
Decision Making in Manufacturing and Services
Vol. 11 • 2017 • No. 1–2 • pp. 53–61

Scheduling of Identical Jobs
with Bipartite Incompatibility Graphs on Uniform Machines.

Computational Experiments

Szymon Duraj∗, Paweł Kopeć∗,
Marek Kubale∗, Tytus Pikies∗

Abstract. In this paper, we consider the problem of scheduling unit-length jobs on three or
four uniform parallel machines to minimize the schedule length or total completion time. We
assume that the jobs are subject to some types of mutual exclusion constraints, modeled
by a bipartite graph of a bounded degree. The edges of the graph correspond to the pairs
of jobs that cannot be processed on the same machine. Although the problem is generally
NP-hard, we show that our problem can be solved to optimality in polynomial time under
some restrictions imposed on the number of machines, their speeds, and the structure of
the incompatibility graph. The theoretical considerations are accompanied by computer
experiments with a certain model of scheduling.

Keywords: batch scheduling, bipartite graph, polynomial algorithm, uniform machines

Mathematics Subject Classification: 90B35

Submitted: May 01, 2017

Revised: September 17, 2017

1. INTRODUCTION

Suppose we must send n chemical substances from Place A to Place B, and we have
m containers with a capacity of n products each. We can send them out simultaneously
by rail, by road, and/or by water transport, etc. However, in no container can there
be two substances that may react with each other (e.g., due to a transport accident).
The aim is an assignment of the chemical substances to the containers so that the
total time of transportation of all the substances is as minimal as possible.

Our problem can be expressed as the following scheduling problem. Suppose we
have n identical jobs j1, ..., jn, so we assume that they all have unit execution times
in symbols UET. They are to be processed on m non-identical machines M1, ...,Mm.
These machines run at different speeds s1, ..., sm, respectively. However, they are
∗ Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informa-
tics, Gdańsk, Poland, e-mail: szyduraj@student.pg.gda.pl

DOI: https://doi.org/10.7494/dmms.2017.11.1-2.53 53

54 S. Duraj, P. Kopeć, M. Kubale, T. Pikies

uniform in the sense that, if job ji is executed on machine Mj , it takes 1/sj time
units to be completed. This refers to the situation where the machines are of different
generations (old and slow, new and fast, etc.). In addition, we assume that some pairs of
jobs cannot be processed on the same machine due to certain safety or spatial reasons.
More precisely, we assume in this paper that underlying incompatibility graph G whose
vertices are jobs and edges correspond to pairs of jobs being in conflict is bipartite.
For example, such a situation holds if we have to transport cyanides together with
acids. By definition, a load on any machine Mj forms an independent set (color)
in G. Therefore, we will be using the terms job/vertex and color/load/independent set
interchangeably in what follows.

So far, this model of scheduling has been studied in only two papers (Furmańczyk
and Kubale, 2017a, 2017b). They considered standard uniform machines and assumed
Cmax = max{Ci : i = 1, 2, ..., n} to be the criterion of optimality where Ci is the
completion time of job ji. Therefore, our present paper is partially based on the results
of those articles.

The rest of the paper consists of two parts. The first part is theoretical and
contains two sections. Since the problem of scheduling identical jobs on two machines
has been solved by Pikies (manuscript in preparation), we review the known results
concerning the scheduling of identical jobs on three or four standard uniform machines
to minimize schedule length Cmax and total completion time

∑
Ci in Section 2. In

Section 3, we consider the problem of scheduling identical jobs on three or four uniform
batch machines to minimize

∑
Ci. Since the general problem is NP-hard, we focus

on polynomial algorithms in both sections that guarantee optimal solutions in some
special cases. This means that we do not consider herein special cases that can be
approximated to within a fixed factor of optimality.

The second part of this paper is practical and consists of Section 4, in which we
report on the computer experiments with an algorithm for the optimal scheduling of
identical jobs with bicubic incompatibility graphs on three uniform machines.

2. STANDARD UNIFORM MACHINES

We begin with some basic notions concerning graph theory. Let G = (V,E) be
a connected graph. We say that G is cubic if it is a 3-regular graph (i.e., deg(v) = 3
for each v ∈ V). A bipartite cubic graph is said to be bicubic. A bipartite graph is
called bisubcubic if, for each v, we have deg(v) ¬ 3.

Analogously, G is quartic if it is 4-regular. A bipartite quartic graph is called
biquartic, and a bipartite graph with property deg(v) ¬ 4 is called bisubquartic. By
degree ∆ of G, we mean the maximal degree among all vertices of G. In Figure 1, we
show the smallest bicubic graph (a) and smallest biquartic graph (b).

