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Manpower Planning with Annualized Hours Flexibility:
A Fuzzy Mathematical Programming Approach
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Abstract. We have considered the problem of annualized hours (AH) in workforce management.
AH is a method of distributing working hours with respect to the demand over a year. In
this paper, the basic Manpower planning problem with AH flexibility is formulated as
a fuzzy mathematical programming problem with flexible constraints. Three models of the
AH planning problem under conditions of fuzzy uncertainty are presented using different
aggregation operators. These fuzzy models soften the rigidity of the deterministic model by
relaxing some constraints with the use of flexible programming. Finally, an illustration is
given with a computational experiment performed on a realistic-scale case problem of an
automobile company to demonstrate and analyze the effectiveness of the fuzzy approach over
a deterministic model.
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1. INTRODUCTION

Workforce management is an important aspect for every industry. One of the major
reasons for its need is the variation in the demand for skilled workers as well as their
availability throughout the year. The variation in demand may be due to seasonal
effects, whereas the variation in workforce availability may be due to illness, training,
vacation, etc. As high demand leads to hectic overtime and lower demand leads to
the underutilization of the workforce, there is a need for proper management. The
annualized hours policy is one of the methods that helps an organization to efficiently
match workforce demand and it’s availability over the year. Also, it is as used in the
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labor legislation of countries like France (Grabot and Letouzey, 2000), Britain (Rodri-
guez, 2003), and the Netherlands (Van den Hurk, 2007). It gives greater flexibility by
distributing the working hours of the hired workforce over the year to fulfill the fluctu-
ation of demand. The greater advantage of the annualized hours policy is that it leads
to a reduction in overtime and the underutilization of the workforce. It also reduces
total cost, limits the need for part-time workers, and gives an improved service level.
It gives fruitful results in labor intensive industries for e.g. Filho and Marcola (2001)
reduces overtime by 94% and the use of temporary workers by 53%. A reduction in
temporary workers results in an improved service level. According to Thomas Sander-
son (Workforce logistics, 2016), productivity increases by 25%, and labor costs reduced
from the previous year. Also, McMeekin (1995) showed that stock levels had reduced to
a large extent because of the implementation of the AH policy in Tesco distribution.

In this paper, we integrated the annualized hours planning problem (AHPP) to
a concept of uncertainty; i.e., fuzziness. Since the AHPP is a real-life problem (and in
real life, things are not certain), it motivates us to work on the uncertainty factors of
the AHP problem. The concept of fuzzy makes the AHPP more real. Multitasking
workers with respective relative efficiency is considered. We determine the shortage
of workforce for each task and optimize the service level by minimizing the relative
shortage of capacity and demand for workers.

2. LITERATURE REVIEW

Annualized hours planning (AHP) problems have been well-studied by many authors.
Some of them are Azmat and Widmer (2004), Azmat et al. (2004), Corominas et al.
(2002, 2004, 2007a, 2007b, 2012), Hertz et al. (2010), Van der Veen et al. (2014), and
Filho and Marcola (2001).

In the AH problem, workforce demand is in terms of hours, but some authors also
considered demand in the form of shifts; e.g., Azmat and Widmer (2004), Azmat et al.
(2004), Hung (1999a), Hung (1999b). Some also considered skills; e.g., Corominas and
Pastor (2010), Corominas et al. (2002), Corominas et al. (2005), Grabot and Letouzey
(2000), and Lusa et al. (2008b).

Annualized hours planning with single and multiple contracts is also considered
by some authors, where workers are contracted for the same or different working
hours. Multiple employee contract types have been considered by Hertz et al. (2010),
Lusa et al. (2008a), and Lusa et al. (2008b). Mathematical programming is the most-
-used-solution method for AHP problems. Campbell and Diaby (2002) and Corominas
and Pastor (2000) propose a three-phase method. Hung (1999a) and Hung (1999b)
uses algorithms for variants of the AHPP. Furthermore, a cross entropy optimization
method is proposed in Van der Veen et al. (2012). Scenario-based Multistage stochastic
optimization was applied by Lusa et al. (2008a).

