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A Utility Function
to Solve Approximate Linear Equations

for Decision Making

Kiyoshi Yoneda∗, Walter Celaschi∗∗

Abstract. Suppose there are a number of decision variables linearly related to a set of outcome
variables. There are at least as many outcome variables as the number of decision variables
since all decisions are outcomes by themselves. The quality of outcome is evaluated by
a utility function. Given desired values for all outcome variables, decision making reduces to
“solving” the system of linear equations with respect to the decision variables; the solution
being defined as decision variable values such that maximize the utility function. This paper
proposes a family of additively separable utility functions which can be defined by setting
four intuitive parameters for each outcome variable: the desired value of the outcome, the
lower and the upper limits of its admissible interval, and its importance weight. The utility
function takes a nonnegative value within the admissible domain and negative outside; permits
gradient methods for maximization; is designed to have a small dynamic range for numerical
computation. Small examples are presented to illustrate the proposed method.
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1. INTRODUCTION

We aim to devise a tool for decision making such that anyone with a rudimentary
understanding of linear equations will be able to build and solve a model. The method
is similar to the weighted least squares, except that instead of minimizing the usual
quadratic loss function a slightly more elaborate utility function is maximized.

Consider approximate linear equations φx ≈ y, where x is a vector of decision
variables, y the desired outcomes, and φ a matrix describing the linear causality

∗ Department of Industrial Economics, Fukuoka University, Jounan-ku, Fukuoka, 814-0180 Japan,
e-mail: yoneda@econ.fukuoka-u.ac.jp, corresponding author

∗∗ Departament of Production Engineering, Faculdades de Campinas (FACAMP), Estrada Mu-
nicipal UNICAMP – Telebrás Km 1, s/n, Cidade Universitária – Campinas/SP, Brazil,
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relationship; dimx ¬ dim y is secured by including all equations of the form xj ≈ yj .
Its solution x̂ := arg maxx U(x) is given by maximizing the utility function U defined as
a weighted sum U(x) :=

∑
wi u(ŷi(x)) of subutiliy functions u with ŷi(x) :=

∑
φij xj ,

where wi is a given importance weight.
Now define a subutility function u(z) := u(z; y, a, b) with y ∈ [a, b] satisfying

the following requirements: u is continuously differentiable; u is quadratic in [a, y]

and also in [y, b]; u is linear for z < a and b < z; and u(y) = 1, du(z)
dz

∣∣∣
z=y

= 0, with

u(a) = u(b) = 0. Such u exists uniquely:

u(z; y, a, b) :=


(c− z)(c− 2y + z)

(c− y)2 z ∈ [a, b]

2(c− z)
c− y

z /∈ [a, b]
where c :=


a z < y

b y < z

(1)

A major advantage of this subutility function is that it has only three intuitive
parameters: y, the ideal value of z; a, the lowest acceptable value of z; and b, the
highest acceptable value of z. The method differs from the weighted least squares in
that u is generally asymmetric around y, not necessarily y − a = b− y .

The optimization procedure permits gradient methods since u is continuously
differentiable, which is important for scalability. The tails of u are chosen to be linear
rather than quadratic aiming to prevent numerical overflow in a resource-constrained
computation devoid of floating point arithmetics. This consideration is in the hope to
facilitate implementations as embedded systems, such as for robots.

To build a model with this method one has to provide the causality matrix φ, and
for each outcome the parameters y, a, b, and w, which have clear meanings, justifying
the claim that anybody who understands linear equations can build and solve a model.
Some application ideas and small numerical examples will be presented.

In a previous paper (Yoneda 2008) one of the authors proposed to solve similar
problems using subutility functions defined only within the open interval ]a, b[. After
a few years of experience we concluded that the approach was impractical because:

– a feasible solution may be difficult to find when no status quo is available,
– no recommendation will be available when no feasible solution is found,
– evaluation of the subutility function was expensive, and
– it would cause numerical overflow near both extremes of the interval.

