
Decision Making in Manufacturing and Services
Vol. 16 • 2022 • pp. 47–65

Heuristic Algorithm for Lot Sizing and Scheduling
on Identical Parallel Machines

Roger Książek∗

Abstract. This paper presents a new heuristic algorithm for the task of lot sizing and schedul-
ing for identical parallel machines. The new algorithm is based on the rolling-horizon ap-
proach and the fix-and-relax decomposition technique. Two variants of the algorithm are
finally proposed for solving the problem of lot scheduling with parallel machines where the
number of products and machines is greater than that of the machines. A computational
experiment has been conducted for a group of 30 data sets. The results showed that the new
algorithm efficiently provided good solutions for tasks with large numbers of machines and
products.
Keywords: lot sizing, lot scheduling, identical parallel machines, heuristics, algorithm

Mathematics Subject Classification: 68M20, 90C11

JEL Classification: O14, D24

Submitted: March 10, 2022

Revised: December 12, 2022
©2022 Author. This is an open access publication, which can be used, distributed and reproduced in any
medium according to the Creative Commons CC-BY 4.0 License. License requiring that the original work
has been properly cited.

1. INTRODUCTION

Scheduling the deliveries of raw materials, products, and semi-finished products as well
as the receipts of finished products is crucial in production company management.
Setting the dates for supply and distribution depends on a production plan that
determines the dates and demands for particular raw materials and semi-finished
products as well as the deadlines for the completions of particular production stages.
This allows us to indicate the deadlines for the productions of semi-finished products
and finished goods to be delivered to customers. Therefore, logistic flow management
is related to the lot sizing and scheduling that enable us to define the volumes of
production lots and plan production slots and changeovers.

Lot sizing and scheduling is a problem in the field of production engineering,
which deals with the development of scheduling methods for different production
systems (among other things). Over the last few decades, many methods of solving
∗AGH University of Science and Technology, Faculty of Management, Krakow, Poland, e-mail:
roger@agh.edu.pl

DOI: https://doi.org/10.7494/dmms.2022.16.4105 47

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7494/dmms.2022.16.4105

48 R. Książek

lot sizing and scheduling problems have been developed (Jans & Degraeve, 2008;
Pochet & Wolsey, 2006).

This paper presents a new heuristic algorithm for the task of lot sizing and
scheduling for identical parallel machines.

In such a task, a product lot is manufactured in order to meet a deterministic
demand within a finite time frame that is divided into periods. The production runs on
several identical parallel machines with finite production capacities. The production
output of a given machine must not exceed its capacity throughout the entire period.
If a given machine manufactures various products, a changeover is required between
the lots of the different types. Each changeover generates costs and consumes time.

The aim of production scheduling is to develop a production plan that minimizes
inventory and production costs. Compromise solutions that minimize total costs are
desired. On one hand, large lots reduce the number of changeovers, but on the other
hand, they require high inventory levels and result in increased costs. With smaller
production lots and lower inventory levels, the costs are moderate; however, a large
number of lots means that the costs of the changeovers are frequently incurred.

The aim of this study was to develop a heuristic algorithm for identical parallel
machines. Haase (1994) presented a randomized algorithm that makes backward de-
cisions about changeovers and lot sizing (backward add-method). Due to the random
nature of the decision-making rules, this algorithm provides many solutions; the best
ones have been selected. This paper shows that Haase’s algorithm can be applied in
tasks with many identical parallel machines.

2. MODELS OF TASKS WITH PARALLEL MACHINES

In a task of lot scheduling for parallel machines, the production runs on a group
of identical parallel machines with finite capacity. The products are manufactured
to meet a deterministic demand on a certain scheduling horizon divided by a given
number of periods. The production output of a given machine must not exceed its
capacity during any scheduled period. When switching production from one product
onto another, a machine changeover is required. Each changeover generates costs and
takes time; its time must be shorter than the duration of the whole period. The costs
and times of changeovers do not depend on the orders in which the lots are produced.

The aim of production scheduling is to develop a production plan that minimizes
inventory costs and production costs.

There are two ways to formulate the mixed-integer programming (MIP) models
for the tasks of lot sizing and scheduling on identical parallel machines. In the first
approach, the model defines the binary variables separately for each machine (Kimms
& Drexl, 1998). The binary variables indicate whether a given machine meets certain
conditions that are required in the task; e.g., the machine is ready to produce a given
product in a given period of time or it is not.

Such a formulation of a task results in a situation where we get many practi-
cally identical symmetrical solutions that differ only in terms of the machine num-
bers. Analyses of symmetrical solutions only increase the calculation workload in the
branch-and-bound method, as the same solution is evaluated multiple times.

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 49

In the second approach, the task formulation is based on the aggregation of ma-
chines. The binary variables are replaced by integer variables that indicate the number
of machines that fulfill certain requirements in a task; e.g., the number of machines
that have been changed over and are ready to produce a given lot in a specific period.

Binary variables yijt and zjt can be replaced with aggregated variables where
yjt = ∑i∈M yijt and zjt = ∑i∈M zijt. Lasdon (1971) used such variables and formulated
a DLSP model with identical parallel machines. Table 1 contains a list of the basic
symbols that are used to describe the models.

Table 1. List of basic symbols

Data
T = {1, ..., T} – set of periods, T – number of periods,
N = {1, ...,N} – set of products, N – number of products,
M = {1, ..., µ} – set of machines, µ – number of machines.
Parameters
djt – demand for product j in period t,
Ct – length of period t,
pj – unit time of manufacturing product j,
STj – time of changeover to product j,
Ij0 – initial inventory of product j,
SCj – cost of changeover to product j,
hj – unit cost of product j inventory.