Many authors worked with deterministic demand, like Azmat and Widmer (2004),
Azmat et al. (2004), Hung (1999a), Hung (1999b), Sureshkumar and Pillai (2012),
Sureshkumar and Pillai (2013), and Van der Veen et al. (2014), and stochastic demand
is assumed in Lusa and Pastor (2011). In the real world, demand is uncertain and
cannot be precisely known.
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Zimmermann (1996) categorized uncertainty as stochastic uncertainty and fuz-
ziness. Stochastic uncertainty occurs with the randomness of an event, while fuzzy
uncertainty appears when the information is vague, imprecise, or ambiguous, or when
the information is not clearly defined. The concept of fuzzy set theory was first introdu-
ced by Zadeh (1965) and has been found in extensive applications in different fields, like
operations research, control theory, management science, artificial intelligence, etc. In
1970, Bellmann and Zadeh (1970) developed a decision theory in a fuzzy environment.

In mathematical programming, fuzzy mathematical programming (FMP) deals
with fuzzy uncertainty. The fuzziness can appear in different forms; i.e. in inequali-
ties, objective function and parameters. Fuzzy mathematical programming is further
categorized as flexible programming, possibilistic programming, and robust program-
ming; see Cadenas and Verdegay (2006) and Jiafu et al. (2004). Flexible programming
is applied when there is vagueness, the possibilistic approach is used when there is
ambiguity, and robust programming is applied when vagueness and ambiguity both
occur simultaneously. Here in our Fuzzy Model of the AHPP, we are using the flexible
programming approach. Applications of the flexible programming approach can be
found in Itoh et al. (2003), Lai and Hwang (1992), Miller et al. (1997), Pendharkar
(1997), Rabbani et al. (2012), and Selim and Ozkarahan (2008).

Previously, Ull Hasan et al. (2015) applied the concept of fuzzy in the AHPP,
providing an optimum schedule of workers while minimizing the annual overtime cost.
In this paper, we minimize the capacity shortage in the AHPP, where some of the
parameters are assumed to be uncertain in the form of fuzziness and solved using
fuzzy mathematical programming (FMP) approaches.

The layout of this paper is as follows: Section 2 discusses related literature; in
Section 3, we give the basic model of a deterministic AHPP; Section 4 describes the
fuzzy models of the AHPP and a solution approach; Section 5 is about experimental
study for the deterministic and fuzzy models of the AHPP; finally, Section 6 presents
the conclusion.

3. PROBLEM FORMULATION

In this paper, we are working on a basic model of the AH planning problem and
optimizing the service level by taking into account the working efficiency of workers.
No holiday nor temporary workers are considered. Overtime is allowed with an upper
bound. It is assumed that there are different types of tasks and that the company
forecasts demand and establishes the capacity requirement. As overtime is bounded,
capacity shortage is possible during certain weeks. Cross-trained workers are considered
to have different relative efficiency (RE) (a scale of 1) associated to them (e.g., a value
of 0.6 means that such a worker needs to work (1/0.6) hours to perform a task that
a worker with RE equal to 1 would perform in 1 hour). The French 35-hour law [see
Official site (2016) and Wikipedia (2016)] is applied to make the model more real; the
number of weekly working hours falls within an interval with upper and lower bounds.
Also, the total working hours for the planning period also fall within a certain interval.

The problem studied and modeled in this paper is based upon the minimization
of the relative shortage of capacity with respect to demand on the workforce. Since
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a high relative capacity shortage leads to a worse service level, the objective of the
problem is to minimize the weighted sum of the maximum relative capacity shortage
and the sum of the weekly relative capacity shortages.

The characteristics of the problem are as follows:
1) Planning period of the allocation of workforce is taken as 52 weeks (i.e., 1 year).
2) No holiday week is considered in this problem.
3) Working hours for each week and year is lower and upper bounded.
4) Different types of tasks with forecasted demand are taken with the assumption that

the staff is multitasking, having different relative efficiency associated to them.
5) Overtime is permitted with an upper bound.
6) Hiring temporary workers is not allowed.
7) The average number of working hours for a group of 12 consecutive weeks cannot

be more than 44 hours per week.
8) A utility function is to be optimized.

The list of notations which will be used throughout the paper is given below.
Decision variables and model parameters
I set of workers indexed by i.
J set of tasks indexed by j.
T set of week indexed by t.
Djt demand for task j in week t.
Lit, Uit minimum and maximum number of allowed working hours for worker i in week t.
Li, Ui minimum and maximum number of working hours allowed for worker i in entire

planning horizon T i.e. a year.
REij relative efficiency of worker i on task j.
Aijt number of working hours allotted to worker i,on task j during week t.
Yit number of working hours allotted to worker i,during week t

i.e. Yit =
∑
j∈J Aijt, i ∈ I, t ∈ T .