This paper corrects those inconveniences by eliminating the hard constraints. For
further motivations of the research the readers are referred to (Yoneda 2008, Wichers
1996) and references therein.

The remainder of this paper is organized as follows. In Section 2 the linear inverse
problem is briefly reviewed. Section 3 lists some attributes that the utility function
should satisfy in order to formulate and solve it. The major contribution of this paper
is in Section 4 which defines a subutility function to satisfy those desirable attributes.
Sections 5 and 6 present small examples to illustrate the proposed methodology in
detail. Section 7 discusses research directions including applications to embedded
systems.
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2. LINEAR INVERSE PROBLEM

Suppose we have a number of decision variables x =
[
· · · xj · · ·

]′
, where the prime

denotes transposition. By controlling x we hope to adjust the outcomes of interest
y =

[
· · · yi · · ·

]′
. Since the values of decision variables constitute a part of the

outcomes of interest, we set the first part of y to be equal to x . Now assume that we
have an idea of how a small change in decision variables x is related to the outcomes y,
and that the relationship is expressed by a linear function φ : x 7→ y . Then, making
an appropriate decision is equivalent to “solving” the system φ x ≈ y of approximate
linear equations with respect to x .

Thus, the system of approximate equations we propose to solve has the identity
matrix as the upper part of the technical coefficient matrix φ, of the form:

φ x ≈ y

1
. . .

1
...

· · · φij · · ·
...




...
xj
...

 ≈


...
xj
...
yi
...


(2)

ensuring dimx ¬ dim y.

Its solution

x̂ := arg max
x

U(x)

is given by maximizing the utility function U defined as a weighted sum

U(x) :=
∑

wi u(ŷi(x))

of subutiliy functions u with

ŷi(x) :=φi • x =
∑

φij xj ,

where

φi • :=
[
· · · φij · · ·

]
is the i-th row of φ and wi is a given importance weight.

The usual method of solution for such linear inverse problems is the weighted least
squares which sets u(ŷ(x)) := −{ŷi(x)− yi}2, whereas this paper proposes a slightly
more elaborate subutility function u which can be asymmetric around its mode.



8 K. Yoneda, W. Celaschi

3. REQUIREMENTS

Of the subutility functions to be derived we require the following:

Asymmetricity: a subutility function may be asymmetric around its mode.
Minimally specified: a subutility function may be specified with a minimal number

of easily obtained parameters.
Easily optimizable: a utility function may easily be maximized with respect to the

decision variables using resource-constrained computers, such as microcontrollers
and digital signal processors.

An additively separable concave utility function is a function of the form:

U(. . . , zi, . . .) :=
∑

wi ui(zi),

zi ∈ R, 0 ¬ wi ¬ 1,
∑

wi = 1 (3)

where the subutility functions −∞ < ui(zi) ¬ 1 are strictly concave and R is the set
of real numbers. Such utility functions are known to be easily optimizable. In the
subsequent part of this paper the suffix i will usually be dropped because we will be
referring more to u than to U.

Consider a unimodal asymmetric strictly concave subutility function such that:

u(z) = u(z; y, a, b)

a < y y < b (4)

u(y) = 1 u(a) = u(b) = 0

permitting negative utilities beyond [a, b]. This specification is minimal in the sense
that it would have to state at least the most desirable value y and the acceptable
range [a, b] . A simplest implementation would be:

u(z; y, a, b) :=


1− z − y

a− y
z < y

1− z − y
b− y

y ¬ z
(5)

which is often found in control and artificial intelligence literatures. The maximization
of U in this case would have to rely on subgradient methods which are inefficient
compared to gradient methods.