Continuous variables
ajkt – relative part of total capacity of all machines whose productions of product j are

stopped and productions of product k are started in period t, reserved for product k
after changeover,

bjkt – relative part of total capacity of all machines whose productions of product j are
stopped and productions of product k are started in period t, reserved for product j
before changeover,

Ijt – inventory of product j by end of period t,
q(i)jt – production lot of product j in period t (on machine i).
Binary and integer variables
fjkt – number of machines changed over from product j to product k in period t,
fjjt – number of machines producing product j in period t − 1 that are ready to produce

product j in period t.
yjt = 1 – machine ready to produce product j in period t, 0 – otherwise,
zjt = 1 – production of product j is started on machine in period t, 0 – otherwise.
yijt = 1 – machine i is ready to produce product j in period t, 0 – otherwise

(yij0 – initial state of machine),
zijt = 1 – production of product j is started on machine i in period t, 0 – otherwise.

50 R. Książek

The PLSP binary model cannot be directly transformed into the integer model
with parallel machines; transforming the PLSP task in this way would be incorrect.

Kaczmarczyk (2011) presented an appropriate model called PLSP/F. The vari-
ables of flow fjkt were the only integers in this model. These indicated the flow of the
machine availability “units” between two products; this means that a certain number
of machines that were prepared to manufacture a particular product in a previous
period has been changed over and is now ready to manufacture another product. The
variables of flow indicate the order of the manufacturing of particular products in
a given period. The model can be formulated as follows:

min∑
t∈T
∑
j∈N
(hjtIjt + ∑

k∈N ∶j≠k
SCjkfjkt) (1a)

Ijt−1 + qjt = djt + Ijt, t ∈ T, j ∈ N, (1b)
pj

Ctqjt
≤ fjjt + ∑

k∈N ∶j≠k
(bkjt + ajkt), t ∈ T, j ∈ N, (1c)

bjkt + ajkt = fjkt(1 −
STjk

Ct
), t ∈ T, (j, k) ∈ N2 ∶ j ≠ k, (1d)

fjk0 = 0, t ∈ T, j ∈ N, j ≠ k, (1e)
fjj0 = yj0, t ∈ N, (1f)

∑
k∈N

fkjt−1 = ∑
k∈N

fjkt, t ∈ T, j ∈ N, (1g)

∑
(j,k)∈N2

fjk0 =m, (1h)

qijt, Ijt ≥ 0, t ∈ T, j ∈ N, (1i)

ajkt, bjkt ∈ [0,m], t ∈ T, (j, k) ∈ N2 ∶ j ≠ k, (1j)

fjkt ∈ {0, . . . ,m}, t ∈ T, (j, k) ∈ N2. (1k)

Limitations (1b)–(1d) ensure the correct values of the variable production and
inventory volumes. Limitations (1e)–(1h) are accountable for the correct integer values
of the flow variables.

In the case of a large number of products, this model is difficult to solve using
standard MIP methods; however, the task becomes easier with an increased number
of identical machines.

In tasks with binary variables, an increased number of machines results in the
larger scope of a task. So far, no effective heuristic algorithm has been developed that
solves this problem (Kaczmarczyk, 2011).

LSPIPM (lot sizing and scheduling problem with identical parallel machines),
the model that was proposed by Beraldi et al. (2008), can only be used to effectively
solve small tasks; therefore, a heuristic algorithm using a rolling horizon approach
and fix-and-relax decomposition technique was formulated.

Mehdizadeh et al. (2015) presented a model of linear integer programming for the
problem of lot sizing and scheduling on parallel machines provided that changeover
times do not depend on the sequence of the lots that are allocated to the machine.

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 51

In this task, Mehdizadeh proposed a metaheuristic approach based on the vibration-
damping optimization (VDO) algorithm.

To solve the problem of lot sizing and scheduling with identical parallel machines
with fixed dates of the deliveries of finished goods, Mensendiek et al. (2015) formulated
a mathematical model using the model for the task of allocation with binary variables;
the model was aimed at minimizing the total delay. Due to the NP-hardness of the
task, a Tabu-search algorithm and a hybrid genetic algorithm were developed to solve
larger tasks.

The presented examples of models for the lot sizing and scheduling problem for
one machine and parallel machines show that the formulated mathematical models are
usually based on allocation tasks. This type of task is characterized by a large number
of variables, and binary variables are predominant in the models; therefore, the math-
ematical models allow for optimal solutions in small tasks due to the NP-hardness.

The real problems regarding production scheduling are most often large tasks;
solutions to these problems are expected to be found quickly. Therefore, appropriate
heuristic and metaheuristic algorithms are being developed in order to solve these
problems effectively – especially genetic and Tabu-search algorithms.

3. NEW HEURISTICS FOR TASKS WITH PARALLEL MACHINES

This algorithm is an adaptation of the BAPLSP algorithm that was developed by
K. Haase for the problem of lot sizing and scheduling for one machine. There are
two variants of the algorithm: one for a task where the number of products is greater
than the number of machines, and another for a task where the number of products
is smaller or equal to the number of available machines.

Similarly to the BAPLSP algorithm for a single machine task, let us assume (like
Haase, 1994) that the production capacity Ct in all scheduling periods t is equal to 1
and the production times of particular products pj are also equal to 1.

The solution is calculated backwards – from the last period of lot scheduling T to
the first period. We always plan the maximum possible production volume of a given
product, in a given period, and on a particular machine. The obtained solution may be
unacceptable if some part of the demand for a certain product remains unscheduled.

In each period of solution search τ ∈ T , the products with unsatisfied demands
are allocated to consecutive machines. The product is allocated to a machine that
offers spare capacity before or after the changeover.

The products are drawn from a set of currently available N ′τ products. The set
is continuously updated for each machine and a given period τ . Each product in this
set has a certain priority.

