be summed up

and the carry signal from the lower position, the current digits Di is calculated as the
sum of the above modulo 10 and the carry signal to next position is calculated as the
appropriate integer division result.
It turns out that this approach can reduce the search space in an efficient manner.
Finally, the summation constraint can be decomposed to the following set of

five local constraints; unfortunately, the local constraints are not independent, and,
moreover, addition variables representing the carry signal have to be introduced. We
have:

D + E = 10 ∗ C1 + Y, (2)

N +R+ C1 = 10 ∗ C2 + E (3)

E +O + C2 = 10 ∗ C3 +N, (4)

S +M + C3 = 10 ∗ C4 +O, (5)

M = C4, (6)

The above constraints can be explored directly after the appropriate variables are
instantiated or as a final summation test.

4. EXAMPLE SOLUTIONS

Let us consider example solutions and their efficiency.
As a reference point lets us start with the naive generate-or-test approach.

A Prolog code follows:
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digit(1). digit(2). digit(3). digit(4). digit(5).
digit(6). digit(7). digit(8). digit(9). digit(0).
solve(S,E,N,D,M,O,R,Y) :-

digit(S),S\=0,
digit(E),E\=S,
digit(N),N\=E,N\=S,
digit(D),D\=N,D\=E,D\=S,
digit(M),M\=D,M\=N,M\=E,M\=S,M\=0,
digit(O),O\=M,O\=D,O\=N,O\=E,O\=S,
digit(R),R\=O,R\=M,R\=D,R\=N,R\=E,R\=S,
digit(Y),Y\=R,Y\=O,Y\=M,Y\=D,Y\=N,Y\=E,Y\=S,
N1 is 1000*S+100*E+10*N+D,
N2 is 1000*M+100*O+10*R+E,
N3 is 10000*M+1000*O+100*N+10*E+Y,
N3 =:= N1+N2.

The results show inefficiency of this basic approach (but also efficiency of modern
Prolog implementations):

?- time(solve(S,E,N,D,M,O,R,Y)).
% 38,730,365 inferences, 9.35 CPU in 9.38 seconds (100% CPU, 4142285 Lips)
S = 9, E = 5, N = 6, D = 7, M = 1, O = 0, R = 8, Y = 2.

Now, consider a simple implementation of forward-checking strategy1:

smm :-
X = [S,E,N,D,M,O,R,Y],
Digits = [0,1,2,3,4,5,6,7,8,9],
assign_digits(X, Digits),
M > 0,
S > 0,

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =:=

10000*M + 1000*O + 100*N + 10*E + Y,
write(X).

select(X, [X|R], R).
select(X, [Y|Xs], [Y|Ys]):- select(X, Xs, Ys).

assign_digits([], _List).
assign_digits([D|Ds], List):-

select(D, List, NewList),
assign_digits(Ds, NewList).

The efficiency is improved in a visible way, we have:

?- time(smm).
[9, 5, 6, 7, 1, 0, 8, 2]
% 10,503,156 inferences, 8.48 CPU in 8.55 seconds (99% CPU, 1238580 Lips)
true.
1 Source: http://clip.dia.fi.upm.es/~vocal/public_info/seminar_notes/node13.html
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Now consider the model incorporating propagation rules. A simple implementa-
tion can looks as follow (Bratko 2000):

solve(S,E,N,D,M,O,R,Y):- run([0,S,E,N,D],[0,M,O,R,E],[M,O,N,E,Y]), M\=0.

del(A,L,L):- nonvar(A),!.
del(A,[A|L],L).
del(A,[B|L],[B|L1]):- del(A,L,L1).

digitsum(D1,D2,C1,D,C,Digs1,Digs):-
del(D1,Digs1,Digs2),
del(D2,Digs2,Digs3),
del(D,Digs3,Digs),
S is D1+D2+C1,
D is S mod 10,
C is S // 10.

sum1([],[],[],0,0,Digits,Digits).
sum1([D1|N1],[D2|N2],[D|N],C1,C,Digs1,Digs):-
sum1(N1,N2,N,C1,C2,Digs1,Digs2),
digitsum(D1,D2,C2,D,C,Digs2,Digs).
run(N1,N2,N):-
sum1(N1,N2,N,0,0,[0,1,2,3,4,5,6,7,8,9],_).

By comparison to the former approaches, application of direct propagation rules
turns out to be surprisingly efficient:

?- time(solve(S,E,N,D,M,O,R,Y)).
% 45,619 inferences, 0.02 CPU in 0.02 seconds (125% CPU, 2280950 Lips)
S = 9, E = 5, N = 6, D = 7, M = 1, O = 0, R = 8, Y = 2.

A still more efficient approach makes use of advanced constraint propagation
techniques. To illustrate the approach we shall use the SWI-Prolog library for con-
straint logic programming over finite domains. An example code looks as follows2:

sendmoremoney(Vars) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
S #\= 0,
M #\= 0,
all_different(Vars),

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

solve(Vars):- Vars=[S,E,N,D,M,O,R,Y],
sendmoremoney([S,E,N,D,M,O,R,Y]),label(Vars).

The power of these advanced library is impressive; not only the code is compre-
hensive (smart and readable), but the efficiency is very high:
2 Source: http://en.wikibooks.org/wiki/Prolog/Constraint_Logic_Programming
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?- time(solve(Vars)).
% 10,088 inferences, 0.00 CPU in 0.00 seconds (0% CPU, Infinite Lips)
Vars = [9, 5, 6, 7, 1, 0, 8, 2].