S maximum relative capacity shortage of workers with respect to demand.
Sjt capacity shortage of workers for task j in week t.
Z weighted sum of maximum relative capacity shortage and average of total relative

capacity shortages.

The basic mathematical model of the above-explained problem with deterministic
data is as follows:

Min: Z = α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt

(1)

Subject to,

S  Sjt
Djt

∀j ∈ J, t ∈ T (2)

Li ¬
∑
t∈T

Yit ¬ Ui ∀i ∈ I (3)
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Lit ¬ Yit ¬ Uit ∀i ∈ I, t ∈ T (4)∑
i∈I

REij ·Aijt + Sjt  Djt ∀j ∈ J, t ∈ T (5)

j∑
t=m−K+1

Yit ¬ hK ·K ∀i ∈ I,m = K...T (6)

Yit  0 and ∀i ∈ I, t ∈ T (7)

Aijt  0 ∀i ∈ I, j ∈ J, t ∈ T (8)

The objective function (1) is the weighted sum of the maximum relative capacity
shortage and the sum of the weekly relative capacity shortage with associated weights
alpha and beta. Constraint (2) ensures that the maximum relative capacity shortage
is greater than the weekly relative capacity shortages for all tasks. Inequality (3)
defines bounds of the annual sum of weekly working hours to be allotted to each
worker and inequality (4) bounds of weekly working hours to be allotted to each worker.
Constraint (5) ensures that the number of working hours allotted to the workers for each
task and for each week added to the shortage hours is greater or equal to the forecasted
demand. Constraint (6) imposes an upper bound on the average weekly working hours
for any consecutive K working weeks. (7) and (8) define non negativity constraints.

4. UNCERTAINTY MODELING

The AHPP basic model is a mathematical programming model with deterministic
data. Certainty is assumed in all aspects of the problem. In real life, we often deal
with uncertainty instead of certainty. The deterministic model provides rigidity; so,
a new model is presented with the assumption of uncertainty in the form of fuzziness.
A fuzzy mathematical programming approach is applied to overcome the rigidity of
the deterministic model.

In the AHPP, the forecasted demand of working hours can never be deterministic.
In real life, demand can never be predicted certainly; hence, the demand constraint is
fuzzified. Also, the minimum number of contracted working hours by each worker for
the whole year is fixed. But in real life, contracted hours are not always fulfilled because
of leaves, illnesses, training, etc. (which makes its nature fuzzy). The upper limit on
the annual working hours for each worker is also fuzzified, giving more flexibility to
work overtime.

The relative capacity shortage and objective function also changed their character
from deterministic to fuzzy because of the presence of fuzzy demand. We want the
goal to reach some aspiration level of the objective function.

Hence, the appearance of uncertainty in the form of fuzziness transforms the
deterministic AHPP model to a fuzzy AHPP model. The Fuzzy-AHPP is modeled
based on Zimmermann’s (1976) approach to dealing with fuzzy inequalities, where the
membership function assumed is linear.
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As by Tsai et al. (1997), the advantage of Zimmermann’s (1976) approach over
other methods is that different combinations of membership functions and aggregate
operators can be used, which results in linear models.

According to the Bellman and Zadeh (1970) approach, the optimal solution of
a problem is such a solution of the problem that simultaneously fulfills the constraints
and goals to a maximal degree. The decision-maker can establish an aspiration level for
the value of the objective function. In FMP, fuzzy operators are used to transform FMP
to traditional mathematical programming. In this research, three types of aggregators
have been applied; namely, the “max-min-operator” (Bellman and Zadeh, 1970), “convex
combination of min-operator and max-operator” (Zimmermann, 1996), and “fuzzy-and
operator” (Werner, 1987).

Fuzzy AH planning problem model (FAHPP)
In this section, the fuzzy AHPP model is presented.

α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt

/ Z1 (9)

S  Sjt
Djt

∀j ∈ J, t ∈ T (10)∑
t∈T

Yit / Ui ∀i ∈ I (11)

−
∑
t∈T

Yit / −Li ∀i ∈ I (12)

Lit ¬ Yit ¬ Uit ∀i ∈ I, t ∈ T (13)

−
∑
i∈I

REij ·Aijt − Sjt / −Djt ∀j ∈ J, t ∈ T (14)

j∑
t=m−K+1

Yit ¬ hK ·K ∀i ∈ I,m = K...T (15)

Yit  0 and ∀i ∈ I, t ∈ T (16)

Aijt  0 ∀i ∈ I, j ∈ J, t ∈ T (17)

The symbol / represents fuzzy inequality and means “essentially less than or
similar to”. These fuzzy constraints show that the decision-maker wants to make the
left-hand side of the constraints smaller or similar to the right-hand side “if it is possible”.

