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Scheduling Jobs with Linear Model
of Simultaneous Ageing and Learning Effects
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Abstract. In the paper, we introduce some new scheduling model in which learning and aging
effects are both considered simultaneously. In this model the actual processing time of the
jobs depends only on its position in a schedule and can be described by the piecewise linear
function. For single-processor problem with introduced model, we show that the problem of
minimizing the makespan criterion for independent jobs with release dates is strongly NP-
hard, but some special cases of this problem are polynomially solvable. Based on those special
cases, we propose 4 heuristic algorithms and we experimentally examine their usefulness for
solving the general problem.
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1. INTRODUCTION

Classical scheduling models assume that the processing time of a job is a given, fixed
value. However, in models of many real life systems we cannot make this assumption.
Thus the processing time of a job (or other job parameters) is treated as a variable
dependent on the schedule itself. The scheduling models that assume variable jobs
processing times include among others: resource dependent processing times (Shabtay
and Steiner, 2007; Janiak et al., 2007), deteriorating environments (Cheng et al., 2004;
Bachman et al., 2002), etc. Recently, in the scientific literature many papers regarding
the learning effect (Biskup, 2008; Janiak and Śnieżyk, 2004), and the ageing effect
(Yang and Yang, 2010; Janiak and Rudek, 2010) were published, which also assume
that the value of processing time of a job is a variable dependent on the schedule.
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In this paper we introduce some new scheduling model which takes into account
both learning, and ageing effect simultaneously. In this model, the actual processing
time of a job depends on its position in the schedule and is described by piecewise
linear function. This function is dependent on the position of a job in the sequence
of jobs and describes three phases of processor efficiency: the learning phase in which
processing time of a job decreases, maturity phase in which processing time of a job
is constant, and the ageing phase, in which job processing time increases.
On the basis of the introduced model we formulate the single processor schedul-

ing problem with given job release dates and the makespan (the schedule length)
minimization objective. We show that considered problem is in general strongly NP-
hard, but we identify several special cases of this problem which can be polynomially
solved. Based on these special cases we construct 4 heuristic algorithms for solving
general case of the problem and verify their efficiency by experimental analysis.
The remainder of the paper is organized as follows. In the next section we shortly

present state of research in the domain of scheduling problems with both learning, and
ageing effect. For the complete and up-to-date presentation of the results in the area
of scheduling with learning effect and ageing effect we refer the reader to Janiak et al.
(2011). In section 3 we formulate precisely mentioned above model of job processing
time and the considered makespan minimization problems. In Section 4 we present
some properties of the problem and describe its special, polynomially solvable cases.
Section 5 is devoted to the proposed heuristic algorithms together with experiments
testing their efficiency. Finally, in Section 6 we conclude the paper pointing out some
directions of future research in this subject.

2. LITERATURE REVIEW

The learning and ageing phenomenons were introduced into the scheduling area in
the beginning of the XXI century and since then attracted many researchers all over
the world. Both learning effect and ageing effect were initially considered separately
and recently there are many attempts to combine both this effect into a single model.
In what follows, we presents some basic and most important results available in the
scheduling literature separately for the learning effect models, ageing effect models,
and the models that combine learning and ageing effects. The reader interested in the
deeper look into the results presented in the literature in this matter, is referred to
the paper by Janiak et al. (2011).
The learning effect itself (not in the scheduling area) was firstly observed by

Wright (1936) while performing research on the workers efficiency in airplanes factory.
He proposed the exponential shape of the learning curve (the curve that describes
the increase of worker efficiency over the number of tasks he performed). Another
research introduced many other shapes of the learning curve such as the S-shaped
curve by Jordan (1965) and Carlson and Rowe (1976). The detailed description and
interpretation of the learning curves can be found in (Jaber and Bonney, 1999; Badiru,
1992; Dutton and Thomas, 1984).
The first results regarding the learning effect in scheduling area are due to Biskup

(1999) and Cheng and Wang (2000). In (Biskup, 1999) author used the model in-
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troduced by Wright (1936), i.e. the exponential, non-increasing job processing time
function dependent on its position in the schedule. The properties developed by
Biskup where then used by Mosheiov in (Mosheiov, 2001b; Mosheiov and Sidney,
2003; Mosheiov, 2001a). Independently, Cheng and Wang (2000) the linear model of
the learning curve was introduced. Future work with linear model of learning curve
was conducted in (Bachman and Janiak, 2004). Beside model in which processing time
of a job is dependent on its position in the sequence, the model with the processing
time dependent on the time that passed since start of schedule to the beginning of job
processing were introduced in (Kuo and Yang, 2006). Future work in this area include
(Biskup, 2008; Yin et al., 2009). Unfortunately, in the mentioned papers there a not
convincing, reasonable real-life examples of application of such scheduling problems
with learning effects.
The ageing effect is a very similar phenomenon to the ageing effect, however, the

