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Extended Model Formulation
of the Proportional Lot-Sizing and Scheduling Problem
with Lost Demand Costs
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Abstract. We consider mixed-integer linear programming (MIP) models of production plan-
ning problems known as the small bucket lot-sizing and scheduling problems. We present an
application of a class of valid inequalities to the case with lost demand (stock-out) costs.
Presented results of numerical experiments made for the the Proportional Lot-sizing and
Scheduling Problem (PLSP) confirm benefits of such extended model formulation.
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1. INTRODUCTION

In this paper we consider mized-integer linear programming (MIP) models of lot-sizing
and scheduling problems, which assume that several products with deterministic,
dynamic demand, have to be produced alternately on the same single machine with
limited capacity. In each period, the total workload assigned to the machine cannot
exceed its capacity. When the machine is changed over from production of one product
to another a set-up operation must be executed. The demand does not have to be
satisfied on the whole, but unsatisfied, lost demand rises costs proportional to its size.
Unsatisfied demands (sales) are called lost. The objective is to minimize the sum of
the lost demand costs, set-up and inventory holding costs in all periods.

Most production lost-sizing problems assume complete fulfilment of all demands.
This is however not always justified. In stochastic lot-sizing problems lost demand
(stock-out) costs arise when demand occurs while products are out of stock. In de-
terministic production planning problems, lost demand costs may occur for several
reasons. First of all, this may be unavoidable if there is not enough production or
storage capacity. Secondly, in some circumstances shortage costs may be smaller then
the sum of production, setup and inventory holding costs.
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The problem under consideration is motivated by a real-world case in the au-
tomobile industry. In industrial supply chains, in vendor managed inventory (VMI)
system, when client declares some demand too late, supplier is not obligated to satisfy
this additional demand. Such late orders may have however higher price what may
be for the supplier a strong incentive to check, how much of this additional demand
is he able to fulfill. Sometimes supplier wants to fulfill as much as possible of such
late orders just for the sake of good cooperation and sets prohibitive values of lost
demand unit costs.

Companies may avoid shortages by backordering or outsourcing. Some companies
adjust prices to match the demand and supply, i.e. use techniques of the revenue
management. All these methods to prevent lost demand are out of scope of this paper.

The Proportional Lot-sizing and Scheduling Problem (PLSP) was proposed by
Haase (1994), see also Drexl and Haase (1995). It is a small bucket model, i.e. it
allows only one set-up operation within a single period. The PLSP is the most flexi-
ble small bucket model, because it allows the processing of two products in a single
period, one before and one after the set-up operation. It has been extended for sev-
eral special cases, among others for the case with long (multi period) setup times
(Suerie, 2005; Kaczmarczyk, 2009a) and for the case with identical parallel machines
(Kaczmarczyk, 2011). General surveys on lot-sizing and scheduling models can be
found in Drex] and Kimms (1997) or Jans and Degraeve (2008).

Objective of an extended model formulation is to make a model more tight, i.e. to
make it easier to solve with standard MIP methods. Valid inequalities are constraints
added the model although they are not necessary to make it more realistic. Their
objective is to tighten linear relaxation of the model, what improves efficiency of
the branch and bound algorithm. Valid inequalities may be added a priori to the
model or dynamically generated by the branch and cut algorithm. A review of various
extended model formulations for many lot-sizing problems can be found in Belvaux
and Wolsey (2001), Wolsey (2002) or Pochet and Wolsey (2006).

Most valid inequalities applied to production lot-sizing problems were originally
developed for the classic Uncapacitated Lot-Sizng Problem (ULSP) described by Wag-
ner and Whitin (1958). For example Barany et al. (1984) proposed a class of valid
inequalities and proved that the ULSP extended by this constraints is fully tight, i.e.
can be solved with pure (non-integer) linear programming algorithm. Such inequali-
ties are useful also for models with several products, however they do not make them
fully tight. Models of the lot-sizing and scheduling problems may be tightened among
others by adding a class of valid inequalities which set lower bounds on inventory lev-
els dependent on the length of time intervals in which production will not be executed
(Belvaux and Wolsey, 2001). This paper presents an application of these inequalities
in the case with lost demand costs.

There are a few papers on production lot-sizing and scheduling dealing with lost
demand. Sandbothe and Thompson (1990) proposed a forward dynamic programming
algorithm for a single product model with limited capacity. Aksen et al. (2003) pro-
posed a dynamic programming algorithm for the ULSP. Aksen (2007) adopted this
model to the case when unsatisfied demand in one period causes the demand in the
following period to decrease due to the loss of customer goodwill.
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Liu et al. (2007) consider a single product dynamic lot sizing problem with limited
storage capacity and lost sales. Berk et al. (2008) propose a dynamic programming
formulation for a single item lot-sizing problem with lost sales for the case with warm
and cold setups. The machine can be kept warm, i.e. ready to work, for the next
period only if more than a minimal amount of product is produced. Cold machine,
i.e. after longer pause, has to be set-up. Lu and Qi (2011) consider a joint production
of multiple products with lost sales and without capacity limit.

