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Interval Methods for Computing Strong Nash Equilibria
of Continuous Games

Bartłomiej Jacek Kubica∗, Adam Woźniak∗

Abstract. The problem of seeking strong Nash equilibria of a continuous game is considered.
For some games, these points cannot be found analytically, only numerically. Interval methods
provide us with an approach to rigorously verify the existence of equilibria in certain points.
A proper algorithm is presented. We formulate and prove propositions, that give us features
which have to be used by the algorithm (to the best knowledge of the authors, these
propositions and properties are original). Parallelization of the algorithm is also considered,
and numerical results are presented. As a particular example, we consider the game of
“misanthropic individuals”, a game, invented by the first author, that may have several strong
Nash equilibria depending on the number of players. Our algorithm is able to localize and
verify these equilibria.
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1. INTRODUCTION

Game theory tries to predict decisions and/or advise the decision makers on how to
behave in a situation when several players (sometimes called “agents”) have to choose
their behavior (strategy; the i-th player chooses the strategy xi ∈ Xi) that will also
influence the others. Usually, we assume that each player tends to minimize his cost
function (or maximize his utility) qi(x1, . . . , xn).

So, each of the decision makers solves the following problem:

min qi(x
1, . . . , xn) (1)

s.t.
xi ∈ Xi
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What solution are they going to choose?
One of the oldest, most famous, and still widely-used concepts is the Nash

equilibrium (Nash, 1950). It can be defined as a situation (an assignment of strategies
to all players), when each player’s strategy is optimal against those of the others.

Formally, the tuple x∗ = (x1∗, . . . , xn∗) is a Nash equilibrium, if:

(∀i = 1, . . . , n) (∀xi ∈ Xi) qi(x
1∗, . . . , xi−1∗, xi, xi+1∗, . . . , xn∗) ≥ qi(x1∗, . . . , xn∗) (2)

We shall use a shorter notation, also: ∀i = 1, . . . , n ∀xi qi(x
\i∗, xi) ≥ qi(x\i∗, xi∗).

Such points, however, have several drawbacks – both theoretical (rather strong
assumptions about the players’ knowledge and rationality) and practical (they can
be Pareto-inefficient; i.e., it is possible to improve the outcome of one player without
worsening the others’ results (Miettinen, 1999)).

Hence, several “refinements” to the notion have been introduced, including the
strong Nash equilibrium (SNE, for short), in particular; see (Aumann, 1959). For
such points, not only none of the players can improve their performance by changing
strategy, but also no coalition of players can improve the performance of all of its
members by mutually deviating from the SNE. Formally:

(∀I ⊆ {1, . . . , n}) (∀xI ∈ ×i∈IXi) (∃i ∈ I) qi(x
\I∗, xI) ≥ qi(x\I∗, xI∗) (3)

Also, the notion of a k-SNE (or k-equilibrium) is sometimes encountered. Its definition
is similar to ordinary SNE, but the coalition I in (3) can consist of k members at most.
Obviously, a (k + l)-SNE is also a k-SNE (if l > 0) and, in particular, a SNE is also
a k-SNE for any k = 1, 2, . . . , n.

Strong Nash equilibria have been long thought to be too restrictive to be useful
in practical situations, but they have received increased interest in recent years.
Apparently, there exist some important games having SNE; e.g., some congestion games
(Rosenthal, 1973), as pointed out in (Holzman and Law-Yone, 1997), or economies
with multilateral environmental externalities; e.g., (Nessah and Tian, 2014). Existence
of such a “strong” equilibrium may result in great stability of the system, as virtually
no group of players will intend to change the status quo. Verifying the existence (or
non-existence) of such a point and locating it may be very important. Consequently,
the interest in computing SNE grows, also – see; e.g., (Gatti et al., 2013; Nessah and
Tian, 2014).

In this paper, we consider continuous single-stage games; i.e., the case, when
the player’s strategy is a tuple of numbers (vector) they choose from the given set,
i.e. xi =

(
xi1, . . . , x

i
ki

)
∈ Xi ⊆ Rki . Let us denote Ki – the set of components of the

i-th player decision variable xi, ki – its size, KI – the union of all Ki for i ∈ I and
x = (x1, . . . , xn) = (x11, . . . , x

1
k1
, x21, . . . , x

2
k2
, . . . xn1 , . . . , x

n
kn

). Also, we call Nash points
(equilibria) that are not strong, “plain” Nash equilibria, to distinguish them from SNE.

Computing Nash equilibria – plain or strong ones – of such games is a hard task
in general. We are going to present an approach based on interval analysis, extending
our earlier algorithm for plain Nash points; see (Kubica and Woźniak, 2010, 2012).
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2. BASICS OF INTERVAL COMPUTATIONS

Now, we shall define some basic notions of intervals and their arithmetic. The idea
can be found in several textbooks; e.g., (Hansen and Walster, 2004; Jaulin et al., 2001;
Kearfott, 1996; Moore et al., 2009; Shary, 2013).