function that describes the job processing time is non-decreasing, i.e. the processing
of a takes longer if it is processed later in the sequence. This phenomenon models
the degeneration of the processor with the number of jobs it processed or over time.
The exponential ageing effect in the scheduling area was introduced by Mosheiov
(2001a). Then Janiak and Śnieżyk (2004) and Bachman and Janiak (2004) the linear
model of ageing was introduced. More complex model were considered by Wang et al.
(2009), Cheng et al. (2008), and Janiak and Śnieżyk (2005a). Similarly, to the learning
effects the time dependent models were considered in (Janiak and Śnieżyk, 2005a;
Gawiejnowicz and Kononov, 2010). Again, in all those cited papers the convincing
practical application of considered scheduling problems is not presented which put in
question the motivation of the research on the ageing effect in the scheduling area.
The model that include both learning and ageing effects simultaneously in a single

model was introduced in by Lee (2004). He considered model in which processing time
of a job is dependent on its position in the sequence (the learning effect), however,
deteriorates with its starting time (ageing effect). The research on similar models
(combining the learning effect and deteriorating jobs) were continued by Wang (2007),
Yang and Kuo (2009), and Toksari et al. (2010). Another kind of model that combines
the learning and ageing effects was introduced by Sun (2009). In this model the actual
processing time of a job increases with its position in the sequence (the ageing effect),
but decreases with the total processing time of jobs already processed (the learning
effect). The research on this type of models was continued in (Cheng et al., 2010;
Wang and Liu, 2009).
In this section we briefly presented some basic results available in the scheduling

literature that deals with the learning and aging phenomenons. The reader interested
in more detailed survey is again referred to the paper by Janiak et al. (2011) which
is complete and up-to-date.
The models available in the literature that combine the both learning and age-

ing effects in a single model are very non-realistic (even bizarre) and again lack the
convincing real-life system of their application. Moreover, the interpretation of these
models is somehow difficult since they are extensions of complex models of learning
and ageing effects. Thus, in this paper we introduce a new model of simultaneous
learning and ageing that is easy to interpret which can be viewed as a basic linear
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model and we hope to find for it use in scheduling problems some convincing real-life
applications in computer engineering, or technical, or economical environment.

3. PROBLEM FORMULATION

Before we formulate the problem that is considered in the paper, first we introduce
the learning-aging model described by the piecewise linear curve, which is depicted
in Figure 1.

phase 1:
learning

noi
nai

n ni

pi

ai

bi

phase 2:
maturity

phase 3:
ageing

Fig. 1. The learning–ageing curve.

In the considered model, the processing time of a job (say i) which is executed
by the machine on the position ni in the sequence of n jobs is given by the following
function:

pi(ni) = ai − vimin{ni, noi}+ wimax{0, ni − nai}, (1)

where:
ai > 0 – the initial processing time of job i,
vi � 0 – the learning ratio of job i,
wi � 0 – the ageing ratio of job i,
noi � 1 – the learning threshold – the number of the last position at which the

learning effect can be observed; the end of the learning phase and the
beginning of the maturity phase,

nai � n – the ageing threshold – the number of the first position at which the
aging effect can be observed; the end of the maturity phase and the
beginning of the aging phase.

In the sequence of n jobs every job can be scheduled at one of n positions, so
the processing time can have n (potentially) different values. On the other hand, the
processing time of a job can be viewed as a function of the number of jobs processed
before this job, which is actually equal to the job position decremented by 1. Looking
at the Figure 1, we have to remember that the domain of the function is discrete, not
continuous, as the figure could suggest.
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On the basis of introduced above model (1) we formulate the following scheduling
problem. There is a given set J = {1, ..., n} of n non-preemptive jobs to be processed
on a single processor. Every job i ∈ J is defined by its release date ri � 0, i.e. the time
at which the job is available for processing, and the parameters of its processing time
pi(ni) given in (1), i.e. values ai, vi, wi, noi, nai. All the parameters have to take values
which ensure that for every position ni the processing time has a non-negative value.
The objective of the problem is to find a sequence of jobs (i.e. the permutation of the
set J) such that the schedule length (makespan) Cmax = maxi∈J{Ci} is minimized,
where Ci is the completion time of job i. For convenience, by Si we denote the starting
time of job i. It is clear that Ci = Si + pi(ni).
As mentioned, the sequence of job processing can be defined by a permutation

π = (π(1), ..., π(n)) of the set J , where π(k) denotes the job scheduled as kth in this
sequence. For a given permutation π the completion time of job scheduled at position
k can be calculated using the following formulae:

Cπ(k) = max{Cπ(k−1), rπ(k)}+ pπ(k)(k) (2)

for k = 1, ..., n, where π(0) = 0 and C0 = 0.
In the following sections, the defined above problem will be denoted as PLA.