For a drawn product j and a given machine m in period τ , the production lot
is scheduled backwards. The initial period of lot scheduling t is equal to period τ .
The lot is scheduled backwards in a specific time slot [t′; τ], where period t′ indicates
a number of lot-scheduling periods that is equal to (τ − t′). The method of calculating
the number of lot-scheduling periods is thoroughly described in the section of this
paper that is dedicated to the new algorithm.

52 R. Książek

General description of algorithm’s operation
1 Draw value of control parameters
2 τ = T
3 As long as some part of demand has not been scheduled and τ > 0
4 For each machine m
5 Draw product j, where j ∈ N ′τ
6 Sequentially for t = τ ; t = τ − 1; . . . ; t = t′

7 Schedule lots for product j
8 τ = τ − 1
9 Show solution

The value of total unsatisfied demand TD (Haase, 1994) at the beginning of the
algorithm’s operation is equal to the sum of the total demand for the products. During
the algorithm’s operation, the value of total unsatisfied demand TD is reduced by the
number of produced pieces q̃jt after deciding on the quantity of produced pieces q̃jt of
a given product j in a given period t. If the value of the total unsatisfied TD demand
is greater than zero (TD ≥ 0) after the algorithm’s operation is finished, this means
that the given quantity of products will not be produced on time; hence, the received
solution is unacceptable.

The value of the total unsatisfied demand for a given product j is equal to the
value of unsatisfied demand D̃j0 (Haase, 1994) in period 0; i.e., the total number of
products that should be planned for production in Periods 1 through T .

Example 1. Calculate the value of unsatisfied demand D̃j,t and the value of the total
unsatisfied demand TD for four scheduling periods t = (27, . . . ,30) for a task with
two products (k and l).

t . . . 27 28 29 30
dkt . . . 1 2 3 4
qkt . . . - 4 - -
dlt . . . 5 6 7 8
qlt . . . - 10 - -

Calculated values:

D̃k,30 = (4 − 0) = 4
D̃k,29 = D̃k,30 + (3 − 0) = 7
D̃k,28 = D̃k,29 + (2 − 4) = 5
D̃k,27 = D̃k,28 + (1 − 0) = 6
D̃l,30 = (8 − 0) = 8
D̃l,29 = D̃l,30 + (7 − 0) = 15
D̃l,28 = D̃l,29 + (6 − 10) = 11
D̃l,27 = D̃l,28 + (5 − 0) = 16
TD = 6 + 16 = 22

∎

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 53

Let us assume that d̂jt is the unsatisfied demand for a given product j in a given
period t. At the beginning of the algorithm’s operation, its value is equal to demand
djt. If a decision is made to produce a lot of product j in quantity q̃ in period t,
unsatisfied demand d̂jt is reduced by min(d̂jt, q̃).

Thus, if a lot size q̃ is greater than unsatisfied demand d̂jt, the products that
are manufactured in excess of the needs in period t will cover the demands of the
subsequent periods. Due to the increasing warehousing costs, it was assumed that
those products that were produced in period t would cover the demands in consecu-
tive periods as much as possible. The procedure is continued until all of the surplus
production from period t is used.

Therefore, the values of the unsatisfied demands to be planned for future periods
d̂jt+1, d̂jt+2, . . . , d̂jT also change. If lot size q̃ is greater than unsatisfied demand d̂jt in
the considered case, the unsatisfied demand d̂jt in period t will certainly be equal to 0,
while it will decrease correspondingly to the volume of the planned lot q̃ in periods
t + 1 and t + 2, t + 3

Lot size q̃ deliberately does not have any subscript with a product or period
because, during the algorithm’s operation, we might decide to create a production lot
of a given product more than once in a given period (in this situation, the planned
production qjt = q̃′ + q̃′′ + . . . for product j in period t).

The unsatisfied demand d̂jt to be scheduled in a time slot n = [t, . . . , T] and
the decision to produce a certain lot size q̃ of a given product j in period t can be
described as a recurrence relationship:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

d̂jn ←max(0, d̂jn − q̃); q̂n ←max(0, q̃ − d̂jn);

d̂j,n+1 ←max(0, d̂j,n+1 − q̂n); q̂n+1 ←max(0, q̂n − d̂j,n+1);

(2)

Example 2. Calculate the values of unsatisfied demand d̂k,2 for a certain product k
and q̃ = 9 in the 26th period of production. The table presents the initial values of
unsatisfied demand d̂kt to be scheduled in the particular periods.

t . . . 25 26 27 28 29 30

d̂kt . . . 5 5 3 2 1 2

n = 26
d̂k,26 ←max(0; 5 − 9) q̂26 ←max(0; 9 − 5)
d̂k,26 = 0 q̂26 = 4

n = 27
d̂k,27 ←max(0; 3 − 4) q̂27 ←max(0; 4 − 3)
d̂k,27 = 0 q̂27 = 1

n = 28
d̂k,28 ←max(0; 2 − 1) q̂28 ←max(0; 1 − 2)
d̂k,27 = 1 q̂27 = 0

54 R. Książek

n = 29
d̂k,29 ←max(0; 1 − 0) q̂28 ←max(0; 0 − 1)
d̂k,29 = 1 q̂29 = 0

n = 30
d̂k,30 ←max(0; 2 − 0) q̂28 ←max(0; 0 − 2)
d̂k,30 = 2 q̂30 = 0

∎

For each period of backward scheduling τ , let D̂jt indicate the unsatisfied demand
for product j in any given period t summed up in a time slot W = [τ − λj , . . . , T]:

D̂j,t =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T

∑
s=t
d̂js, if t ∈W,

d̂jt, else,
t = 1, . . . , T. (3)

A random parameter λj for a given product j determines the maximum duration
of the backward lot scheduling that results in a build-up of inventory. Therefore, when
planning lots for a certain backward scheduling period τ based on unsatisfied demand
D̂j,t, the costs of warehousing the produced goods will occur only between periods
τ − λj and τ .