Note that any bicubic (biquartic) graph can be 2-colored with partition sets
of equal size; however, this is not true for bisubcubic (bisubquartic) graphs. Since all of
these graphs are bipartite, they are easy colorable in linear time while traversing them
in a depth-first search (DFS) manner. Generally speaking, any chromatic coloring
corresponds to the Cmax criterion, and any chromatic sum coloring (i.e., coloring that
minimizes the sum of colors used) corresponds to the

∑
Ci criterion.

Scheduling of Identical Jobs with Bipartite Incompatibility Graphs . . . 55

Fig. 1. The smallest graphs: a) bicubic; b) biquartic

Let m = 4, and let sj be the speed of machine Mj , j = 1, ..., 4. Without a loss of
generality, we assume that s1 ... s4. Our first theorem gives a negative result:

Theorem 1. (Furmańczyk and Kubale, 2017a) Problem Q4|UET, bipartite|Cmax is
NP-hard even if s1 = s2 = s3.

Furmańczyk and Kubale (2017b) proved that, if incompatibility graph G 6= K3,3
is bicubic, then 3-machine problem Q3|UET, bicubic|Cmax can be solved to optimality
in time O(n2). Therefore, our first positive result is formulated as follows:

Theorem 2. (Furmańczyk and Kubale, 2017b) Problem Q3|UET, bicubic|Cmax can
be solved to optimality in time O(n2).

We suppose that this result may be extended to bisubcubic graphs and the
corresponding algorithm can be implemented to run in linear time. Therefore, we
formulate our first hypothesis:

Conjecture 1. ProblemsQ3|UET, bisubcubic|Cmax andQ3|UET, bisubcubic|
∑
Ci can

be solved in O(n) time.

The authors of (Furmańczyk and Kubale, 2017a) also considered bisubquartic
graphs and m = 4 machines. They proved that, if s1 12s2 and s2 = s3 = s4, then
problem Q4|UET, bisubquartic|Cmax can be solved to optimality in time O(n1.5). The
same refers to the total completion time criterion. Therefore, we have the following:

Theorem 3. (Furmańczyk and Kubale, 2017a) If s1 12s2 and s2 = s3 = s4 then the
problems Q4|UET, bisubquartic|Cmax and Q4|UET, bisubquartic|

∑
Ci can be solved

in O(n1.5) time.

56 S. Duraj, P. Kopeć, M. Kubale, T. Pikies

Below, we present a simplified version of the corresponding algorithm.

Algorithm 1 Scheduling of bisubquartic graphs.

Input: Bisubquartic graph G and 4 uniform machines with speeds s1 s2 s3 s4.
Output: Optimal schedule when s1 12s2 and s2 = s3 = s4.
1) Find a maximum independent set I in G.
2) Let G′ be a subgraph induced on the set of vertices V (G)− I.
3) If G′ is isomorphic to K3,3 then swap any vertex from G′ with its neighbor in G

which belongs to I.
4) Find an equitable coloring of G′ using the methods presented in Chen and Yen

(2012). Let (A,B,C) be the classes of this coloring.
5) Assign M1 ← I,M2 ← A,M3 ← B,M4 ← C.

3. BATCH UNIFORM MACHINES

A batch is a set of jobs that must be processed jointly. In general, we have two types
of batch machines: s-batch and p-batch. In s-batching problems, the length of a load
on Mj (and so, the finishing time of all jobs in the batch) is the sum of the processing
times of all of the jobs in the batch. In p-batching problems, the length of a load on
Mj is the maximum of the completion times of all jobs in the corresponding batch. In
this paper, we will assume the p-batch model (batch for short). Moreover, we assume
total completion time as the criterion of optimality.

Małafiejski et al. (2004) proved that the chromatic sum problem is NP-hard on
bipartite graphs of degree ∆ greater than or equal to 5. On the other hand, Kosowski
(2009) showed that the number of colors used in a best chromatic sum coloring of
any bipartite graph is bounded by d∆/2e + 1. Easy calculations show that, when
s1 = 2s2 = 3s3 = ..., our scheduling problem reduces to chromatic sum coloring. For
this reason, we begin with an NP-completeness theorem in a general case; i.e., where
the degree of G is unbounded.

Theorem 4. (Małafiejski et al., 2004; Kosowski, 2009) Problem Qm|batch, UET ,
bipartite|

∑
Ci is NP-hard even if s1 = 2s2 = ... = msm, where m = d∆/2e+ 1.

If the machine speeds are equal, our scheduling problem becomes easy, since any
2-coloring of G resolves the problem. Also, if G is bicubic or biquartic, then we can
split its vertices into independent sets I1 and I2 of equal size and assign n/2 job
vertices of I1 to M1 and the remaining n/2 jobs to M2. It is easy to see that this
would be an optimal solution. Therefore, we have:

Theorem 5. If s1 s2 s3 s4 then problems Q3|batch, UET, bicubic|
∑
Ci and

Q4|batch, UET, biquartic|
∑
Ci can be solved in O(n) time.

