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An Assignment Heuristic
for Time-Dependent Periodic Routing Problems

with Complex Constraints

Tomasz Śliwiński∗

Abstract. Periodic routing and scheduling is of the utmost importance in many industries
with mobile personnel working in the field: sales representatives, service technicians, suppliers,
etc. In many cases, the long-term stability of the customer to salesman assignment is required,
leading to the decomposition of the major problem into single salesman subproblems. The
paper addresses the assignment of customers to salesmen for the future services performed in
a periodic fashion. It can be seen as the decomposition phase of the periodic vehicle routing
problem PVRP into a number of Periodic Traveling Salesman Problems (PTSP). The proposed
algorithm seeks the best assignment by taking into account diverse system requirements,
constraints and expected operational costs including time windows, time-dependent travel
times and costs, and labor laws.
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1. INTRODUCTION

Under consideration is the uncapacitated Periodic Vehicle Routing Problem (PVRP)
with multiple time windows, time-dependent travel costs and times, multiple salesmen
depot and labor laws. In such a problem each customer has to be visited periodically by
a salesman over some planning horizon. Unlike many problems found in the literature,
where each customer is visited daily or the required number of times chosen among
a set of valid day combinations, here the cycle of visits for the single customer is
specified by the time intervals between consecutive visits or/and by setting the range
of days when particular visit should take place. While the allowed range of days states
a hard constraint, the deviation from the specified time intervals is punished with
penalty functions, being effectively a soft constraint.
∗ Warsaw University of Technology, Institute of Control and Computation Engineering, Warsaw,

Poland, e-mail: T.Sliwinski@elka.pw.edu.pl

DOI: https://doi.org/10.7494/dmms.2020.14.2.2690 181

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7494/dmms.2020.14.2.2690


182 T. Śliwiński

Each customer can have one or several time windows defined for each day of the
planning horizon when the visit should take place. The travel times and costs can
be asymmetric and depend on the time of a day and the day of a week. This allows
for a better traffic modeling as compared to their symmetric and constant values.
All salesmen can operate from different depots. It is assumed, that each salesman
can make no more than one trip a day, and each day can have different starting and
finishing depots, although the selection of those depots is the input parameter of the
problem. The salesmen working time is governed by the relevant labor law, which
specifies basic working hours and maximum working hours, daily and weekly. For the
basic working hours, the given unit cost is charged. If the basic working hours are
exceeded, daily or weekly, overtime is charged. The specified maximum working hours
cannot be exceeded.

The paper addresses a particular PVRP in which the long term stability of
relations between the salesman and the customer plays an important role. In such
a case the initial assignment of customers to salesmen can determine the later efficiency
of creating final schedules. The assignment can be seen as a decomposition of the
main problem into many subproblems, one for each salesman. The difficulty of such
an approach lies in the nondeterministic nature of the future schedules, as it is not
possible to predict exact requirements, time schedules and routes in the future. Another
stumbling block is the size of the assignment problem – dozens of salesmen, hundreds
or even thousands of customers, long planning horizon.

The problem is important to many industries where salesmen (field workers, sales
representatives or maintenance teams) are committed to visiting customers on the
regular basis in the specific time intervals. Their work schedule must conform to
many requirements and regulations, like labor law, time windows of the customers
or customer-dependent visit intervals. It should also take into account various goals,
with travel and labor costs being the most important ones.

Solving the problem optimally would involve assigning customers to salesmen and
solving all the underlying PTSP problems for each salesman over a long scheduling
horizon.

Considering all the requirements and constraints, the single underlying PTSP
problem can be shortly described as Time Dependent Asymmetric Periodic Traveling
Salesman Problem with Multiple Time Windows, Multiple Depots and Labor Laws.

Different extensions to the Traveling Salesman Problem (TSP) were considered in
the literature. The Asymmetric TSP (ATSP) with Time Windows have been studied
intensively in the literature (Gendreau et al., 1998; Ascheuer et al., 2000, Ascheuer
et al., 2001; Focacci et al., 2002) and respective optimization algorithms have been
proposed. Extending the problem by adding time-dependent travel times and costs
makes it much more difficult. Most approaches focus on using different heuristic
procedures Hurkała (2015). The exact solution to the problem proposed in Albiach
et al. (2008) is based on the graph transformation into an ATSP for which a standard
optimization procedure can be used. Unfortunately, adding periodicity to the above
problem prevents us from applying this approach. The reason is the size of the problem
(for example, 14 days of the scheduling horizon with a moderate 20 visits a day would
require data structures with approx. 280 nodes, depending on the periodicity settings
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and specific settings on the time intervals between consecutive visits at the same point).
On the other hand, PTSP with Multiple Time Windows is recognized in the literature.
For example, in Tricoire et al. (2010), the authors utilize a heuristic approach with
a VNS meta-heuristic to drive the changes of the current solution. Unfortunately, the
authors do not take into account the data and rules that are important from the
business perspective, namely time dependent travel times, advanced interval definitions
and various labor law regulations with impeding costs.