Example 3. Calculate the value of the unsatisfied demand D̂k,t for a given product k
in the 29th period of the solution search and with the value of a random parameter
λk = 2. The table presents the initial values of unsatisfied demand d̂kt to be scheduled
in the particular periods.

t . . . 25 26 27 28 29 30

d̂kt . . . 5 5 3 2 1 2

W = [29 − 2, . . . ,30] = [27, . . . ,30]
. . .

D̂k,25 = 5 (t = 25) ∉W
D̂k,26 = 5 (t = 26) ∉W
D̂k,27 = 3 + 2 + 1 + 2 = 8 (t = 27) ∈W
D̂k,28 = 2 + 1 + 2 = 5 (t = 28) ∈W
D̂k,29 = 1 + 2 = 3 (t = 29) ∈W
D̂k,30 = 2 (t = 30) ∈W

∎

For each period of backward scheduling τ , let R̆jτ indicate a certain expected
reserve that is saved for a given product j in time slot W = [τ − ψ, . . . , T]:

R̆jτ = ∑
s∈W

d̂js, t ∈W. (4)

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 55

If a random parameter ψ = 0, then an expected reserve R̆jτ for a given product j in
scheduling period τ equals total unsatisfied demand R̆jt = ∑

s∈[t,...,T]
d̂js.

Example 4. Calculate the values of the expected saved inventory R̆k29 of a given
product k in the 29th scheduling period for random values of parameter ψ = (0,2). The
table presents the initial values of unsatisfied demand d̂kt in the particular periods.

t . . . 25 26 27 28 29 30

d̂kt . . . 5 5 3 2 1 2

ψ = 0
R̆k,29 = 1 + 2 = 3 W = [29 − 0,30] = [29,30]

ψ = 2
R̆k,29 = 3 + 2 + 1 + 2 = 8 W = [29 − 2,30] = [27, . . . ,30]

∎

Let rjτ(i) indicate the value of the lost profit if product j is not selected (assuming
that a given machine is available to produce product i in period in period τ and the
random parameter is σ):

rjτ(i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1 − γ)R̆jτh − γSCj for j ≠ i; D̂j,τ ≥ σ − 1
(1 − γ)R̆jτh for j = i; D̂j,τ ≥ σ − 1
−∞ otherwise

(5)

The lost profit value is defined in the same way as in Haase’s (1994) work on the
problem of lot sizing and scheduling for production on a single machine.

For each machine m and product j in period τ , the value of the lost profit is
calculated as the sum of the saved (positive) costs of inventory R̆jτhj and the incurred
(negative) costs of launching a new production lot SCj .

It is possible to calculate the value of the lost profit and allow for the possibility
of drawing a product to be scheduled for production if the unsatisfied demand D̂jτ
for a given product j in a given period τ is higher than minimum-required unsatisfied
demand σ − 1.

Random parameter σ indicates the minimum required unsatisfied demand D̂j,τ
for a given product j in a given period τ . A parameter that is equal to 1 does not
limit the possibility of product selection. A parameter that is equal to 2 means that
the demand for a given product is sufficient to schedule its production for at least one
period. Respectively, a parameter that is equal to 3 – not less than 2 periods, etc.

Parameter γ determines the weights of the incurred costs. Depending on its value,
this parameter allows us to control the lot size (parameter γ has a value within a range
of [0; 1]). If the value of parameter γ is close to 1, relatively large production lots
should be expected. As the changeover cost has a significant influence on the value of
lost profit rjτ , those products with changeover costs that are lower than SCj are more
likely to be selected.

56 R. Książek

However, if parameter γ is close to 0, we can expect a greater number of rela-
tively small production lots to be created. The savings on inventory costs R̆jτhj are
considered to be more important.

Let ρjτ(i) be the criterion for selecting a product to be manufactured. Similarly
to the case with one machine that was presented by Haase (1994):

ρjτ(i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0; for rjτ = −∞,

(rjτ −min{rkτ ∣k ∈ N ∧ rkτ > −∞} + ε)δ; else,

where δ ≥ 0, ε > 0.

(6)

Those products that are admitted to the draw have values of decision criterion ρjτ
that are greater than 0 and are “compared” with the worse options (those products
with lower ρjτ values). If the value of decision criterion ρjt(i) is equal to 0, the product
is not taken into account in the draw. A high value of the decision criterion means
that the product is more likely to be selected. Therefore, the value of parameter δ > 1
increases the chances of products with higher lost profit values rjτ(i); conversely, the
chances decrease when δ < 1. Furthermore, parameter ϵ > 0 makes it probable for
a product with the worst lost profit value min{rkτ(i)∣k ∈ N ∧ rkτ(i) > −∞} to be
drawn.

The products are drawn based on the calculated ρjτ(i) values.