4. SUBUTILITY FUNCTIONS

In order to make the utility function efficiently optimizable by permitting gradient
methods we require that u be differentiable with

du(z)
dz

∣∣∣∣
z=y

= 0 (6)
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By requiring further that u be two-piece quadratic in [a, y] and [y, b] and linear outside
the interval [a, b], we have:

u(z; y, a, b) :=



2(z − a)
y − a

z ¬ a

(a− z)(a− 2y + z)
(y − a)2 a < z < y

(b− z)(b− 2y + z)
(y − b)2 y ¬ z < b

2(z − b)
y − b

b ¬ z

(7)

or, in a shorter form, (1).
The two central expressions1 of (7), which are for the permissible range z ∈ [a, b],

follow from the conditions that:

u(a) = 0 u(y) = 1 u(b) = 0
du(z)
dz

∣∣∣∣
z=y

= 0.

The parts beyond the permissible range are linear extensions of the quadratic functions.
These terminal parts are chosen to be linear rather than quadratic hoping to reduce
numerical overflows: in resource-constrained computation floating points are usually
unavailable, severely limiting the dynamic range of numbers.

The gradient of the utility function U may be calculated from the derivative
of (1):

du
dz

(z; y, a, b) =


2(y − z)
(y − c)2 z ∈ [a, b]

2
y − c

z /∈ [a, b]
where c :=

{
a z < y

b y < z ,

∇U =
([
· · · wi

∂ui(zi)
∂zi

· · ·
]
φ

)′
(8)

The procedures to follow are the same as in the weighted least squares, the only
difference being that rather than minimizing the quadratic loss function, the utility
function (7) is maximized. While (7) is easier than (5) to maximize permitting gradient
methods, it excludes methods requiring continuous second derivatives.

An important remaining issue is how to set the weights wi, which permits various
ways. Methods such as AHP2 could be used, for instance. Since there are various prob-
lems involved in setting up importance weights, an in-depth discussion would deserve
a separate paper.
1 This portion coincides with the loss function for the asymmetric Gaussian distribution (Kato et al.

2002) with the sign inverted and then shifted upwards by one: u(z) = 1− loss(z) for z ∈ [a, b] .
2 Analytic hierarchy process. See for instance, http://en.wikipedia.org/wiki/Analytic_
Hierarchy_Process
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5. PEANUTS AND BEER EXAMPLE

5.1. PROBLEM FORMULATION

Suppose you wish to have some buttered peanuts and a beer under a budget and an
energy intake specifications. Let:

x1 := peanuts amount [g = grams],

x2 := beer amount [ml = milliliters],

x3 := peanuts cost [cu = currency units],

x4 := beer cost [cu],

x5 := peanuts energy [kcal = kilocalories],

x6 := beer energy [kcal].

Actually you wish to have a 50 g sack of peanuts with a 350 ml bottle of beer:

x1 = 50 [g]

x2 = 350 [ml] ;

the bartender can adjust the quantities.
You know that both peanuts and beer require a fixed cost plus a cost proportional

to the amount:

1 + 1
50 x1 [cu]

1
2 + 1

100 x2 [cu]

and that both have fixed calories per quantity:

592
100 x1 [kcal]

142
350 x2 [kcal]

You are willing to pay the fixed costs of 1 + 1
2 = 3

2 cu to gain a total energy intake
of 200 kcal:

3
2 + 1

50x1 + 1
100x2 = 3

2 [cu]

592
100x1 + 142

350x2 = 200 [kcal]

But this is impossible since if the peanuts are x1 = 50 g and the beer is x2 = 350 ml
the cost and the energy will be:

3
2 + 1

50 × 50 + 1
100 × 350 = 6 [cu]

592
100 × 50 + 142

350 × 350 = 438 [kcal]
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So you relax the requirement specifications to:

Peanuts should ideally be 50 g, hopefully between 30 and 100.
Beer should ideally be 350 ml, hopefully between 100 and 500.
Cost should ideally be 3

2 cu, hopefully between 0 and 5.
Energy should ideally be 200 kcal, hopefully between 150 and 300.