Also, if s1 = s2 s3 and G is simply bipartite, then any 2-coloring of G resolves
our problem. Since such a coloring can be obtained in time O(n2) at worst, we have:

Theorem 6. If s1 = s2 s3 then problem Q3|batch, UET, bipartite|
∑
Ci can be

solved in O(n2) time.

Scheduling of Identical Jobs with Bipartite Incompatibility Graphs . . . 57

From Małafiejski et al. (2004) and Kosowski (2009) we know that the chromatic
sum problem is solvable in O(n2) if G is bisubquartic. Moreover, only three colors
suffice to attain optimal coloring. Thus, we have the next polynomial result.

Theorem 7. (Małafiejski et al., 2004; Kosowski, 2009) If s1 = 2s2 = 3s3 then problem
Q3|batch, UET, bisubquartic|

∑
Ci can be solved in O(n2) time.

We conclude our list of polynomially solvable special cases with a guess that the
following holds true:

Conjecture 2. If s1 s2 s3 then problem Q3|batch, UET, bisubquartic|
∑
Ci can

be solved in O(n2) time.

At least this is true if s1 = s2 s3 by Theorem 6 and remains so if s1 s2 = s3.
The latter follows from the following argument. We can find a maximum independent
set I1 in G in O(n1.5) time and assign its vertices to M1. Since G is bipartite, the
remaining vertices of G− I1 can be split in any way into two independent subsets and
assigned to M2 and M3.

The theorems of Sections 2 and 3 are summarized in Table 1, which presents
complexity presenting the state-of-art concerning the chromatic model of scheduling
for bipartite incompatibility graphs.

Table 1. The complexity of scheduling identical jobs with bipartite incompatibility graphs

machines graph m speeds goal complexity references

standard bipartite 4 s1 = s2 = s3 >> s4 Cmax NP-hard Furmańczyk and
Kubale (2017a)

standard bicubic 3 s1 s2 s3 Cmax O(n2) Furmańczyk and
Kubale (2017b)

standard bisubquartic 4 s1 12s2, s2 = s3 = s4 Cmax O(n1.5) Furmańczyk and
Kubale (2017a)

standard bicubic 3 s1 s2 s3
∑

Ci O(n2) Furmańczyk and
Kubale (2017b)

standard bisubquartic 4 s1 12s2, s2 = s3 = s4
∑

Ci O(n1.5) Furmańczyk and
Kubale (2017a)

p-batch bipartite m s1 = 2s2 = 3s3 = ...
∑

Ci NP-hard Małafiejski et al.
2004

p-batch bicubic 3 s1 s2 s3
∑

Ci O(n) Theorem 5

p-batch biquartic 4 s1 s2 s3 s4
∑

Ci O(n) Theorem 5

p-batch bipartite 3 s1 = s2 s3
∑

Ci O(n2) Theorem 6

p-batch bisubquartic 3 s1 = 2s2 = 3s3
∑

Ci O(n2) Małafiejski et al.
2004, Kosowski
2009

58 S. Duraj, P. Kopeć, M. Kubale, T. Pikies

4. COMPUTER EXPERIMENTS

We have performed computer experiments for scheduling with bicubic incompatibility
graphs to minimize schedule length. Notice that, in this case, any optimal solution mini-
mizes the total completion time as well; i.e., we solved both the Q3|UET, bicubic|Cmax
and Q3|UET, bicubic|

∑
Ci problems. We used the polynomial algorithm described

below.

Algorithm 2 Scheduling of bicubic graphs.

Input: Bicubic graph G 6= K3,3 and three uniform machines with speeds s1 s2 s3.
Output: Optimal schedule.
1) If s1 < s2 + s3 then go to Step 5.
2) Find an (I, J)-coloring of graph G where I, J are partition sets.
3) Let n2 = d.5ns2/(s2 + s3)e. Split color class J into 2 subsets: B of size n2 and

C of size n3 = n/2 − n2 or B of size n2 − 1 and C of size n3 = n/2 − n2 + 1
depending on which of the two partitions gives a better solution.

4) Assign M1 ← I,M2 ← B,M3 ← C and stop.
5) Calculate the approximate numbers of jobs (n1, n2, n3) to be processed on

M1,M2,M3 in an ideal schedule as follows:

n1 = ns1/s, n2 = ns2/s, n3 = ns3/s, where s = s1 + s2 + s3.

6) Verify which of the following types of colorings:
[bn1c, dn2e, n− bn1c − dn2e], [dn1e, bn2c, n− dn1e − bn2c]

or [dn1e, dn2e, n− dn1e − dn2e]
guarantees a better solution and call it OPT.

7) Let (A,B,C) be a coloring of G realizing OPT obtained by using a modified CLW
method described in Furmańczyk and Kubale (2017b).