4. PROBLEM PROPERTIES

Bachman and Janiak (2004) showed that the similar problem with job processing
time given as the linear function of job position pi(k) = ai − bik, which models the
learning effect only, is NP-hard in the strong sense. Similarly Janiak and Śnieżyk
(2005b) showed that the problem with processing times given as pi(k) = ai + bik is
also NP-hard in strong sense. From this facts, since both these problem are the special
cases of PLA, it follow that PLA is also NP-hard in the strong sense. Thus, we can
formulate the following corollary.

Corollary 1 The problem PLA is NP-hard in strong sense.

On the other hand, it can be showed that another special case of PLA denoted
here as PLA0, in which ri = 0 for all i ∈ J can be solved in polynomial time.
Proposition 1 The problem PLA0 can be solved in polynomial time O(n3).

Proof. Let xij are binary variables that indicate that if xij = 1 then job i is scheduled
at jth position and xij = 0 otherwise. In this situation we can formulate the problem
PLA0 as follows.
Minimize:

n∑

i=1

n∑

j=1

(ai − vimin{j, noi}+ wimax{0, j − nai}xij ,

subject to:
n∑

i=1

xij = 1, j = 1, ..., n,
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n∑

j=1

xij = 1, i = 1, ..., n,

xij ∈ {0, 1}.
As it can be seen the above formulation is an assignment problem instance which can
be solved in O(n3) time (e.g. Papadimitrou and Steiglitz, 1982; Ji et al., 1997).
Let I denote some instance of the problem PLA and I0 be the modification of I

such that ri = 0 for all i ∈ J . It is clear that I0 is an instance of PLA0. Let π0 denote
the optimal solution of I0, obtained according to Property 1. If we apply the solution
π0 to the original instance I we will have some feasible but not necessarily optimal
solution. However, solution π0 is optimal for PLA if the following property holds.

Proposition 2 If Si � ri for all i ∈ J in solution π0, then π0 is the optimal solution
to PLA.

Proof. It is easy to see, that in such case, the release dates of jobs don’t have impact
on the makespan value. So the obtained solution is the optimal one.
Finally, the following two properties, can be proved by simple job interchange

argument.

Proposition 3 For the problem PLA, if vi = v, noi = no, wi = w, and nai = na for
all i ∈ J then the optimal solution to the problem can be obtained by ERD rule, i.e.,
by sorting jobs according the non-decreasing values of their release dates (ri ↗).
Proof. Assume that the permutation π is optimal and doesn’t meet the statement
of the property. Thus, there exists at least one pair of jobs π(k) and π(k + 1) in π
such that

rπ(k) > rπ(k+1). (3)

Let π′ be a permutation constructed form π such that jobs π(k) and π(k + 1) are
interchanged. We will show that the completion time of the k+1th job in π′ is less (or
at most equal) to the k+1th job in π, i.e. Cπ′(k+1) � Cπ(k+1). This observation leads
to the conclusion that Cmax(π) � Cmax(π′) and π cannot be the optimal permuation.
Taking into account the formulae (2) and the fact that Cπ(i) = Cπ′(i), for i =

1, ..., k − 1 we can write the following equations:
Cπ(k) = max{Cπ(k−1), rπ(k)}+ aπ(k) − vmin{k, n0}+ wmax{0, k − na},
Cπ(k+1) = max{Cπ(k), rπ(k+1)}+ aπ(k+1) − vmin{k + 1, n0}+ wmax{0, k + 1− na},
Cπ′(k) = max{Cπ(k−1), rπ(k+1)}+ aπ(k+1) − vmin{k, n0}+ wmax{0, k − na},
Cπ′(k+1) = max{Cπ′(k), rπ(k)}+ aπ(k) − vmin{k + 1, n0}+ wmax{0, k + 1− na}.