As an approximate solution to the considered single PTSP problem was proposed
in Ogryczak et al. (2018). It utilizes a multi stage heuristic approach with 4 stages:
construction heuristic to find initial solution, Variable Neighborhood Search (VNS)
algorithm to improve global solution for the whole horizon, different algorithms
to improve solutions separately for each day (VNS, simulated annealing, threshold
accepting) and, finally, specialized, greedy heuristics to improve the final solution.

As for the Periodic Vehicle Routing Problems, Francis et al. (2008) present an
overview of different extensions with synopsis of modeling and solution methods. In the
literature, mostly problems with relatively short time horizons are considered. Usually,
the specified number of visits should take place on a day from the set of valid day
combinations (for examples see Cacchiani et al., 2014; Cordeau et al., 2001; Norouzi
et al., 2015; Michallet et al. 2014). If, however, the time for the customer to be visited
is flexible, the cardinality of the set of possible day combinations grows exponentially.
Problems with longer planning horizons, such as maintenance or regular service visits,
are considered in Bostel et al. (2008). The authors designed plans over a multi-period,
rolling horizon, with daily updates. Peng et al. (2013) consider periodic inspections
in railroad networks with various constraints and requirements. They apply interval
flexibility by setting maximum allowed interval between visits. The problem of the
long-term assignment of customers to salesmen seems to be absent in the literature of
the PVRP problems. However, this requirement is present in many business activities.

In the following section, the procedure of assigning customers to salesmen is
presented. It is based on the construction heuristics for the fast building of the
hypothetical future schedules combined with the assignment schema. In Section 2 we
introduce the approximate assignment heuristic giving details of the applied simplified
scheduling algorithms. In Section 3 we present the results of the computational
experiments.

2. LONG TERM ASSIGNMENT OF CUSTOMERS TO SALESMEN

Due to its enormous size, the specific assignment problem would be hard to solve
optimally, that is why we propose an approximate approach based on a random
sampling procedure to iteratively restrict the sets of salesmen allowed to visit the
customers. The restriction decision is based on the statistical properties of the sampled
solutions.

The algorithm’s goal is to create an assignment that tries to minimize the expected
long-term system operation cost, including time dependent travel costs and labor
costs.
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2.1. Input data

It is crucial that as many different input data and parameters as possible are considered,
so that the resulting simulated schedules are a good approximate of the real ones.
The major scheduling objects are visits. Each visit i ∈ I has a number of direct
properties: its preassigned customer, duration, range of days when the visit can take
place, and indirect properties, derived from preassigned customer properties, like
customer location, time windows allowed for the visit, time-dependent travel costs and
times, intervals between consecutive visits to the same customer. Below is the list of
all indices and input data utilized by the algorithm.

d ∈ {1, ..., |D|} days of the scheduling horizon
w ∈W weeks in the scheduling horizon
p ∈ P customers, also customer locations
q ∈ Q salesmen
i ∈ I visits
Ip set of visits to the customer p
p(i) customer served in visit i
Θdi set of time windows for customer p(i) on day d
Λdij set of traffic time zones for path (p(i), p(j)) on day d
bdq starting visit (depot) for the salesman q on day d
fdq final visit (depot) for the salesman q on day d

τdki = [a
dk
i , b

dk
i ] k-th time window for customer p(i) on day d; k ∈ Θdi

σdnij = [c
dn
ij , d

dn
ij ] n-th traffic time zone for path (p(i), p(j)) on day d
si duration visit i
tdnij travel time on path (p(i), p(j)) on day d in traffic time zone n
cdnij travel cost on path (p(i), p(j)) on day d in traffic time zone n

T db , T
d
m basic and maximum working hours on day d

W db ,W
d
o unit cost for basic working hours and for overtime hours on day d

Twb , T
w
m basic and maximum working hours in week w
Wwo unit cost for overtime hours in week w
ap required interval between subsequent visits to customer p

P+p (δ) piecewise linear penalty function of excess δ over the interval ap
P−p (δ) piecewise linear penalty function of shortage δ to the interval ap

ri = [dmini , d
max
i ] possible range of days for visit i
wp point importance/weight
Q0p initial set of salesmen allowed to visit customer p; the set can

reflect some salesman skills needed by a particular customer
L0p day of the last visit to point p
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As it can be seen, most parameters can have different values for each day of the
scheduling horizon. In particular one can introduce different labor costs depending on
the week day and/or season. The same applies to customer time windows – they can
be set differently for each day of the week.