In the above fuzzy AHPP model from equation (9)–(17), uncertainty is assumed
in the objective function, the lower and upper bounds of the annual working-hour
constraint, and the demand constraint. In our study, we consider a monotonically
increasing or decreasing linear membership function for these fuzzy characters (for the
sake of convenience). Therefore, the relevant membership function and its graphical
illustrations in Figures 1, 2, 3, and 4 are presented below.
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Membership function for objective function

µZ(x) =


1 if Z ¬ Z1
1 +

Z1 − Z
P0

if Z1 < Z ¬ Z1 + P0
0 if Z1 + P0 < Z

(18)

where Z = α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt

.

An aspiration level Z1 is established by the decision-maker for the objective
function that is to be achieved and P0 is the tolerance level that the decision-maker
can tolerate in the accomplishment of the fuzzy constraint.

µZ

1

0
Z1 Z1 + P0

Fig. 1. Membership function for the Problem objective

Membership function for upper bound of annual working-hour constraint

µUi(x) =



1 if
∑
t∈T

Yit ¬ Ui

1 +

(
Ui −

∑
t∈T

Yit

)
P1

if Ui <
∑
t∈T

Yit ¬ Ui + P1

0 if Ui + P1 <
∑
t∈T

Yit

(19)

where Ui ∈ [Ui, Ui + P1] denotes imprecise lower and upper bounds for the fuzzy
constraint. P1 is the tolerance level that the decision-maker can tolerate in the
accomplishment of the fuzzy constraint.
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µUi

1

0
Ui Ui + P1

Fig. 2. Membership function for upper bound of annual working-hour constraint

Membership function for lower bound of annual working-hour constraint

µLi(x) =



1 if Li ¬
∑
t∈T

Yit

1−

(
Li −

∑
t∈T

Yit

)
P2

if Li − P2 ¬
∑
t∈T

Yit < Li

0 if
∑
t∈T

Yit < Li − P2

(20)

where Li ∈ [Li − P2, Li] denotes imprecise lower and upper bounds for the fuzzy
constraint. P2 is the tolerance level that the decision-maker can tolerate in the
accomplishment of the fuzzy constraint.

µLi

1

0
Li − P2 Li

Fig. 3. Membership function for lower bound of annual working-hour constraint
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Membership function for demand constraint

µDjt(x) =



1 if Djt ¬
∑
i∈I

REij ·Aijt + Sjt

1−

(
Djt −

∑
i∈I

REij ·Aijt − Sjt
)

P3
if Djt − P3 ¬

¬
∑
i∈I

REij ·Aijt + Sjt < Djt

0 if
∑
i∈I

REij ·Aijt + Sjt <

< Djt − P3

(21)

where demand Djt ∈ [Djt − P3, Djt] denotes imprecise lower and upper bounds for
the fuzzy demand constraint. P3 is the tolerance level that the decision-maker can
tolerate in the accomplishment of the fuzzy demand constraint.

µDjt

1

0
Djt − P3 Djt

Fig. 4. Membership function for demand constraint

Three FMP approaches are presented to solve the fuzzy annualized hours planning
problem.

Fuzzy-min operator model
Max-min Fuzzy Model (Bellman and Zadeh, 1970) of the AHPP is:

Max: Z = λ (22)

α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt
+ λ · P0 ¬ Z1 + P0 (23)

S  Sjt
Djt

∀j ∈ J, t ∈ T (24)
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Yit + λ · P1 ¬ Ui + P1 ∀i ∈ I (25)

−
∑
t∈T

Yit + λ · P2 ¬ −(Li − P2) ∀i ∈ I (26)

Lit ¬ Yit ¬ Uit ∀i ∈ I, t ∈ T (27)

−
∑
i∈I

REij ·Aijt − Sjt + λ · P3 ¬ −(Djt − P3) ∀j ∈ J, t ∈ T (28)

j∑
t=m−K+1

Yit ¬ hK ·K ∀i ∈ I,m = K...T (29)

Yit  0 and ∀i ∈ I, t ∈ T and (30)

λ ∈ [0, 1] (31)

Aijt  0 ∀i ∈ I, j ∈ J, t ∈ T (32)

New variable λ ∈[0, 1] shows the level of satisfaction of the least-satisfied constraint.