(4)
We will show that the value Δ = Cπ(k+1) − Cπ′(k+1) is always non-negative.
Following (4) we have:

Δ = Cπ(k+1) − Cπ′(k+1) =
max{Cπ(k), rπ(k+1)}+ aπ(k+1) − vmin{k + 1, n0}+ wmax{0, k + 1− na}−
max{Cπ′(k), rπ(k)} − aπ(k) + vmin{k + 1, n0} − wmax{0, k + 1− na} =
max{Cπ(k), rπ(k+1)}+ aπ(k+1) −max{Cπ′(k), rπ(k)} − aπ(k).
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Noticing that Cπ(k−1) < Cπ(k) and Cπ′(k−1) < Cπ′(k), and taking into account
(3) we have to consider the following 4 exhaustive cases:

1) rπ(k+1) < rπ(k) � Cπ(k+1)
We have

Δ = max{Cπ(k), rπ(k+1)}+ aπ(k+1) −max{Cπ′(k), rπ(k)} − aπ(k) =
Cπ(k) + aπ(k+1) − Cπ′(k) − aπ(k) =
Cπ(k−1) + aπ(k) − vmin{k, n0}+ wmax{0, k − na}+ aπ(k+1)−
Cπ(k−1) − aπ(k+1) + vmin{k, n0} − wmax{0, k − na} − aπ(k) = 0.

2) rπ(k+1) � Cπ(k−1) < rπ(k) � Cπ′(k)
We have

Δ = max{Cπ(k), rπ(k+1)}+ aπ(k+1) −max{Cπ′(k), rπ(k)} − aπ(k) =
Cπ(k) + aπ(k+1) − Cπ′(k) − aπ(k) =
rπ(k) + aπ(k) − vmin{k, n0}+ wmax{0, k − na}+ aπ(k+1)−
Cπ(k−1) − aπ(k+1) + vmin{k, n0} − wmax{0, k − na} − aπ(k) =
rπ(k) − Cπ(k−1) > 0.

3) rπ(k+1) � Cπ(k−1) < Cπ′(k) � rπ(k)
We have

Δ = max{Cπ(k), rπ(k+1)}+ aπ(k+1) −max{Cπ′(k), rπ(k)} − aπ(k) =
Cπ(k) + aπ(k+1) − rπ(k) − aπ(k) =
rπ(k) + aπ(k) − vmin{k, n0}+ wmax{0, k − na}+ aπ(k+1) − rπ(k) − aπ(k) =
aπ(k+1) − vmin{k, n0}+ wmax{0, k − na} = pπ(k+1) > 0.

4) Cπ(k−1) < rπ(k+1) < rπ(k) � Cπ′(k)
We have

Δ = max{Cπ(k), rπ(k+1)}+ aπ(k+1) −max{Cπ′(k), rπ(k)} − aπ(k) =
Cπ(k) + aπ(k+1) − Cπ′(k) − aπ(k) =
rπ(k) + aπ(k) − vmin{k, n0}+ wmax{0, k − na}+ aπ(k+1)−
rπ(k+1) − aπ(k+1) + vmin{k, n0} − wmax{0, k − na}+ aπ(k) =
rπ(k) − rπ(k+1) > 0.

We have shown, that in every case the value of Δ is non-negative, which completes
the proof.

Proposition 4 For the problem PLA, if vi = v, noi = no, wi = w, and ri = 0 for
all i ∈ J then the optimal solution to the problem can be obtained by sorting jobs
according the non-decreasing values of their parameters nai (nai ↗).

Proof. The proof is very similar to the proof of Property 3 and therefore will be
omitted.
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5. HEURISTIC ALGORITHMS

The considered problem is strongly NP-hard so it is highly unlikely to find an algo-
rithm which can solve this problem in polynomial time. Therefore we propose a few
efficient heuristics to find an optimal solution. To solve the problem we constructed
four algorithms based on Properties 1–4. These algorithms are denoted respectively
as ri ↗, nai ↗, ASSIGNMENT , and NEH.
In the ri ↗ algorithm ties are broken according to the non-decreasing values

of the parameter vinoi − winai. In the nai ↗ algorithm ties are broken according
to the non-increasing values of the product winai. The NEH algorithm is a direct
adaptation of the insertion procedure proposed by Nawaz et al. (1983).
All tests were made on the computer with Intel CoreTM 2 Duo 3.00GHz, 2GB