Now you decide that you will try to fulfill your goals as much as possible by
controlling the amounts to eat x1 and drink x2 rather than by controlling your expense
or energy intake. This means that the causality relationship has been established as:

peanuts [g] //

''

expense [cu]

beer [ml] //

77

energy [kcal]

with the arrows indicating the direction of causality, so that the system of approximate
equations has to be solved with respect to x = [x1, x2]′.

Furthermore, you give a clearer meaning to the near-equalities “≈” by assigning
importance weights to each outcome, reflecting your priorities. Suppose they are
w := 1

10 [3, 3, 1, 3]′ . Then, the entire situation may be restated as:

x1
.3
≈ 50 ∈ [30, 100] [g]

x2
.3
≈ 350 ∈ [100, 500] [ml]

3
2 + 1

50 x1 + 1
100 x2

.1
≈ 3

2 ∈ [0, 5] [cu]

592
100 x1 + 142

350 x2
.3
≈ 200 ∈ [150, 300] [kcal]

or, subtracting the constant term 3
2 from both sides of the third equation:

φx
w
≈ y [unit a b w]

1 0
0 1
.02 .01
5.92 .406

[x1

x2

]
w
≈


50
350
0

200




g 30 100 .3
ml 100 500 .3
cu −1.5 3.5 .1

kcal 150 300 .3

 (9)

5.2. UTILITY FUNCTION

The subutility function for beer looks like in Figure 1. Note that the subutility goes
negative for beer less than 100 ml and over 500 ml. For comparison, the subutility
function corresponding to (5) is illustrated in dashed lines. Similar subutility functions
exist for all other equations, viz. for the peanuts, cost, and the energy intake.
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100 200 300 400 500

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beer [ml]

ut
ili
ty

Fig. 1. The subutility function for the beer.
The ideal amount of beer is 350 ml

The utility function is a weighted sum of all those subutility functions:

U(x) :=
∑
i

wi u(φi• x; yi, ai, bi)

=.3 u(x1; 50, 30, 100) +

.3 u(x2; 350, 100, 500) +

.1 u(.02 x1 + .01 x2; 0,−1.5, 3.5) +

.3 u(5.92 x1 + .406 x2; 200, 150, 300)

A diagrammatical representation is in Figure 2.
Since there are only two decision variables, the quantities x = [x1 x2]′ of peanuts

and beer, the utility function U(x) = U(x1, x2) may be illustrated as in Figure 3. The
portion below the flat surface of zero utility has negative utilities.
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Decision Outcomes Subutilities Utility

x1
≈ 50 [g] ∈[30,100] // u1

.3

%%
x1

1

77

.2

''

5.92 44

x2
≈ 350 [ml] ∈[100,500] // u2

.3 // U

x2

1
77

.1 //

.406 ''

.02x1 + .01x2
≈ 0 [cu] ∈[−1.5,3.5]

// u3

.1

99

5.92x1 + .406x2
≈ 200 [kcal] ∈[150,300]

// u4

.3

CC

Fig. 2. Formulation

Peanuts

Beer

Utility

Fig. 3. The utility as a function of the amounts of peanuts and beer.
Penuts range from 0 to 80 g; beer ranges from 0 to 500 ml
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5.3. RESULTS

The input items required for obtaining a result are all that are listed in (9) except the
vector x of decision variables. The corresponding result is summarized in Table 1 for
easy comparison of the recommendation against the original plan.

Table 1. Beer specs against recommendation

Input Output

Item y a b w ŷ u0 u wu

Peanuts 50 30 100 .3 34 1 .386 .116

Beer 350 100 500 .3 150 1 .362 .109

Cost 0 −1.5 3.5 .1 2.19 0 .609 .061

Energy 200 150 300 .3 264 −2.76 .588 .176

Total .462

The “Input” columns list the input except the technology coefficient matrix φ . The
“Output” columns consist of:

ŷ = recommended decision and corresponding outcome,
u0 = subutilities attained by the ideal x disregarding its outcome,
u = subutilities attained by the recommended x,

wu = subutilities u above multiplied by the item’s importance weight w, with the
utility U = w′u =

∑
wi ui.