Fuzzy-com operator model
Fuzzy AH planning problem model with convex combination of max-operator and

min-operator (Zimmermann, 1996):

Max: λ = γ · λ1 + (1− γ) · λ2 (33)

α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt
+ λ1 · P0 ¬ Z1 + P0 (34)

α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt
+ λ2 · P0 ¬ Z1 + P0 +M · π1 (35)

S  Sjt
Djt

∀j ∈ J, t ∈ T (36)∑
t∈T

Yit + λ1 · P1 ¬ Ui + P1 ∀i ∈ I (37)

∑
t∈T

Yit + λ2 · P1 ¬ Ui + P1 +M · π2 ∀i ∈ I (38)

−
∑
t∈T

Yit + λ1 · P2 ¬ −(Li − P2) ∀i ∈ I (39)

−
∑
t∈T

Yit + λ1 · P2 ¬ −(Li − P2) +M · π3 ∀i ∈ I (40)

Lit ¬ Yit ¬ Uit ∀i ∈ I, t ∈ T (41)

−
∑
i∈I

REij ·Aijt − Sjt + λ1 · P3 ¬ −(Djt − P3) ∀j ∈ J, t ∈ T (42)
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−
∑
i∈I

REij ·Aijt − Sjt + λ2 · P3 ¬ −(Djt − P3) +M · π4 ∀j ∈ J, t ∈ T (43)

j∑
t=m−K+1

Yit ¬ hK ·K ∀i ∈ I,m = K...T (44)

m∑
f=1

πf ¬ m− 1 (45)

Yit  0 and ∀i ∈ I, t ∈ T and (46)

λ1, λ2 ∈ [0, 1] (47)

Aijt  0 ∀i ∈ I, j ∈ J, t ∈ T (48)

πf ∈ 0, 1, f = 1...m(m = 4 fuzzy constraints) (49)

Here,M represents a very large number,λ1 ∈ [0, 1] is the level of satisfaction of the
least-satisfied constraint, and λ2 ∈ [0, 1] is the level of satisfaction of the most-satisfied
constraint. The objective is to balance them to maximize total satisfaction. γ ∈ [0, 1]
is the compensation grade.

For the min operator, the structure of the constraint and the maximization
approach are such that the maximum of the minimum of all possible values of λ1 is
selected. For the max operator, the logic of the constraint with binary variable π and
the maximization approach is to select the level of satisfaction of the most-satisfied
constraint.

Fuzzy-and operator model
Werner’s (1987) fuzzy model:

Max: Z = λ+ (1− γ) · (λ1 + λ2 + λ3 + λ4)/4 (50)

α · S + β ·
∑
j∈J

∑
t∈T

Sjt
Djt
+ (λ+ λ1) · P0 ¬ Z1 + P0 (51)

(λ+ λ1) ¬ 1 (52)

(λ+ λ2) ¬ 1 (53)

(λ+ λ3) ¬ 1 (54)

(λ+ λ4) ¬ 1 (55)

S  Sjt
Djt

∀j ∈ J, t ∈ T (56)∑
t∈T

Yit + (λ+ λ2) · P1 ¬ Ui + P1 ∀i ∈ I (57)

−
∑
t∈T

Yit + (λ+ λ3) · P2 ¬ −(Li − P2) ∀i ∈ I (58)

Lit ¬ Yit ¬ Uit ∀i ∈ I, t ∈ T (59)
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−
∑
i∈I

REij ·Aijt − Sjt + (λ+ λ4) · P3 ¬ −(Djt − P3) ∀j ∈ J, t ∈ T (60)

j∑
t=m−K+1

Yit ¬ hK ·K ∀i ∈ I,m = K...T (61)

Yit  0 ∀i ∈ I, t ∈ T and (62)

λ, λ1, λ2, λ3, λ4 ∈ [0, 1] (63)

Aijt  0 ∀i ∈ I, j ∈ J, t ∈ T (64)

λ, λ1, λ2, λ3, and λ4 are the levels of satisfaction of the constraints. The objective
is to obtain a balance between these to maximize the total satisfaction level. γ ∈ [0, 1]
is the compensation grade.

In these above models, [Z1, Z1 + P0] is the interval of tolerance for the objective
function; i.e., the weighted sum of the maximum relative capacity shortage and average
of the all of the relative capacity shortages, [Ui, Ui + P1] is the interval of tolerance
for the upper limit of the annual working hours for worker i, [Li − P2, Li] is the
interval of tolerance for the lower limit of the annual working hours for worker i, and
[Djt−P3, Djt] is the interval of tolerance for the forecasted demand for task j during
week t.