RAM and Windows 7. We constructed four sets of instances with different parameters
of jobs. For every set, we described the interval of numbers for every parameter of
job in the instance. Parameters for every particular job in the instance are uniformly
distributed from those interval.
Test set 1 (small ri values compared with ai, small vi and wi values compared
with ai)

ri ∈ [10, 50n], ai ∈ [50, 100], vi ∈ [0.1, 1], wi ∈ [0.1, 1], noi ∈ [0, n/2−1], nai ∈ [n/2, n−1]
where n is a number of jobs.
Test set 2 (large ri values compared with ai, small vi and wi values compared with ai)

ri ∈ [10, 100n], ai ∈ [50, 100], vi ∈ [0.1, 1], wi ∈ [0.1, 1], noi ∈ [0, n/2−1], nai ∈ [n/2, n−1]
where n is a number of jobs.
Test set 3 (small ri values compared with ai, large vi and wi values compared with ai)

ri ∈ [10, 8n], ai ∈ [5, 10], vi ∈ [0.1, 1], wi ∈ [0.1, 1], noi ∈ [0, n/2− 1], nai ∈ [n/2, n− 1]
where n is a number of jobs.
Test set 4 (large ri values compared with ai, large vi and wi values compared with ai)

ri ∈ [10, 40n], ai ∈ [5, 10], vi ∈ [0.1, 1], wi ∈ [0.1, 1], noi ∈ [0, n/2− 1], nai ∈ [n/2, n− 1]
where n is a number of jobs.
To compare the efficiency of the algorithms, we define the relative gap to the best

(optimal) objective value as:

CAmax − COPTmax

COPTmax

× [100%],

where CAmax is a criterion value found by an algorithm
A ∈ {ri ↗, nai ↗, ASSIGNMENT,NEH}, for a given instance, and COPTmax is an
optimal value of the criterion for an instance with n � 9 , which was generated by an
exhaustive search method, and the best found value found by all the algorithms for
n > 9.
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Table 1. The efficiency of the algorithms for the instances of the Test set 1.

n ri ↗ noi ↗ ASSIGN NEH
9 0.2 30.6 1.6 1.2
50 0.2 51.8 1.0 6.8
100 0.3 59.9 0.5 9.9
average 0.2 47.4 1.0 6.0

Table 2. The efficiency of the algorithms for the instances of the Test set 2.

n ri ↗ noi ↗ ASSIGN NEH
9 0.0 35.9 5.9 2.2
50 0.0 49.3 10.8 8.5
100 0.0 48.6 11.9 8.6
average 0.0 44.6 9.5 6.4

Table 3. The efficiency of the algorithms for the instances of the Test set 3.

n ri ↗ noi ↗ ASSIGN NEH
9 0.4 37.5 5.0 2.7
50 0.0 44.5 9.8 20.4
100 0.1 48.1 11.0 31.5
average 0.2 43.4 8.6 18.2

Table 4. The efficiency of the algorithms for the instances of the Test set 4.

n ri ↗ noi ↗ ASSIGN NEH
9 0.0 8.4 1.5 0.1
50 0.0 8.0 2.5 1.9
100 0.0 10.1 3.2 4.5
average 0.0 8.8 2.4 2.2

Table 5. The average efficiency of the algorithms for the instances of all the Test sets.

n ri ↗ noi ↗ ASSIGN NEH
average 0.1 36.1 5.4 8.2

The results of tests for every set are presented in Tables 1 to 4. For every set,
algorithm and values of n ∈ {9, 50, 100}, we calculated a performance ratio. Last row
of the table is an average performance ratio over the test set for every algorithm. In
Table 5, we can find the values of total performance ratio, which is an average value
of average performance ratios over all test sets.
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According to our expectations, the efficiency of algorithms which are based on
the release date values is the best. The rest of the algorithms are based on different
parameters of jobs and the release dates do not influence on the order of jobs in a
solution. If there is a job with large value of release date and the algorithm schedule
this job on the first position, the solution generated by this algorithm can be far from
an optimal one. The efficiency of those algorithms depends on the relation between
parameters of the job, but it increases if ri values are small in comparison with ai.

6. CONCLUSIONS

In this paper we introduced a new model of scheduling problems, which takes into
account the learning and ageing effects simultaneously. In this model the processing
time of a job is described by piecewise linear function of its position in the jobs
sequence and consists of three phases of the processor efficiency: the learning phase,
the maturity phase, and the ageing phase. On the basis of this model we formulated
the single machine makespan minimization problem and showed its computational
complexity (strong NP-hardness) as well as its special cases that can be solved in
polynomial time.
On the basis on showed problem properties we proposed 4 heuristic algorithms

to solve general case of the problem. The efficiency of proposed algorithms is verified
by experimental analysis and shows their practical applicability in the environments
that accepts relative error about 10 percent to the optimal solution.
The model introduced in this paper can be extended to other machine environ-

ments (such as parallel machines, shop problems), as well as introduce more complex
(nonlinear) shapes of the learning-ageing functions. However, it would be sense to con-
sider (from practical point of view) such kind of problems if some reasonable real-life
examples of applications of the considered models are found.
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