Unfortunately, such a detailed parameter setting may lead to a very high memory
footprint for the application, such as when the travel times and costs are considered.
That is why a single travel cost and times matrix was utilized in the experiments
for all days of the scheduling horizon. The matrix was computed as the average of
the data for all week days. In future implementations it is possible, however, to utilize
the information on the traffic changes over all days of the scheduling horizon.

While the main decision variables of the considered PVRP are related to the
actual assignment of customers to salesmen, other variables describe schedules of
the single PTSP:
bpq binary variable = 1 only if customer p is assigned to salesman q;
ydkiq binary variable = 1 only if visit i is performed by salesman q on day d

within window k of point p(i);
xdij binary variable = 1 only if after visit i on day d visit j is performed;
βdi leaving time after completing visit on day id;
vdnij binary variable = 1 only if travel between visits i and j on day d is

performed within traffic time zone n.
As the number of visits over longer horizon is large, the solution space is tremen-

dous and intractable by using exact approaches.

2.2. The approximate assignment

When assigning customers to salesmen for long-term service, not all input parameters
can be known in advance. The idea is to sample some of the parameter values and
approximately solve the problem for such instances. The results of the simplified
scheduling algorithm can differ significantly for each instance. One can anticipate,
however, the statistical properties of the schedules created in many runs will depend
on the properties of the long term assignment, when customer’s location and visiting
frequencies are considered. Based on this, the following algorithm for the long term
assignment is proposed.

1. Initialize. Prepare input data including initial assignment Q0p; k := 0.
2. Sample of the problem input parameters multiple times and solve simplified

assignment and scheduling for a long time horizon. Each time only salesman
q ∈ Qkp can be scheduled for a visit to customer p. Collecting statistics on the
number of visits performed by each salesman to each customer.

3. Select a salesman in the set Qkp with the smallest total number of visits to customer
p over all samples. If |Qkp| > 1, the salesman is removed from the set Qkp.

4. If |Qkp| = 1 ∀p, then STOP, otherwise k := k + 1, go to 2.
In each iteration, the algorithm restricts the sets of salesmen allowed to visit the

customers. The decision is based on the properties of the generated schedule (total
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number of the visits to the given customer). The sampling of the input parameters
is performed with a different random seed. The total number of iterations equals
maxp(|Q0p| − 1), as each time only one salesman is removed from each set.

2.3. Sampling over the input parameters

Depending on the actual business situation, the values of the most input parameters
do not need to be changed frequently, so it can be assumed to be constant over the
whole planning horizon. But the schedule calculated for the assignment will not hold
for a long time, as any random disturbances will affect its implementation and force
to perform new scheduling for single PTSP. Additionally, due to the problem size, we
are not even able to create final schedules of good quality. Instead, we want to sample
from a number of simplified random schedules created for different random situations
and, based on their properties, infer the best assignment minimizing expected cost of
future operations.

Seeing each visit as the actual object to be scheduled, we generate a random set
of visits and their parameters for each customer to cover the whole planning horizon,
based on the problem’s input parameters.

Let d0p be a random number in the range [0, ap − 1] generated with the uniform
distribution, once for each customer. Then, day ranges for all subsequent visits to
the same customer (numbered with k = ⌈Hap ⌉), where H is the length of the planning
horizon) are computed as [d0p + kap −

ap
2 , d

0
p + kap +

ap
2 ]. Certainly, the range size

relative to ap can be set individually for each customer, but for our computational
tests the constant value was chosen. All other visit parameters, like visit duration sp
or penalty functions P+p (δ) and P−p (δ), are constant over the whole planning horizon.

2.4. Simplified scheduling

As we utilize a construction heuristic to create the simplified schedule, an initial
ordering of visits is required. We used the following properties to enforce the order of
the visits:
1) value of dmaxi (latest possible visit day), earliest first;
2) penalty for possible delay on day dmaxi , highest first;
3) customer importance wp, highest first.

The properties are enumerated according to their significance (with (1) being
the most important one). The visits are ordered lexicographically, which means that
only if the more significant properties are equal would the less significant property be
considered.