Example 5. Calculate the criterion values for three products (j, k, l) in the 27th period
of a solution search and a given machine m that is available to produce product k in
this period. The inventory costs and changeover costs in this period are equal for all
of the products and are 2 and 10, respectively.

t . . . 25 26 27 28 29 30

d̂jt . . . 0 0 0 0 0 1
d̂kt . . . 5 5 3 2 1 2
d̂lt . . . 2 7 0 0 0 0

Parameter Value
ψ 2
γ 0.3
δ 2
ϵ 1
σ 2

D̂j,27 = D̃j,27 = 0 + 0 + 0 + 1 = 1 R̆j,27 = 0 + 0 + D̂j,27 = 1
D̂k,27 = D̃k,27 = 3 + 2 + 1 + 2 = 8 R̆k,27 = 5 + 5 + D̂k,27 = 18
D̂l,27 = D̃l,27 = 0 + 0 + 0 + 0 = 0 R̆j,27 = 2 + 7 + D̂l,27 = 9

rj,27(k) = 0.7 ⋅ 1 ⋅ 2 − 0.3 ⋅ 10 = −1.6
rk,27(k) = 0.7 ⋅ 18 ⋅ 2 = 25.2
rl,27(k) = −∞

ρj,27(k) = (−1.6 + 1.6 + 1)2 = 1
ρk,27(k) = (25.2 + 1.6 + 1)2 = 772.84
ρl,27(k) = 0

∎

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 57

The BAPLSP/FN>µ algorithm for lot sizing and scheduling for parallel machines
has been developed for those cases where the numbers of products are greater than
the numbers of machines.
BAPLSP/FN≤µ is an algorithm for those cases where the numbers of products

are smaller or equal to the numbers of machines.
The formal description of the stochastic heuristic BAPLSP /F algorithm is as

follows for the cases of BAPLSP/FN>µ and BAPLSP/FN≤µ :

BAPLSP/FN>µ , BAPLSP/FN≤µ :
Initialization of variables:
1 γ, δ, ϵ, ψ, ω, α {parameter drawing}

2 ỹmτ ∶= ∅, cmτ ∶= 1, m ∈M,τ ∈ T {[no availability to manufacture
products, initial production capacity}

3 im ∶= ∅, tm ∶= T, m ∈M
{lack of product, we are considering
period for machine m}

4 qjτ ∶= 0, D̂jτ , TD, d̂jτ , j ∈ N, τ ∈ T {initialization of variables}

Algorithm’s operation:
5 τ ∶= T {starting from last period}

6 while TD > 0 ∧ τ > 0: {start of Loop 1}

7 for m ∈M if τ ≤ tm : {one by one for each available machine
in period}

8 tm ∶= τ
9 if ỹm,tm = ∅ ∧ tm < T
10 ỹm,tm ∶= im {transfer of machine availability}

11 random σj ; j ∈ N
12 if random uniform (0,1) ≤ α:
13 λj ∶=random(σj ,max(σj + 1, tm); j ∈ N
14 else: λj ∶= tm
15 determine rj,tm(im); ρj,tm(im); j ∈ N
16 if ∑j∈N ρj,tm(im) = 0:
17 tm ∶= tm − 1; continue for next m

18 î ∶=random proportional to ρj,tm(im)
19 determine D̂î,tm
20 while D̂î,tm > 0 ∧ tm > 0:

{start of Loop 2, schedule for selected
product}

21 q̃ ∶= 0, c̃ ∶= 0 {initial production volume, demand for
production capacity}

22 if ỹm,tm = ∅ ∨ ỹm,tm = î: {cases for changeovers}

23 ỹm,tm ∶= î

24 q̃ ∶= c̃ ∶=min(cm,tm , D̂î,tm)
25 elseIf ỹm,tm ≠ î ∧ cm,tm ≥ S

T
im
:

26 ỹm,(tm−1) ∶= î
27 q̃ ∶=max(0,min(ctm,m − S

T
im
, D̂im,tm)

28 c̃ ∶= q̃ + STim
29 elseIf ỹm,tm ≠ î ∧ cmtm < S

T
im
:

30 ỹm,tm−1 ∶= î, tm ∶= tm − 1; continue while
31 q̂i,tm ∶= q̂i,tm + q̃, cm,tm ∶= cm,tm − c̃

32 determine d̂̂i,tm , D̂î,tm , TD

58 R. Książek

33 if cm,tm ≤ ω ∨ tm ≥ τ − λ̂i
∗ : {Usage of production capacity,

*–extension for BAPLSP/FN>µ }
34 tm ∶= tm − 1; else: break
35 im ∶= î

36 if all tm < τ : {τ ∶= τ − 1 and D̂jτ = D̂j,(τ+1) + d̂jτ ; j ∈ N}

In Line 1, all of the values of the fixed parameters are drawn for the entire run
of the solution-search algorithm.

In Line 2, a given machine m is not ready (ỹmt) to produce any product in a given
period t at the beginning of the algorithm’s operation. The remaining production
capacity cmt of a given machine m in a given period t is equal to the total available
production capacity in period t, as we are not producing anything yet.

In Line 3, the last product im that is produced on machine m is undefined. The
period of machine availability tm in which we can start planning products is equal to
the last planning period T .

In Line 4, the initial production volume of a given product j in a given scheduling
period τ is equal to zero. The volume of the unsatisfied demand D̃j,t for particular
products and periods is calculated, as is total unsatisfied demand TD. The unsat-
isfied demand D̂jt for particular products and periods is calculated for time slot
W = [τ, . . . , T]. The volume of the unscheduled d̂jτ products is initially equal to
demand djt.

In Line 6, the scheduling starts from the last period t = T . The solution search
continues until the total TD demand is met.

In Line 7, the production lots of given products are successively launched on
all machines m. The schedule for a given machine m is created (provided that it is
available in the given period τ – it is not producing another product), and the available
production capacity allows us to plan the production in Periods 1 through τ .

In Lines 9 and 10, if a given machinem does not produce any product for a certain
number of periods subsequent to τ and the machine is to produce a certain product
in a period after the non-production period, then the machine is available (ỹm,tm) to
produce the last product im in period τ .

In Lines 11–14, two parameters are drawn (σj , and λj) for all products j ∈ N .
If the unsatisfied demand for product j in period τ is greater than or equal to σj ,

a new production lot will be created (the lot will not be shorter than σj) – compare
this to 5.