We define the (closed) interval [x, x] as a set {x ∈ R | x ≤ x ≤ x}. Following
(Kearfott et al., 2010), we use boldface lowercase letters to denote interval variables;
e.g., x, y, z, and IR denotes the set of all real intervals.

We design arithmetic operations on intervals so that the following condition was
fulfilled: if we have � ∈ {+,−, ·, /}, a ∈ a, b ∈ b, then a � b ∈ a � b. The actual
formulae for arithmetic operations – see; e.g., (Hansen and Walster, 2004; Jaulin et al.,
2001; Kearfott, 1996) – are as follows:

[a, a] + [b, b] = [a+ b, a+ b]

[a, a]− [b, b] = [a− b, a− b]
[a, a] · [b, b] = [min (ab, ab, ab, ab),max (ab, ab, ab, ab)]

[a, a] / [b, b] = [a, a] ·
[
1 / b, 1 / b

]
, 0 /∈ [b, b]

The definition of interval vector x, a subset of Rn is straightforward: Rn ⊃ x =
x1 × · · · × xn. Traditionally, interval vectors are called boxes.

Links between real and interval functions are set by the notion of an inclusion
function: see; e.g., (Jaulin et al., 2001); also called an interval extension; e.g., (Kearfott,
1996).
Definition 2.1. A function f : IR→ IR is an inclusion function of f : R→ R, if for
each interval x within the domain of f the following condition is satisfied:

{f(x) | x ∈ x} ⊆ f(x)

The definition is analogous for functions f : Rn → Rm.
When computing interval operations – either the ones above or computing the

enclosure for a transcendental function – we can round the lower bound downward and
the upper bound upward. This will result in an interval that will be overestimated,
but will be guaranteed to contain the true result of the real-number operation.

3. NECESSARY CONDITIONS FOR A SNE

In interval global optimization, we use the Fritz–John conditions (Kearfott, 1996) to
discard boxes that do not contain critical points. For unconstrained problems, we
can discard all boxes, where the gradient of the objective cannot be equal to zero
(unless bound constraints are active – see (Kearfott, 1996); i.e., when x belongs to the
boundary of X). We are going to denote part of the gradient of a function f with
respect to some of the variables xj = (xj1, . . . , x

j
kj

) as:

∂f

∂xj
=
( ∂f
∂xj1

, . . . ,
∂f

∂xjkj

)
The vector equality (y1, . . . , yk) = 0 is understood componentwise.
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In (Kubica and Woźniak, 2010), we considered the necessary conditions of a Nash
equilibrium and realized that – if no constraints are active – the point x has to satisfy
the following conditions to be a Nash equilibrium:

∂qi(x)

∂xi
= 0, i = 1, . . . , n

What other conditions should a point satisfy to be a SNE?

Proposition 3.1. (Necessary conditions for a 2-SNE) Consider a strategy profile x,
such that no constraints are active for x (i.e., x ∈ intX). Suppose, for two players

i and j, we have
∂qi(x)

∂xj
6= 0 and

∂qj(x)

∂xi
6= 0. Then, x is not a 2-SNE.

Interpretation
In a 2-SNE point, for no pair of players, it is possible for them to mutually improve
each other’s cost value – at least for one of them, their cost is minimized for the other’s
decision for x.

Proof. Suppose x is a 2-SNE of the game. From the definition, for each pair of players
(i, j) the pair of their cost functions

(
qi(x), qj(x)

)
has to be weakly non-dominated –

see; e.g., (Nessah and Tian, 2014):

6 ∃x′ ∈ X
(
qi(x

′) < qi(x) and qj(x′) < qj(x)
)

Necessary conditions for the weak Pareto-optimality can be formulated as follows –
see; e.g., (Miettinen, 1999) – there exist u1 ∈ [0, 1] and u2 ∈ [0, 1] such tha:

u1 ·
∂qi
∂xi

+ u2 ·
∂qj
∂xi

= 0

u1 ·
∂qi
∂xj

+ u2 ·
∂qj
∂xj

= 0

u1 + u2 = 1

From the necessary conditions of any Nash equilibrium – see; e.g., (Kubica and

Woźniak, 2010) – we know that
∂qi
∂xi

=
∂qj
∂xj

= 0. Thus, we obtain:

u2 ·
∂qj
∂xi

= 0

u1 ·
∂qi
∂xj

= 0

u1 + u2 = 1

As u1+u2 = 1, we cannot have u1 = u2 = 0. So, at most, one of the partial derivatives –
∂qj
∂xi

or
∂qi
∂xj

– has to be equal to zero.
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Proposition 3.2. (Necessary conditions for a 3-SNE) Consider a strategy profile x,
such that no constraints are active for x (i.e., x ∈ intX). Consider three players: i, j
and k. A necessary condition for x to be a 3-SNE is that the following two conditions
are satisfied:

∂qi(x)

∂xj
= 0 or

∂qj(x)

∂xk
= 0 or

∂qk(x)

∂xi
= 0 (4)

∂qi(x)

∂xk
= 0 or

∂qk(x)

∂xj
= 0 or

∂qj(x)

∂xi
= 0

Interpretation

For no trio of players, it is possible for them to mutually improve each other’s cost
value.