The scheduling problem can be enormous (dozens of salesmen, thousands of
customers), and a fast and effective optimization procedure is required. It has to be
sensitive to all the problem properties, with customer locations and frequency of visits
being the most important ones.

The applied greedy construction heuristic tries to insert each visit from the ordered
list in the best possible place of the route created separately for each salesman. In
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detail, let Qp be the set of salesmen allowed to visit customer p. Taking the first visit i
from the ordered list, the algorithm examines all salesmen from the set Qp(i) and tries
to insert the visit in the partially created routes of each salesman. Only days from the
day range ri are considered.

The visit is inserted temporarily in all possible places of the route without
changing the sequence of the previously inserted visits. Each time the optimal schedule
for the given route is computed (see Section 2.5). Finally, the visit is inserted in
a place (salesman and the point of its partial route) where the total cost increase is
the smallest (Fig. 1).

Fig. 1. Illustrative drawing of the scheduling procedure

One should keep in mind that the route of the salesman q constructed on day d
should begin with designated visit bdq and end with fdq , thus different starting and final
depots on each day are possible.

2.5. Finding the optimal schedule for the given route

As opposed to classical TSP, problems with time dependent travel costs and times,
and time windows require specialized approach to computing the detailed schedule,
including the total travel cost and time, for the given route.

The problem has been addressed in the literature (Savelsbergh 1992; Jong et al.,
1996). An exact algorithm of finding the minimum route duration for time dependent
travel with multiple time windows was presented in Hurkała (2015). After the preproc-
essing phase which eliminates some of the time windows, the algorithm iteratively
evaluates schedules and chooses ones with the shortest duration. The procedure
actively eliminates the dominated solutions, substantially reducing the number of the
computations.
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Approximate approaches are also possible. A simple yet very efficient one probes
different travel starting times. It is assumed the total travel duration and cost only
depends on the time of the travel start, and the resulting schedule is computed by the
simulation of the travel over the successive points on the route. This simple procedure
was chosen as the main algorithm for finding an optimal schedule in the assignment
procedure. The experiments showed it performs exceptionally well with the real-world
data reaching a level of performance two orders of magnitude better than achieved by
the exact approach.

2.6. Possible extensions/modifications

The algorithm is very flexible and allows application in various real world situations.
For example, it can be easily modified to assign customers to a new salesman or
rearrange the assignment according to some new requirements. The stopping criterion
can also be extended to allow a limited (but greater than 1) number of employees
visiting single client.

This should increase the total system performance, but at the cost of weaker
customer relations. The algorithm makes possible to include personal travel character-
istics – time and costs (in the experiments uniform data were used for all salesmen).
The data should be available after a longer period of collecting real travel data.

One of the concerns with the algorithm is the uneven load allocation between
salesmen. It is partially limited with maximum daily and weekly working hours. If
better load balancing is required, it can easily be incorporated into the simplified
scheduling algorithm, extending the cost criterion with some over-/uneven load costs.

3. COMPUTATIONAL EXPERIMENTS

3.1. Data generation

Three main parameters control the generation of random data: the number of salesmen,
horizon length and geographical area (all of Warsaw or only Ochota district). Different
combinations of those parameters were tested in the computational experiments.

Labor costs and regulations are set the same for all salesmen (maximum 10 hours
of working time a day and 40 hours a week). The number of customers is calculated
so that approximate estimated daily travel time should be shorter than 7 hours. This
resulted in an average of 24 customers per salesman per day for the district Ochota,
and 15 customers per salesman per day for the whole city. The remaining input data
were generated as follows.

– Time windows for customers (generated uniformly in the range 7–20 with 30%
probability, 7–14 with 25%, 12–20 with 25% probability, 7–11 and 14–20 with
20% probability).

– Customer geographical coordinates were selected from the publicly available data
of small businesses to cover selected area (all of Warsaw or only the Ochota
district).
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– Travel time and costs are based on the real travel data acquired from the com-
mercial provider.

– Intervals between visits for each customer (a number generated uniformly in
the range 2–5 with 30% probability, 5–15 with 40% probability, 10–25 with 30%
probability).

– Being late penalty: piecewise linear function with 3 segments defined by points
(0, separation/4, separation/2, separation) with a gradient 0 for the first
segment, gradient 40 PLN/separation for the second segment and gradient
160 PLN/separation for the third segment.