The λj parameter determines the length of the backward scheduling of a given
product that results in inventory build-up. The value of parameter λj is drawn with
a certain probability of α; it is a random input parameter for a given run of the new
algorithm. This determines the probability of a situation where we draw the value of
parameter λj ; otherwise, parameter λj is equal to the maximum possible length of the
backward scheduling of a given product. Random values of parameter λj for product j
belong to a range that is limited by the minimum length of created production lot σj
and the maximum possible length of the backward scheduling of a given product j.

In Line 15, the value of lost profit rjt(im) and the value of the criterion for
product-selection decision ρjt(im) are calculated for all products j ∈ N for a given

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 59

machine m and the availability of this machine for the production of product im in
period τ (tm = τ) – compare Formulae (5) and (6).

In Lines 16–18, product î is drawn for lot scheduling. If there is no product
∑j∈N ρjt = 0 that is available to be drawn for a given machine m in a given period τ ,
the solution for the next machine is created.

In Line 19, we calculate the total unsatisfied demand D̂î,tm for a drawn product î
on machine m in a period of lot scheduling for a given machine tm (at the beginning
of the backward lot sizing of product i, this period is equal to period τ).

In Line 20, we schedule the production lots backwards until the unsatisfied de-
mand D̂î,tm > 0 for product î in a period of lot scheduling tm for a given machine m is
fulfilled. Lot-sizing period tm must be within planning horizon tm ≥ 0; the first period
is the last period in the backward scheduling.

In Line 21, we define the size of production lot q̃ and production capacity de-
mand c̃ in period tm; the values are calculated accordingly:
1) When machine m is available to produce the same selected product î (or is

not ready to produce any product – this situation occurs only once for each
machine; i.e., when the production on a given machine starts for the first time
[an illustration of this case is not provided]) (Lines 22–24):

-
m

tm tm + 1tm − 1

îî

2) When machine m is available to produce a different product than the selected
product î, and the remaining production capacity cm,tm of machine m in
lot-scheduling period tm allows for a changeover (Lines 25–28):

-
m

tm tm + 1tm − 1

im ≠ îî STim

3) When machine m is available to produce a different product than the selected
product î, and the remaining production capacity cm,tm of machine m in
lot-scheduling period tm does not allow for a changeover (Lines 29–30):

-
m

tm tm + 1tm − 1

im ≠ îî STim

In the first case, the production lot size q̃ and capacity demand c̃ in the lot-
scheduling period tm of the selected product î and for a given machinem are calculated
on the basis of available production capacity cm,tm and total demand D̂î,tm .

In this case, we do not use available production capacity cm,tm to make
a changeover. We use all of the capacity to manufacture the product (or to con-
tinue the previously started lot of product î). The selected machine m is available to
produce product î in lot-scheduling period tm.

60 R. Książek

In the second and third cases, it is necessary to take the time that is required
to make a changeover STim into account when calculating the value of production
capacity demand c̃ in order to start producing the lots of product im later on. In both
cases, machine m is available to produce product im in period tm due to a change
of products on a given machine m and the resulting changeover STim ; in the earlier
period tm − 1, it is available to produce a selected product î.

In the second case, we still have some spare production capacity ctm,m − S
T
im

in
period tm after the changeover; we use this to start the production of product î in
this period.

In the third case, the available production capacity ctm,m does not allow for the
required changeover Sim in period tm; so, the launch of a new lot is only possible in
the previous lot-scheduling period tm − 1.

In Line 32, the number of unscheduled products d̂̂i,tm and total unsatisfied de-
mand D̂î,tm for a given product î in lot-scheduling period tm are calculated anew in
case the production of product î in quantity q̃ is possible in period tm. The size of
unsatisfied TD demand is reduced by the volume of the scheduled production q̃ of
the given product î.

In Lines 33 and 34, a decision is made regarding whether or not to continue lot
scheduling for product î and given machine m. If the spare production capacity cm,tm
of a given machine m in lot-scheduling period tm is less than or equal to the assumed
permissible level of unused available production capacity ω, the scheduling for a given
product î is continued. Otherwise, the scheduling for a given product î in scheduling
period tm is completed.

For those tasks where the numbers of products are less than or equal to the
numbers of machines, the production lot is always continued if the lot-scheduling
period tm for machine m fits in a time slot [τ − λ̂i, . . . , τ].

In Line 35, we set the availability of machine im (the last product that is produced
on the machine) for a given product îafter completing the (backward) lot scheduling
for a given product î.

In Line 36, the scheduling returns to the previous period τ − 1 if all of the pos-
sible machines m ∈ M are used in a given period τ . Additionally, the value of total
unsatisfied demand D̂j,τ−1 is updated for each product.

4. COMPUTATIONAL EXPERIMENTS

In order to evaluate the new BAPLSP/F algorithm, computational experiments were
conducted for a group of different data sets.

Optimal solutions were sought with GUROBI software (Version 6.0.4); the
GUROBI solver is recognized as the state-of-the-art solver for mathematical program-
ming (GUROBI, 2022). The GUROBI solver was designed from scratch using a mod-
ern multi-core processor architecture; it allows us to solve tasks that are formulated as
LP (linear programming) models, mixed-integer linear programming (MILP) models,
quadratic programming (QP) models, etc. The GUROBI solver can solve models with

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 61

millions of variables and limitations on standard mobile and desktop computers; it
also provides interfaces for the majority of the popular programming languages.

The new heuristic algorithm has been implemented in the Python 2.7 program-
ming language. It allows us to code a clear and synthetic program; thus, it is often
used in software prototyping. In order to accelerate the process, the calculations were
performed with a PyPy compiler, which is a just-in-time compiler (JIT). The first
time a function code fragment is called, it compiles it into a machine code (PyPy,
2022). The machine code consists of a sequence of binary numbers that are direct
commands and arguments for the processor.