Algorithm for solution approach of the Annualized Hours Planning
Problem with flexible constraints
The algorithm can be summarized in the following steps:

Step 1. Construct the conventional (crisp) annualized hours planning problem (AHPP)
formulation.

Step 2. Solve the Crisp problem and obtain the deterministic solution.
Step 3. Define the membership function of each fuzzy constraint; i.e., objective

function, annual upper limit constraint, annual lower limit constraint, and
demand constraint.

Step 4. Construct the fuzzy formulation of the AHPP for the three aggregation
operators fuzzy-min, fuzzy-com, and fuzzy-and using the membership functions
defined in Step 3 and γ = 0–0.9.

Step 5. Solve the fuzzy models and stop.
Step 6. Present the solution to the decision-maker to choose best solution for different

values of γ.

5. EXPERIMENTAL STUDY

To show the applicability and decision aspects of our proposed model, a workforce
planning problem of a small automotive company is presented. A hypothetical problem
is considered that represents a typical workforce-planning situation of an automotive
company. For this study, a planning horizon of 52 weeks (T ) is considered. An illustra-
tive working-hour demand for the manufacturing of two products (J) wiper motor and
starter motor is given for the three different demand patterns presented in Figure 5.
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A non-seasonal pattern with constant disturbance in working-hour demand for
both products. Here, We considered the Seasonal-1 pattern with a single peak of
working-hour demand of products in different period of the year and Seasonal-2 corre-
sponds to a single peak demand during the same period of the year for both products.
The weekly working time for each staff member must be between 35 hours (Lit) and
50 hours (Uit). The workers are also contracted for 2010 hours (Li ) on an annualized
hours basis and (including overtime) a maximum of 2310 hours (Ui). The staff size of
10 workers is considered with respective relative efficiencies for each product on a scale
of 1. There are two categories of workers, where 70% of the total number of workers
have a relative efficiency of 1 for product 1 (wiper motor) and 0.9 for product 2 (starter
motor), and the remaining 30% have a relative efficiency of 0 for product 1 and 1 for
product 2.

The fuzziness is considered in the objective function, annual upper limit constraint,
annual lower limit constraint, and demand constraint. The fuzziness is defined by the
tolerance interval. The parameters (P0, P1, P2, P3) required by the fuzzy models are
estimated from the resulting solution of the deterministic problem and by the decision-
maker (DM). Here, for this problem, the tolerance level (i.e., P1, P2, P3) for the fuzzy
annual upper limit constraint, annual lower limit constraint, and demand constraint is
100, 200, and 200 hours, respectively. For the fuzzy objective function constraint, the
interval of tolerance is [Z1, Z1 + P0], where Z1=0.1 and P0 for I = 10 is estimated as
0.0634 for the non-seasonal pattern, whereas for seasonal 1 and seasonal 2, it is 0.1388
and 0.1872, respectively. The weights for the maximum relative capacity shortage (α)
and sum of weekly relative capacity shortages (β) are also assigned by the decision-
maker. Here, they are assigned as α = 0.99 and β = 0.01/(total weeks×total products),
respectively. The weight of the maximum relative capacity shortage is significantly
larger than the sum of the weekly relative capacity shortages.

The deterministic and fuzzy models described previously are modeled in the
AMPL language and solved using a Gurobi solver using the NEOS server online facility
provided by Wisconsin Institutes for Discovery at the University of Wisconsin in
Madison for solving optimization problems; see Czyzyk et al. (1998), Dolan (2001),
Gropp and Mor (1997), and NEOS (2016).

Results and discussion

The computational experiment is performed to show the effectiveness of the
fuzzy model over the deterministic model. For both the deterministic and fuzzy
models’ fuzzy parameter (λ), maximum relative capacity shortage (MRCS), sum of
the relative capacity shortage (SRCS), deterministic objective function (OF), and
membership grade [i.e., satisfaction level of objective function (µZ)] of the fuzzy models
is calculated and presented in Tables 1 and 2. Two working staff capacity (i.e., 10 and
40 staff members) is examined to show the model effect on computing time. Three
aggregation operators have been used, providing satisfactory results. The maximum
relative capacity shortage and sum of the relative capacity shortage shows better
results in the fuzzy models than in the deterministic model. The decrease in the sum
of the relative capacity shortage and maximum relative capacity shortage gives an
increase in the service level by minimizing the objective function.
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Table 1. Solution Results of Crisp, Fuzzy-min and Fuzzy-and models