Items with unacceptable outcomes are easily identifiable by checking negative
utilities in columns u0 and u or wu . It is clear at a glance that the recommended
decision x̂ = [34 150]′ is superior to the initial decision x0 = [50 350]′ since u has no
negative while u0 has.

5.4. INTERPRETATION

Table 1 suggests that your utility will be maximized if you have peanuts of x1 = 34 g
and a beer of x2 = 150 ml for a cost of 3

2 + 1
50 x1 + 1

100 x2 = 3.7 cu and an energy
intake of 592

100 x1 + 142
350 x2 = 264 kcal at an utility value of U(x) = .462, which may

be interpreted as “46% satisfied” against the 100% for the fictitious case in which all
requirements are fully met. The largest source of frustration under this suggestion
would be the amount of beer, which you get less than a half the desired amount. The
next source of frustration is the amount of peanuts which you have only slightly more
than the minimum. In compensation, you don’t have serious complaints regarding the
cost and the energy intake.

It is worth noting that the information contained in the basic model (9) is enough
to derive the consumer’s demand curve by changing the beer price, currently set at
0.01 cu/ml, through some range of interest. This is a great advantage in marketing
if the consumer’s behavior is desired to be predicted. In this particular example the
demand curve is found to be nearly flat, only slightly decreasing with respect to
the price, indicating that the price is unimportant.
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6. PRODUCTION PLANNING EXAMPLE

This section presents a problem with a flavor in production planning:

– You run a factory that produces plastics, hard and soft. You need to decide how
much of them you will produce this coming week.

– The sales department says that they want 4 and 6 [t = tons] of hard and soft
plastics. Since you have product stocks and some space in the warehouse, the
quantities produced would be acceptable if they are between 4.5 and 5 t for hard
and between 4 and 7 t for soft plastics.

– The purchase department says that they will have 10 t raw material available,
which serves to produce both hard and soft plastics. Considering the relationship
with the supplier, it is undesirable to order less than 8 t. Also, it will be difficult
to prepare more than 13 t even considering purchase not only from the supplier
but also from the market.

– The personnel department says that they have 8 [p = persons] available for the
next week. It is possible, however, to adjust it between 7 and 9 p by reducing or
extending work hours, without hiring or firing.

– The engineering department says that they have 15 [m = machines] leased for
production, but can reduce to 12 m or increase to 17 m by adjusting operation
time and machine speed.

– The production department says that in order to produce 1 t of hard plastics
you need 2 t material, 1 p labor, and 3 m machines, while to produce 1 t of soft
plastics you need 1 t material, 1 p labor, and 1 m machine.

This last paragraph means that if the decision variables are the amounts of hard
and soft plastics produced, then the technical coefficient matrix is:

φ :=


1 0
0 1
2 1
1 1
3 1


It is clear that the production as the sales department suggests is impossible, since
the material, labor, and machines will all be short.

As the factory head you weigh the importance of each department’s statement
and come to conclude that their relative weights are w := [.2 .2 .1 .3 .2]′. By the
department statements a specifications table may be prepared, which completes input
necessary to run the software for recommendation. Table 2 shows the specifications
against recommendation.
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Table 2. Plastics specs against recommendation

Input Output

Item y a b w ŷ u0 u wu

Hard 4 3.5 5 .2 3.8 1 .815 .163

Soft 6 4 7 .2 4.3 1 .290 .058

Material 10 8 13 .1 11.9 −.667 .605 .061

Labor 8 7 9 .3 8.1 −2 .990 .297

Machine 15 12 17 .2 15.7 −1 .888 .178

Total .756

Following the recommendation, which suggests to produce 3.8 t hard and 4.3 t
soft plastics, makes all requirements fall into the permissible range with utility .756.
The utility function is as in Figure 4.