Two papers consider extended model formulations for production lot-sizing prob-
lems with lost demand cost. Loparic et al. (2001) present tight formulations of the
ULSP with sales variables with an upper limit. They describe two equivalent model
formulations: first, with inventory lover bounds, second, with positive or negative
demands that have to be satisfied. Absi and Kedad-Sidhoum (2008) propose valid
inequalities for the multi-item capacitated lot-sizing problem with setup times and
shortage costs and apply them within a branch and cut algorithm.

The next section presents the PLSP model with lost demand. Section 3 presents
applied valid inequalities. Finally, section 4 shows computational results for standard
and extended PLSP model.

2. STANDARD MODEL

The dynamic lot-sizing problem, also called the Wagner- Whitin problem (Wagner and
Whitin, 1958), assumes a discrete planning horizon, i.e. the time is modelled as a finite
number of time points. The intervals between the time points are called time periods
or time buckets. Demand is given per period and varies over time. In this paper,
models are discussed which adopt the dynamic lot-sizing problem for the case with
many products and a limited capacity of resources. They are usually called lot-sizing
and scheduling problems. One of them is the PLSP. Its parameters and variables in
the case with lost demand are presented in Tables 1 and 2.

Table 1. Parameters.

T =(1,...,T) — set of days, T'— number of days,
N = (1,...,n) — set of products, n — number of products,
Ct — length of period ¢,
p; — processing time of product j,
dji — total demand of product j in period ¢,
d;.'t — additional (late) demand of product j in period ¢,
i.e. a part o the total demand demand which may be lost, d}: < djs,
¢j¢ — lost demand unit cost of product j,
hj+ — unit holding cost of product j in period ¢,
SC; — set-up cost of product j,
Ij0 — initial inventory of product j,
yjo — initial state of the machine,

All variables with period index t < 0 are assumed to be equal to 0. There are only
two exceptions. First, the inventory variables I;o represent non-zero initial inventories.
Second, the set-up state variables y;o define the initial state of the machine.
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Table 2. Variables.

I;; — inventory of product j in period ¢,

xj¢ — production volume of product j in period ¢,
vj: — demand of product j lost in period ¢, v < dj'“
yjt = 1, if at the end of period ¢ machine is set up for product j, 0 otherwise,
zj+ = 1, if in period ¢ machine starts up to process product j, 0 otherwise,

A mixed-integer programming model of the PLSP with lost demand can be stated
as follows:

min Y > (SCizje+ hjedje + cjvz) (1.1)
teT jeN
Iip_ 1+ :djt—vjt+ljt, teT,j eN (12)
DT < Cy (yjt_l + yjt), teT,jeN (13)
Z pixjt < Ct, teT (1.4)
JEN

> yie=1, teT (1.5)

JEN
Yjt — Yjt—1 S Zjt, teT,jeN (1.6)
0 <y < dj, teT,jeN (1.7)
Ly, xj > 0, teT,jeN (1.8)
Zjt, Yje € 10,1}, teT,jeN (1.9)

The objective function (1.1) represents the total set-up, inventory and lost demand
costs. Constraint (1.2) describes the balance of inventory, production and fulfilled
demand, i.e. the total demand reduced by the lost demand. Constraint (1.3) allows
production to take values higher than zero only if the machine is set up to process
a given product in the current or previous period. Inequality (1.4) ensures that the
total workload does not exceed capacity of a single period. Constraint (1.5) ensures
that in every period, the set-up state variable of only one product takes the value one,
i.e. the machine is set up to process exactly one product. Inequality (1.6) ensures that
start-up variables are equal to one if the machine is set up to process a given product
in the current period but not in the previous period.

3. VALID INEQUALITIES

Valid inequalities are constraints which are not essential to define a realistic MIP
model of the considered system, but make more tight its linear relaxations (Belvaux
and Wolsey, 2001;Wolsey, 2002; Pochet and Wolsey, 2006). In optimal solutions of
a tight linear relaxation of a MIP model relaxed (integer) variables are more likely to
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take integer values. This way valid inequalities reduce the number of nodes needed to
solve a MIP problem and may speed up execution of the branch and bound algorithm.

In several papers on lot-sizing and scheduling (e.g. Suerie, 2005; Kaczmarczyk;
2009) authors add a priori to the model valid inequalities, recommended by Belvaux
and Wolsey (2001), which determine the lower bound on inventory level in period
t — 1 which is necessary to satisfy the demand from period ¢ to period ¢+ p . The time
interval [t,¢ 4 p| may be interpreted as a run-out time of lots finished in period ¢ — 1
or earlier. Below introduced is an adaptation of these inequalities to the case with
lost demand.