Fuzzy-and

I = 10 Crisp Fuzzy-min γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
on

se
as

on
al

FP(λ) 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92

MRCS 0.1634 0.1047 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1047 0.1047

SRCS 17.0014 10.8981 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.8981 10.8981

OF 0.1634 0.1047 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1047 0.1047

µZ 0.9244 1 1 1 1 1 1 1 1 0.92 0.92

Se
as

on
al

-1

FP 0.8358 0.80 0.80 0.80 0.80 0.80 0.80 0.8358 0.8358 0.8358 0.8358

MRCS 0.2388 0.1227 0.1 0.1 0.1 0.1 0.1 0.1 0.1227 0.1227 0.1227 0.1227

SRCS 24.8405 12.7702 10.4 10.4 10.4 10.4 10.4 10.4 12.7702 12.7702 12.7702 12.7702

OF 0.2388 0.1227 0.1 0.1 0.1 0.1 0.1 0.1 0.1227 0.1227 0.1227 0.1227

µZ 0.8358 1 1 1 1 1 1 0.8358 0.8358 0.8358 0.8358

Se
as

on
al

-2

FP 0.7794 0.7170 0.7170 0.7170 0.7170 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794

MRCS 0.2872 0.1412 0.1 0.1 0.1 0.1 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412

SRCS 29.8775 14.6944 10.4 10.4 10.4 10.4 14.6944 14.6944 14.6944 14.6944 14.6944 14.6944

OF 0.2872 0.1412 0.1 0.1 0.1 0.1 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412

µZ 0.7794 1 1 1 1 0.77 0.77 0.77 0.77 0.77 0.77

Table 2. Solution Results of Fuzzy-com model

Fuzzy-com
I = 10 γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
on

se
as

on
al

FP(λ) 1 0.99 0.98 0.97 0.96 0.96 0.9546 0.94 0.93 0.93

MRCS 0.1634 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047

SRCS 16.9936 10.8981 10.8981 10.8981 10.8981 10.8981 10.8981 10.8981 10.8981 10.8981

OF 0.1634 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047

µZ 0 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Se
as

on
al

-1

FP 1 0.98 0.96 0.95 0.93 0.91 0.9014 0.88 0.86 0.85

MRCS 0.2388 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227

SRCS 24.8352 12.7702 12.7702 12.7702 12.7702 12.7702 12.7702 12.7702 12.7702 12.7702

OF 0.2388 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227

µZ 0 0.8358 0.8358 0.8358 0.8358 0.8358 0.8358 0.8358 0.8358 0.8358

Se
as

on
al

-2

FP 1 0.97 0.95 0.93 0.91 0.88 0.8676 0.84 0.82 0.80

MRCS 0.28 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412

SRCS 29.86 14.6944 14.6944 14.6944 14.6944 14.6944 14.6944 14.6944 14.6944 14.6944

OF 0.28 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412 0.1412

µZ 0 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

A sensitivity analysis is conducted to see the effect of alternative values of the
compensation grades for the fuzzy-and and fuzzy-com operator models. The solution
for sensitivity analysis gives us alternatives to be selected as best considering the
priorities of the decision-maker. For a better understanding, the result data is presented
in Figures 6, 7, 8, and 9.

Figures 6 and 7 show that the MRCS and SRCS for the fuzzy-and operator model
is less than the fuzzy-com operator model from γ = 0–0.9.
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Fig. 6. Maximum relative capacity shortages (MRCS)
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Fig. 7. Sum of relative capacity shortages (SRCS)
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Fig. 8. Satisfaction level (µz) of objective function
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Figure 8 shows that the level of satisfaction for the objective function is high for
the fuzzy-and model than it is for the fuzzy-com model. Although in the fuzzy-and
model, the level of satisfaction decreases from γ = 0–0.9, and for fuzzy-com, it remains
constant from γ = 0.1–0.9. In Figure 9, level of satisfaction (λ) for the least-satisfied
constraint is presented. It decreases for the fuzzy-com model in all of the demand
patterns, while for the fuzzy-and model, it increases from γ = 0–0.9. If the decision-
-maker is interested in the satisfaction level of the objective function, MRCS, SRCS,
OF, or all together, then the fuzzy-and operator is best for the compensation grade
alternatives from γ = 0–0.7 for non-seasonal demand, γ = 0–0.5 for seasonal 1, and
γ = 0–0.3 for the seasonal 2 demand pattern. If the decision-maker is concerned only
about fuzzy parameter (λ), then fuzzy-com operator is the best one for γ = 0.1. The
alternative γ = 0 and 1 correspond to the min operator and simple additive approach,
respectively.