4.1. Data sets

A group of 30 data sets was developed for the purpose of our experiments. The sets
were randomly generated based on experiments and industrial data. They were de-
veloped around two actual examples of scheduling productions for four weeks. The
first example (with three products) came from the electronics industry (Kaczmar-
czyk, 2006), and the second one (with two products) – from the automotive industry
(Miodońska, 2006).

All of the data sets had a number of periods T that was equal to 30 and a fixed
period length C that was equal to 100. The tasks were diversified in terms of the
numbers of products (N = 5,10,15) and machines (µ = 5,10). All of the data was
randomly generated as integers by means of a uniform distribution U . The random
parameters for each data set were as follows:

– The demand djt for product j in period t, was drawn from uniform distribution
U[1,100] and reduced to 0 with a 0.4 probability; in addition, the demand in
six initial scheduling periods was always 0 in order to ensure that there were
acceptable solutions.

– Unit time pj of manufacturing product j was randomly generated by means of
a uniform distribution U[1,5].

– The unit cost hj of product j’s inventory was randomly generated by means of
a uniform distribution U[1,5].

– The changeover time STj for product j was randomly generated by means of
a uniform distribution U[0.2C,0.8C] for equal production times of the machines
in periods C.

– The changeover cost SCj of product jwas randomly generated by means of a uni-
form distribution U[10Hj ,150Hj], where Hj = hjC/pj is equal to the total inven-
tory cost of product j in a quantity that is equal to the daily production volume
for the duration of one period.

The demand was drawn so that the level of the machine utilization was within
a range of 75–90%. We assumed three changeovers for each product. Table 2 presents
the average machine utilization levels without changeover times for the data sets that
were used in the computational experiments.

62 R. Książek

Table 2. Average machine-utilization level without changeover times for data sets
that were used in computational experiments

N/µ 5 [%] 10 [%]
5 79.8 82.2
10 86.0 75.0
15 80.0 87.8

N – number of products, µ – number of machines

4.2. Results of computational experiments

All of the calculations were made using a computer with an Intel COREi7 processor,
4710HQ, and 16 GB of RAM.

Solutions were sought with GUROBI 6.0.4 software with standard settings using
the PLSP/F (1) model for the task of lot sizing and scheduling for identical parallel
machines.

Heuristic solutions were found for all of the data sets by means of the heuristic
BAPLSP/F algorithm for the same ranges of random parameters that were generated
using a U -distribution or an integer distribution U INT . The ranges of the random
parameter values are shown in Table 3.

Table 3. Value ranges for random parameters

Parameter Distribution Value
γ U [0.05,0.95]
δ U [0.00,30.00]
ϵ U [0.00,1.00]
ψ UINT [0,3]
σ UINT [1,3]
ω U [0.00,1.00]
α U [0.20,1.00]

U – uniform distribution, UINT – integer uniform distribution

For each case, ten thousand runs of the BAPLSP/F heuristic algorithm were
performed. From the acceptable solutions for the given task, the task with the best
value of the target function was chosen as the solution.

The calculation time of ten thousand algorithm runs (Table 4) ranged from about
2 to 5 seconds depending on the size of the task. For all of the data sets, the search for
optimal solutions was carried out with the GUROBI software. The calculation times
were limited to 600 seconds each.

Let GAP determine the distance between the previously found acceptable integer
solution and the best-known estimate for the task:

GAP = (
∣ObjBound −ObjV al∣

∣ObjV al∣
) 100%, (7)

where:
ObjBound – best-known estimate for task,

ObjV al – best-known solution for task.

Heuristic Algorithm for Lot Sizing and Scheduling on Identical Parallel Machines 63

Let G determine the relative distance between the obtained BAPLSP/F solution
and the target function value of the solution that was computed with GUROBI:

G = (
FC(BAPLSPF)

FC(GUROBI)
− 1) 100%, (8)

where:
FC(BAPLSPF) – value of target function computed with new algorithm,
FC(GUROBI) – value of target function computed with GUROBI software.

The average quality G of the solutions that were obtained using the BAPLSP/F
algorithm for the particular data sets is shown in Table 4.

Table 4. Results of computational experiments

µ N G [%]
Time of calculations [s]

GAP [%]
Heuristics MIP

5 5 4.75 1.89 3.96 0.00

10 3.50 2.21 600.00 27.60

15 – 3.31 600.00 –

10 5 0.99 2.41 1.23 0.00

10 9.63 3.89 380.96 3.35

15 – 4.78 600.00 –
µ – number of machines,
N – number of products,
MIP – by means of GUROBI solver.

For those sets with 15 products, it was not possible to calculate acceptable solu-
tions for the PLSP/F task with the GUROBI solver. For those sets with five products
(be it for five or ten machines), the GUROBI solver found the optimal solutions
(GAP = 0). The values of the target functions in the solutions that were calculated
using the BAPLSP/F algorithm were 4.71% worse on average than the solutions that
were calculated using the GUROBI software in a maximum time of 600 seconds. The
actual average calculation time for the new algorithm and the GUROBI solver showed
that those sets with the smallest numbers of machines and with the smallest num-
bers of products had similar solution search times. As far as the remaining sets, the
GUROBI software needed much more time to find a solution with a quality that was
comparable to that of a heuristic solution (Table 4).

The heuristic algorithm computed the worst solution for the task with five prod-
ucts and five machines. The value of the target function was about 11% worse than
could be found in the optimal solution. In another task with five products and five
machines, a solution that was close to the optimal solution was found (the difference
in the target function value being about 0.3%).

Figure 1 shows the average quality of the solutions G that were obtained with the
BAPLSP/F algorithm as compared to the best-known solutions that were obtained

64 R. Książek

with GUROBI (for the PLSP/F model). GUROBI needed 5 s, 10 s, 50 s, 100 s, and
600 s, respectively, to find a solution.