Hard [t]

S
of

t [
t]

2.5 3.0 3.5 4.0 4.5 5.0

2
3

4
5

6
7

Fig. 4. The utility function for plastics
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7. DISCUSSION

A practical advantage of the proposed method is that the model can be built, if neces-
sary, entirely subjectively in the absence of objective data. The present implementation
is in R (R Core Team 2012), in which all function graphs in this paper have been
generated.

One of the authors has given a one-semester course on linear equations including
the weighted least squares and the method proposed in this paper, with numerical
computation using R. The class consisted of about 40 students, 3/4 of which being
second-year undergraduates in economics with no previous exposure to linear algebra
or computer programming. The rest of the students were mixed, ranging from graduate
level to near-dropouts. Here is a part of a problem given in the final exam:

You wish to employ fifty skilled and three hundred unskilled workers. A skilled worker
receives double the salary of an unskilled. A skilled worker’s productivity is three times
that of an unskilled. You are interested in the numbers of skilled and unskilled workers,
the total salary to pay, and the number of products to deliver. Assuming that you adjust
them by deciding upon the numbers of skilled and unskilled workers, describe a matrix
relating the decision variables to the outcome variables, disregarding the fixed costs.

This requires at least an elementary understanding of matrix in order to answer.
Among about 30 who took the exam only 1/3 was able to come up with the correct
answer3. It seems to suggest that a serious stumbling block for a student to build
a model of her own is in setting up a technical coefficient matrix φ. Incidentally, some
understanding of optimization was helpful but not essential in learning.

Embedded systems, notably robotics among them, is a potential field of application
of this method as has been mentioned in Section 1. Consider an autonomous system, for
instance a house cleaning robot. The robot makes decisions to fulfill conflicting desires:
it may want to minimize its energy consumption while maximizing the amount of dust
collected. If the robot behaves according to a microeconomic model, its behavior may
be hoped to be understandable: a utility maximizing robot should be easier to debug
than a robot behaving according to a black box decision mechanism, especially under
a social situation in which many robots interact.

An inevitable research direction is in how to set up the importance weights, as
has been touched upon in Section 4. In weighted least squares the importance weights
are set to be a−2 assuming y = 0 and −a = b, meaning that all independent outcomes
are considered with equal importance after having each of them standardized to mean
zero and standard deviation one. This is reasonable because in this case both the
permissible interval and the numerical accuracy have the same representation, which is
the standard deviation. In our case, however, the permissible interval and the numerical
accuracy have separate representations, hence calls for a new method for importance
weight setting.

An interesting way to set up the weights would be to “solve” (3) with respect
to wi, given instances of ui, which may be computed, and U values, which may be

3 A natural response seems to be: “since the skilled workers are more efficient than the unskilled,
forget about the unskilled: employ only the skilled”.
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given subjectively. This problem is dual to (2) in the sense that both take the same
form, hence no extra methodology or software will be necessary.

ACKNOWLEDGMENTS

The authors are grateful to an anonymous referee for valuable suggestions.

REFERENCES

Kato, T., Omachi, S., Aso, H., 2002. Asymmetric gaussian and its application to pattern recog-
nition. In: Joint IAPR International Workshops on Syntactical and Structural Pattern
Recognition and Statistical Pattern Recognition (S+SSPR2002). Barcelona, pp. 405–
413, www.iic.ecei.tohoku.ac.jp/~kato/papers/t.kato_spr2002a.pdf, viewed 2012–
02–15.

R Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, www.R-project.org/

Wichers, R., 1996. A Theory of Individual Behavior. Academic Press.
Yoneda, K., 2008. A loss function for box-constrained inverse problems. Decision Making

in Manufacturing and Services 2 (1–2), pp. 79–98, www.dmms.agh.edu.pl/Volume_2/
DMMS_2_Yoneda.pdf