Hence, the fuzzy-and operator is the best-overall-solution approach when com-
pared to the other approaches, and it shows better results in the fuzzy models as
compared to the deterministic model. For the non-seasonal, seasonal-1, and seasonal-2
demand patterns, there is a difference of 38.80%, 58.12%, and 65.18%, respectively, in
the values of the objective function of the fuzzy-and and deterministic models. This
difference is due to the rigid constraints of the deterministic model. The fuzzy model
gives more flexibility to the decision-maker.

The computation time is shown graphically in Figure 10.
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Seasonal 1 0,07 0,11 0,08 0,06

Seasonal 2 0,04 0,05 0,05 0,07
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Fig. 10. Solver computation time chart for models with I = 10 and 40
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The size of the models is given in Table 3. The number of workers increases the
size of the model by increasing the number of constraints and variables. CPU time
depends on the size of the model due to the larger amount of information stored.
The deterministic model requires lower computational effort as compare to the fuzzy
models. Among the fuzzy models, the fuzzy-and operator performs better in general.
Overall, the model is solved in acceptable time; even an increase in model size from 10
staff members to 40 does not make the computation time unacceptable. The maximum
computation time is for the fuzzy-com model for a staff size of 40 during non-seasonal
demand.

Table 3. Constraint and variable statistics of models

I = 10 I = 40

Constraints Variables Constraints Variables

Crisp 1263 1666 4113 6346

Fuzzy-min 1390 1793 4300 6533

Fuzzy-and 1394 1797 4304 6537

Fuzzy-com 1526 1808 4526 6578

6. CONCLUSION

In this paper, we integrated a basic model of the annualized hours planning problem
with fuzzy uncertainty. The summary of the proposed fuzzy models for the AHPP is
presented in Table 4. An AHPP problem with multi tasks and cross-trained workers
with respective relative efficiency in three different demand patterns is considered.
Previously, the AHPP was solved using deterministic data. We modeled this problem
as a fuzzy mathematical programming problem.

In real life, the parameters in the AHPP may not be precisely known. Fuzzy
models offer wider flexibility and an efficient option to deal with the uncertainty of
real life. These fuzzy models soften the rigidity of the deterministic model by relaxing
some of the constraints that use flexible programming.

Three models of the AHPP (Fuzzy-min, Fuzzy-and, and Fuzzy-com) under condi-
tions of uncertainty have been presented using different aggregation operators. Also,
a hypothetical experimental study has been done to show the effectiveness of the fuzzy
approach. The fuzzy-and operator is found suitable as a best-solution approach when
compared to the other approaches, and it shows better results in fuzzy models as
compared to the deterministic model. There is a difference of 38.80%, 58.12%, and
65.18% in the values of the objective function of the fuzzy-and and deterministic
models for non-seasonal, seasonal-1, and seasonal-2 demand patterns, respectively.
This difference is due to the rigidity of the constraints in the deterministic model. The
fuzzy model provides more flexibility to the decision-maker.

The computational performance is analyzed for different model sizes and was
found to be acceptable. The main contribution of this paper is the application of flexible
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programming in the AHPP, which is a better option when dealing with uncertainty.
In the future, the work may be extended to multi-objective annualized hours planning
problems, considering fuzzy and probabilistic uncertainty, learning curves, and human
factors like willingness, efficiency, etc. These extensions may help to provide better
decision-making in real-life scenarios.

Table 4. Summary of Fuzzy AHPP Models

Source of Fuzziness

(1) Aspiration of objective function

(2) Lower limit of Annual working hour constraint i.e.

Minimum of contracted working hours of staff

(3) Upper limit of Annual working hour constraint i.e.

Maximum of working hours of staff including overtime

(4) Demand of working hours

Objective

Weighted sum of (1) maximum relative capacity shortage

and (2) average relative capacity shortage for the whole

planning period with α and β as their associated weights.

Membership function Linear membership function

Solution approach

(1) Max-min operator (Bellman and Zadeh, 1970)

(2) Convex combination of min-operator and max-operator

(Zimmermann, 1996)

(3) Fuzzy-and operator (Werner’s, 1987)

Software used

NEOS Server: State-of-the-Art Solvers for Numerical

Optimization (NEOS, 2016)

Coding: AMPL

Solver: Gurobi
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