8) Assign M1 ← A,M2 ← B,M3 ← C.

Furmańczyk and Kubale (2017b) proved the following.

Theorem 8. Algorithm 2 runs in O(n2) time to produce an optimal schedule.

As mentioned, this algorithm can be executed in O(n2). Basically, we first divide
the graph into two equal partition sets I and J . This is possible, since any bicubic graph
has two independent sets each with a size of n/2 (n is even due to the Handshaking
Lemma). Then, we subdivide one partition set into two smaller partitions of sizes |B|
and |C| = n/2− |B|, where |B| is the desired size of the middle color class. Finally,
we gradually move the vertices from the biggest to the smallest color class until we
reach their final sizes. Experiments were made for machine speeds s1 = s2 = s3 when
the number of vertices to move was the biggest. Moving one vertex can be done in
a worst-case time of O(n). However, our experiments showed that, in a vast majority
of cases, our algorithm ran in overall linear time. This is so because we can move more

Scheduling of Identical Jobs with Bipartite Incompatibility Graphs . . . 59

than one vertex in one iteration. Hence, in our implementation, the first iteration
had usually done most of the task already. The computer used for our computations
was an HP Elitebook 2540p with an Intel Core i7-640LM. During the tests, only
system processes were launched apart from our testing program. Of course, the testing
program was executed as a single thread.

The graphs used for testing were generated using a modified Algorithm 1 from
Steger and Wormald (1999). In a nutshell, we first randomly divide the vertices into
two sets, each with a size of n/2. Each vertex has three places for incoming edges
(henceforth called points). Next, we divide these points into two sets that correspond
to the sets of vertices. Now, we pull one random point from the first set and one
random point from the second and join them together as an edge (if it is legal to
connect them). If an edge was added, we remove those points from the corresponding
sets. We repeat this step until there are no points left. If a graph that comes out
is disconnected or we are left only with points that cannot be connected (because
joining them would make up a multiple edge), the algorithm is run again; however, the
probability of this seems to tend to zero as n goes to infinity. As a rule, the process of
generating a graph can be accomplished in O(n) time, provided that it does not have
to be repeated.

Figure 2 visualizes the dataset. Figure 3 presents the average execution times,
where the average is a mean of 20 n-vertex graphs for each even n in a range of [1000,
10000]. Figure 4 presents the generation times with respect to n for all graphs used in
the experiments. The less-visible trend line probably represents the cases when the
generating process had to be repeated, because either the final graph was disconnected
or joining the last two points that remained would make up a multiple edge.

Fig. 2. Running times of Algorithm 2

60 S. Duraj, P. Kopeć, M. Kubale, T. Pikies

Fig. 3. Average running times of Algorithm 2. Adjacent points are connected by
a straight-line segment

Fig. 4. Times of generating random bicubic graphs

Scheduling of Identical Jobs with Bipartite Incompatibility Graphs . . . 61

5. FINAL REMARKS

In this article, we collected algorithmic results devoted to the problem of the scheduling
of identical jobs on a few uniform machines subject to mutual exclusion constraints that
follow from machine safety or spatial reasons. Since the general problem is NP-hard,
we focused on polynomially solvable special cases involving a restricted number of
machines, simplified structures of incompatibility graphs, machine speed limits, etc.

In the second part of the paper, we implemented a O(n2) algorithm for scheduling
subject to bicubic incompatibility graphs in order to minimize schedule length. It
appears that this algorithm is extremely fast. For example, huge graphs with several
thousands of vertices are scheduled to optimality within several milliseconds. Frequently,
a generation of such random graphs takes longer than their coloring.

REFERENCES

Chen, B.-L., Yen, C.-H., 2012. Equitable ∆-coloring of graphs, Discrete Mathematics. 312(9),
pp. 1512–1517.

Furmańczyk, H., Kubale, M., 2017a. Scheduling of unit-length jobs with bipartite incompa-
tibility graphs on four uniform machines. Bulletin of the Polish Academy of Sciences:
Technical Sciences, 65(1), pp. 29–34.

Furmańczyk, H., Kubale, M., 2017b. Scheduling of unit-length jobs with cubic incompatibility
graphs on three uniform machines. Discrete Applied Mathematics (in Press).

Kosowski, A., 2009. A note on the strength and minimum color sum of bipartite graphs.
Discrete Applied Mathematics, 157(11), pp. 2552–2554.

Małafiejski, M., Giaro, K., Janczewski, R., Kubale, M., 2004. Sum coloring of bipartite graphs
with bounded degree. Algorithmica, 40(4), pp. 235–244.

Steger, A., Wormald, N.C., 1999. Generating random regular graphs quickly. Combinatorics,
Probability and Computing, 8(4), pp. 377–396.