If the machine was not set up to process product j in period ¢ — 1 and it is not
started up to process product j in period ¢, then in period t product j can not be
produced and the total demand decreased by the lost demand has to be fulfilled from
inventory build up at the end of period ¢ — 1. This condition is expressed by following
constraint:

L1 > dje (1= vje/djs — Yje1 — 2j.1)

where v /d;; is the fraction of demand lost in period t.

If the machine will not be started-up to produce product j also in period ¢ + 1,
then also the demand from period ¢ + 1 will be fulfilled from inventory from period
t — 1, what can be described by following condition:

Iiio1 > dje (1= vje/dje — yjie—1 — 2j1)

+ djii1 (1= vj01/djer — Y1 — 2t — Zjr1)

If the time interval without any start-ups for product j lasts over p periods then
the above constraint can be generalized in the following way:

t+p s
L1 > djs [1 —vjs/djs = Yjs1— Y Zjv} ;
s=t

r=t

teT,p=0,....min{Puax — 1,T —t}, jEN (2)

In general run-out time intervals may end in the last period T. In inequalities
(2) their length is limited by Ppax, because for every product there are usually a few
start-ups within the whole planing horizon and the run-out time intervals do not
end in T'. Therefore it is not practical to add all possible valid inequalities o type (2)
a priori to the model (Kaczmarczyk; 2009b). P.x values may be based on experience.

Following valid inequalities (Belvaux and Wolsey, 2001; Wolsey, 2002) are usually
added a priori to multiproduct lot-sizing and scheduling models and were used in
experiments described in the next section:

zjt < Yjt, teT,jeN (3a)
<1 —yj-1, teT, je N (3b)

Constraint (3a) resets start-up variables in periods without set-up. Inequality (3b)
resets start-up variables if in the previous period the machine was already set up.
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4. RESULTS OF EXPERIMENTS

To verify the impact of valid inequalities on the PLSP, the following experiments
were executed. Five data sets were randomly generated according to the following
procedure. All problem instances had 30 periods and 5 products.

At first, all of the demands d;; were drawn from the range [10a;, 1003;], where
a; € {1,...,5} and §; € {1,2,3}. Next each of them was set equal to 0 with probabil-
ity 0.17; where v; € {2,...,8}. Also the demand of the first four days for all products
was set equal to 0.

Processing times p; of all products were equal to 1. The capacity of the machine C'
was chosen in such a way as to keep the workload of the machine equal to 80%. Unit
holding costs h; were randomly chosen from the set {1,...,5}. The set-up cost was
calculated as SC; = Ajxh;*C, where \; was randomly chosen from the set {1,...,15}.

All instances have been solved for the standard (eq. (1), (3)) and extended (eq.
(1), (3), (2)) model formulation of the PLSP with P = 7, for set-up costs equal
to 100%, 25% or 400% of the originally generated costs SC;, and for the unit lost
demand costs 100 or 20 times higher then the unit holding costs of the same product.

In Table 3 the results for both models are presented. Here, the MIP gap is defined
as (f*—LB)/LB, where f* is the best value found for the objective function, and LB
is the lower bound. The total cost surplus shows the relative difference between the
objective value found with given model and the best value found with both models.

All tests were performed with a 5 minute time limit on an Intel Core i7 processor
with a 2.8 MHz clock speed and 8 GB RAM running ILOG OPL Studio 6.3 (CPLEX
12) with standard settings.

Table 3. Average computational results.

Model standard extended

Lost demand Setup cost Setup cost
unit cost 25% 100% 400% 25% 100% 400%
MIP gap 100 70.2% 37.1% 17.0%  20.1% 10.6% -
20 26.1% 15.4% - 3.1% 0.5% -
Time [s] 100 300 300 266 300 252 114
20 300 300 22 290 178 5
Total cost 100 8.6% 4.2% 0.4% - 0.7% -
surplus 20 3.0% 0.6% - - - -

Lost demand 100 2.5% 1.7% 3.9% 2.2% 2.0% 3.1%
20 9.8% 10.5% 46.0% 10.4% 10.2% 45.8%

Dash is substituted for zero

The results prove that the extended model is superior to the standard model.
For low workload and small setup costs the solver is usually not able to find optimal
solutions within assumed time limit, therefore the MIP gap is high and computation
time close to the time limit. In such cases extended model ensures up to 8.6% better
solutions.
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For high workload and large setup costs the solver more often determines optimal
solutions, however much faster for the extended model than for the standard model.

High lost demand unit costs represent the case when company tries to minimize
the lost demand in first place. In this case the extended model ensures a little smaller
values of lost demand. For low lost demand unit cost it may be profitable to increase
lost demand to avoid some setup and inventory holding costs. Therefore the total lost
demand takes high values. Low lost demand unit cost and high setup cost lead to
large values of the total lost demand that are not realistic, i.e. unacceptable for any
company.
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