– Being early penalty: piecewise linear function with 3 segments defined by points
(separation, –separation/2, –separation/4, 0) with gradient –160 PLN/separation,
for the first segment, –40 PLN/separation for the second segment and 0 for the
third segment.

– Day ranges for each visit are generated as described in Section 2.3.

– All visits have the same duration: 7.5 minutes.

3.2. Simplified assignment algorithm for comparison purposes

We wanted to compare the proposed assignment algorithm to some clustering heuristics
available for the VRP problems: Fisher and Jaikumar (1981), Bramel and Simchi-Levi
(1995), Ryan et al. (1993), Reanaud et al. (1996). Unfortunately, most of them were
designed for relatively small problem instances (up to 20 vehicles and 200 customers).
In the problems concerned here, 5,000 customers must be assigned to 20 salesmen. That
is why a simplified approach had to be constructed. The proposed algorithm creates
a single long route for each salesman where each customer appears only once. The
input data are substantially simplified: no time dependent travel time/costs, no time
windows, no visits intervals (although, the visits frequency is used for the customer
ordering), no labor costs and regulations, single depot. The algorithm consists of the
following steps.

1. The preprocessing phase – the customers are ordered according to their visit
frequencies (first the ones visited more often). For each salesman, a single initial
customer is selected using standard MacQueen initialization method for the
k–means algorithm MacQueen (1967) and initial route from the depot to the single
customer is created.

2. The algorithm takes the first customer from the ordered list and tries to insert
it in the partially created route of each salesman. The route and the insertion
position are chosen with the least cost/time increase. No detailed schedule has to
be found for the given route.

3. The algorithm stops when all customers are assigned.
The simplified algorithm is similar to the proposed assignment schema, as also here
the route construction is used to assign the customer to the salesman. The major
difference is that no visit frequency is used and the assignment is based on a single
route.
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3.3. The results

The test results cover different numbers of salesmen and different lengths of the
scheduling horizon. All the tests were performed on a computer with 2.4GHz i7 series
Intel processor.

The values are the average of 10 tests. In Table 1, the computing times are
presented. The algorithm performs acceptably, although the exponential complexity
as a function of the salesmen number can be seen. The horizon’s length affects the
computation times linearly.

Table 1. Computing times [s]

Area All of Warsaw Ochota district

Horizon length [min.] 30 60 120 180 30 60 120 180

5 0.3 0.5 0.8 2.1 3.8 5.2 9.0 15.3

No. of salesmen 10 3.2 6.8 13.2 12.3 25.3 38.3 85.3 134.5

20 40.0 58.0 130.0 252.0 192.3 385.3 815.4 1252.3

To evaluate the assignment algorithm, one needs a quality measure reflecting its
desired properties. In the considered situation, the best quality measure seemed to
be the total cost of the exact schedules computed separately for each salesman and
his assigned customers over the whole scheduling horizon. We utilize the algorithm
introduced in Ogryczak et al. (2018).

The proposed assignment algorithm (its quality measure) is compared to the
procedure where each customer is assigned to a salesman on a random basis, and to
the simplified assignment described above. The relative improvements are presented
in Tables 2 and 3, respectively.

One may notice that the proposed assignment procedure performs best, showing
the advantage of utilizing all the available information. The length of the scheduling
horizon improves the quality of the assignment, most probably due to the better (more
data) estimation of the expected quality measure of the final schedule.

Table 2. Relative improvement over fully random assignment [%]

Area All of Warsaw Ochota district

Horizon length [min.] 30 60 120 180 30 60 120 180

5 1.3 5.3 2.4 10.0 3.8 4.8 8.3 4.5

No. of salesmen 10 5.0 7.3 11.9 16.6 9.3 13.0 19.1 20.0

20 7.7 14.8 23.0 25.5 10.3 17.8 23.3 24.0
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Table 3. Relative improvement over simplified random assignment [%]

Area All of Warsaw Ochota district

Horizon length [min.] 30 60 120 180 30 60 120 180

5 0.3 3.7 1.8 7.0 2.2 2.3 4.8 3.2

No. of salesmen 10 1.2 4.3 3.1 4.3 5.2 8.7 10.9 11.8

20 4.2 9.2 8.2 9.3 7.8 7.3 12.9 14.2

4. CONCLUSION

The presented long term customer to salesman assignment for periodic routing prob-
lems offers a simple yet effective way of optimizing expected overall system costs.
The algorithm combines simple construction heuristics for the schedule simulation
with the iterative assignment procedure to effectively compute final allocation. The
computational experiments show that the algorithm can be applied to large scale
problems with various real life constraints and requirements.
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