Finally, we may check the influence of the decomposition of the summation con-
straint into five separate constraints presented in Section 3.

send5(Vars,Cars) :-
Cars = [C1,C2,C3,C4],
Cars ins 0..1,
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),
S #\= 0,
M #\= 0,
M #= C4,
D + E #= 10*C1 + Y,
N + R + C1 #= 10*C2 + E,
E + O + C2 #= 10*C3 + N,
S + M + C3 #= 10*C4 + O.

solve5(Vars,Cars):- Vars=[S,E,N,D,M,O,R,Y],Cars=[C1,C2,C3,C4],
send5([S,E,N,D,M,O,R,Y],[C1,C2,C3,C4]),label(Vars),label(Cars).

The results, although comparable, are by around 50% worse than the above
obtained for single test constraint.

?- time(solve5(Vars,Cars)).
% 15,130 inferences, 0.01 CPU in 0.00 seconds (207% CPU, 1513000 Lips)
Vars = [9, 5, 6, 7, 1, 0, 8, 2],
Cars = [1, 1, 0, 1].

5. HYPERGRAPHS AND RULES

In this section we put forward a rational proposal for an efficient strategy for efficient
solution of the cryptoarithmetic problem under discussion. The main idea consists in
combining the following steps:

– modeling the constraints with as many as detailed constraints, as possible; in
our case we shall use the constraints specified by equations (6), (5), (4) (3) and
(2),
– modeling the overall structure of constraints with a hypergraph; in our case
this is a special, tri-partite graph visualizing constraint, decimal variables and
binary variables,
– turning constraints into value-propagation rules, and
– finding a minimal branching plan with constraint propagation for efficient so-
lution of the problem.
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The key issue is to combine constraint structure with value-propagation rules, so
that a minimal branching plan is obtained. In fact, every plan can be assigned some
entropy value. For intuition, plan with high entropy is likely to require a lot of search
and backtracking. A plan with low entropy is likely to enforce little backtracking.
A plan with zero entropy can perhaps be executed in a linear way.
Obviously, calculating precise entropy value would be problematic; not only one

has to assign probabilities to all choices of variable values, but the entropy should
be considered conditional. For every choice of variable value, restrictions of other
values should be propagated, and this is time and calculation costly. Hence, we apply
a simplified procedure, when a new variable to be assigned a value is selected according
to the following intuitive principles:

– variables allowing for direct calculation of as many other variables as possible
are preferred,
– variables with restricted domains are preferred over ones with wide domains,
– variables influencing as many constraints as possible are preferred.

In Figure 1 the overall structure of the constraints is presented. There are five
nodes representing five constraints, namely: M, MSO, ONE, NER and EDY. The
variables involved in each constraint are linked to these nodes by arrows.

C4 C3 C2 C1

M S O EN R D Y

M MSO ONE NER EDY

Fig. 1. A hypergraph presenting the structure of local constraints.

Now, the idea for building a minimal entropy plan is as follow:

– we start with variable C4; its domain is well-restricted (just 0 or 1), and after
a choice it directly determines the value of M. The dashed lines show the
plan. An empty circle indicates, that the value of a variable should be selected
in a nondeterministic way, and backtracking may take place. The filled-black
circles indicate that a variable can be determined in a unique way, if values of
preceding variables are known.
– having C4 and M, we choose O; its value must be selected, but O is involved
in two constraints, namely MSO and ONE. By turning MSO into an inference
rule and selecting C3 we determine the value of S.
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– the next selected variable is E and C2. Having them, and using constraint ONE
turned into a propagation rule we can determine N;
– now we choose the value of D and C1, and using EDY we determine the value
of Y.

Let us evaluate the number of possible paths. The branching points are: C4/2,
O/9, C3/2, E/8, C2/2, D/7, C1/2; after the slash we show the number of possible
value choices. So we have 2*2*2*2*9*8*7=8064.
In comparison to the naive approach (108 paths) we have reduction to 0.008064%,

and in the case of immediate forward checking (10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 = 1814400)
it is 0.444444%.
Now look at the program and the results. A simple Prolog program implement-

ing this plan is given below:

smm_rules_opt :-
Cars = [0,1],
Digits = [0,1,2,3,4,5,6,7,8,9],
member(C4,Cars), %%% Choice C4/2
M = C4, M>0, select(M,Digits,DM),
member(C3,Cars), %%% Choice C3/2
select(O,DM,DO), %%% Choice O/9
S is 10*C4 + O -C3 -M, S>0, select(S,DO,DS),
member(C2,Cars), %%% Choice C2/2
select(E,DS,DE), %%% Choice E/8
N is E + O + C2 - 10*C3, select(N,DE,DN),
member(C1,Cars), %%% Choice C1/2
R is E + 10*C2 - C1 - N, select(R,DN,DR),
select(D,DR,DD), %%% Choice D/7
Y is D + E - 10*C1, select(Y,DD,_),
X=[S,E,N,D,M,O,R,Y],
write(X).

The results are astonishing:

?- time(smm_rules_opt).
[9, 5, 6, 7, 1, 0, 8, 2]
% 364 inferences, 0.00 CPU in 0.00 seconds (0% CPU, Infinite Lips)
true.

Similar results can be expected for plans of similar entropy.

6. CONCLUDING REMARKS

An attempt at providing a logical model for constraint programming is presented.
This model incorporates a hypergraph for constraint modelling and rules for constraint
propagation. A strategy for planning the search should minimize the entropy function.
Although the program incorporates some hand-encoding structure based on intuitions,
early results of practical experiments seems encouraging.
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Further research may be oriented towards development of methods for more pre-
cise evaluation of entropy and semi-automatic or automatic planning for a solution-
finding strategy. Moreover, more efficient decomposition of constraints into rules and
use of different types of rules (more general rules may cover the case of domain re-
striction) should be explored.
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