Those solutions that were computed with GUROBI in times that were compa-
rable to the new BAPLSP/F algorithm were 24% worse on average than those that
were obtained with the new heuristics. A doubled solution search time resulted in
a less than 9% average improvement in the obtained solutions. The solutions that
were found after 50 seconds were only about 4% worse than the heuristic solutions.

For the prepared data sets, the GUROBI software needed about 100 seconds to
provide solutions that were similar in quality to those that were obtained by means of
the new heuristic algorithm in less than 5 seconds. Extending the time of the solution
search with the GUROBI software by more than 100 seconds allowed us to improve
the quality of the obtained solutions by only a few percentage points on average.

-23.89

-15.34

-3.93

2.72

4.71

-25

-20

-15

-10

-5

0

5

0 100 200 300 400 500 600
time [s]

G
 [%

]

Fig. 1. Average quality of solutions G found by GUROBI: 5 s, 10 s, 50 s, 100 s, and 600 s

5. CONCLUSIONS

Lot sizing and scheduling plays an important role in the management of a production
company. It is not always possible to use PLCM methods. As the PLCM models
of lot sizing and scheduling are NP-hard, a small increase in a number of products
significantly increases the time that is required to find a solution. In certain practical
situations, waiting a long time for a good solution is not acceptable.

Therefore, new heuristic algorithms are constantly being developed for various
lot-sizing and scheduling problems.

This paper describes a new algorithm for the task of lot-sizing and production
scheduling with parallel machines. This algorithm is an adaptation of the heuristic
BAPLSP algorithm that was proposed in 1994 by Hasse for a task with one machine.

The reduced time that is required to obtain a solution is an advantage of the new
heuristic algorithm (BAPLSP/F). As a result, it is possible to run the BAPLSP/F
algorithm to search for a solution many times. In such a case, the best solution is
selected from a set of acceptable solutions. Each attempt to find a solution means
a separate run of an algorithm; the algorithm does not “learn” during its operation.

Heuristic Algorithm for Lot Sizing And Scheduling on Identical Parallel Machines 65

As the computational experiments have shown, the new algorithm efficiently pro-
vides good solutions for tasks with large numbers of products and machines. Increased
numbers of products only slightly extends the times that are required to find solu-
tions for the tasks of lot sizing and scheduling with parallel machines. Therefore, the
practical application of the new BAPLSP/F algorithm that is proposed in this paper
has become possible.

REFERENCES

Beraldi P., Ghiani G., Grieco A. & Guerriero E. (2008). Rolling-horizon and fix-
and-relax heuristics for the parallel machine lot-sizing and scheduling problem
with sequence-dependent set-up costs. Computers and Operations Research, 35(11),
pp. 3644–3656. doi: 10.1016/j.cor.2007.04.003.

GUROBI (2022). http://www.gurobi.com/products/gurobi-optimizer [11.12.2022].
Haase K. (1994). Lotsizing and Scheduling for Production Planning. Lecture Notes in

Economics and Mathematical Systems, vol. 408, Springer-Verlag.
Jans R.F. & Degraeve Z. (2008). Modeling industrial lot sizing problems: A review.

International Journal of Production Research, 46(6), pp. 1619–1643. doi: 10.1080/
00207540600902262.

Kaczmarczyk W. (2006). Modele PLC planowania wielkości i szeregowania partii
z identycznymi liniami równoległymi. Zeszyty Naukowe. Automatyka / Politech-
nika Śląska, 144, pp. 23–32.

Kaczmarczyk W. (2011). Proportional lot-sizing and scheduling problem with iden-
tical parallel machines. International Journal of Production Research, 49(9),
pp. 2605–2623. doi: 10.1080/00207543.2010.532929.

Kimms A. & Drexl A. (1998). Some insights into proportional lot sizing and schedul-
ing. Journal of the Operational Research Society, 49(11), pp. 1196–1205. doi: 10.
2307/3010100.

Lasdon L. & Terjung R. (1971). An efficient algorithm for multi-item scheduling.
Operations Research, 19, pp. 946–969. doi: 10.1287/opre.19.4.946.

Mehdizadeh E., Tavakkoli-Moghaddam R. & Yazdani M. (2015). A vibration damp-
ing optimization algorithm for a parallel machines scheduling problem with
sequence-independent family setup times. Applied Mathematical Modelling, 39(22),
pp. 6845–6859. doi: 10.1016/j.apm.2015.02.027.

Mensendiek A., Gupta J.N.D. & Herrmann J. (2015). Scheduling identical parallel
machines with fixed delivery dates to minimize total tardiness. European Journal
of Operational Research, 243(2), pp. 514–522. doi: 10.1016/j.ejor.2014.12.002.

Miodońska B. (2006). Koordynacja w łańcuchach dostaw [MSc Thesis]. AGH Univer-
sity of Science and Technology, Krakow.

Pochet Y. & Wolsey L. (2006). Production Planning by Mixed Integer Programming.
Springer Series in Operations Research and Financial Engineering, Springer, New
York. doi: 10.1007/0-387-33477-7.

PyPy (2022). https://pypy.org/ [12.11.2022].

https://doi.org/10.1016/j.cor.2007.04.003
http://www.gurobi.com/products/gurobi-optimizer
https://doi.org/10.1080/00207540600902262
https://doi.org/10.1080/00207540600902262
https://doi.org/10.1080/00207543.2010.532929
https://doi.org/10.2307/3010100
https://doi.org/10.2307/3010100
https://doi.org/10.1287/opre.19.4.946
https://doi.org/10.1016/j.apm.2015.02.027
https://doi.org/10.1016/j.ejor.2014.12.002
https://doi.org/10.1007/0-387-33477-7
https://pypy.org/