Proof. Suppose x is a 3-SNE of the game. Analogously to the previous proof, for
each trio of players (i, j, k) the pair of their cost functions

(
qi(x), qj(x), qk(x)

)
has to

be weakly non-dominated. Necessary conditions for weak Pareto-optimality can be
formulated as follows in this case:

u1 ·
∂qi
∂xi

+ u2 ·
∂qj
∂xi

+ u3 ·
∂qk
∂xi

= 0

u1 ·
∂qi
∂xj

+ u2 ·
∂qj
∂xj

+ u3 ·
∂qk
∂xj

= 0

u1 ·
∂qi
∂xk

+ u2 ·
∂qj
∂xk

+ u3 ·
∂qk
∂xk

= 0

u1 + u2 + u3 = 1

As earlier, we have
∂qi
∂xi

=
∂qj
∂xj

=
∂qk
∂xk

= 0, which reduces the above equations to:

u2 ·
∂qj
∂xi

+ u3 ·
∂qk
∂xi

= 0 (5)

u1 ·
∂qi
∂xj

+ u3 ·
∂qk
∂xj

= 0

u1 ·
∂qi
∂xk

+ u2 ·
∂qj
∂xk

= 0

u1 + u2 + u3 = 1

while – from the 2-SNE’s necessary conditions for each pair of players, we have:

∂qi(x)

∂xj
= 0 or

∂qj(x)

∂xi
= 0 (6)

∂qi(x)

∂xk
= 0 or

∂qk(x)

∂xi
= 0

∂qj(x)

∂xk
= 0 or

∂qk(x)

∂xj
= 0



68 B.J. Kubica, A. Woźniak

Conditions (6) themselves do not assure (4) – we can choose all three partial derivatives
to be equal to zero from the same line of (4). But together with (5), we can imply the
following:

– We can either choose all three pairs from various equations of (5) or two of them
from the same equation.

– If two pairs in the same equations of (5) are equal to zero, they are from both
equations of (4).

– If all three partial derivatives are chosen from separate equations of (5), the
system (5) transforms into the system of the following three equations: u1 · a = 0,
u2 · b = 0, u3 · c = 0, where a, b and c are different partial derivatives. As, at most
one ui can be equal to zero, it makes at least two of the derivatives a, b and c to
be equal to zero.

In all cases, derivatives from both lines of (4) are equal to zero.

4. THE PROPOSED APPROACH

The general schema is going to be a specific variant of the branch-and-bound type
(b&b-type) method described by the author in (Kubica, 2012, 2015). The algorithm is
going to seek points satisfying the logical conditions defined by (3).

The input of the algorithms is the game; i.e., the number of players, formulae for
cost functions of each of them, and domains of their control variables. The program
results in two sets of boxes containing “verified” and “possible” strong Nash equilibria
of the game.

To process boxes in the b&b-type algorithm, we have to use the necessary condi-
tions investigated in Section 3. Please note that these conditions form an overdeter-
mined system. There are methods to solve overdetermined systems – e.g., (Horacek
and Hladik, 2013, 2014) – but in our case, another approach seems more appropriate.
We have a system of N equations in N variables (necessary conditions for a Nash
point) plus additional conditions that are alternatives of equations.

It seems reasonable to consider the first system separately. We use the following
tools to solve it:

– a variant of the monotonicity test – Algorithm 2; see also (Kubica and Woźniak,
2010),

– a variant of the “concavity” test – Algorithm 4; e.g., (Kearfott, 1996),

– an interval Newton operator (see below).

Hence, the 2-SNE necessary conditions investigated in Proposition 3.1 are used in
Algorithm 3. Conditions for k-SNE, k ≥ 3 are not checked in the current implementation
– it seems to be a costly procedure and unlikely to be very useful.

Conditions from the definition of SNE – equation (3) – are directly verified in the
second phase of Algorithm 1.
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The “concavity” test – Algorithm 4 – could more precisely be called the “non-
convexity” test. It verifies whether the function can be convex on the box x; i.e., if no
component of the Hesse matrix is negative. If bound constraints can be active, the
check is not performed, as even a function that is concave with respect to some of its
variables can still have a minimum on the boundaries.

The general b&b-type algorithm is implemented by Algorithm 1.

Algorithm 1 The branch-and-bound-type method for seeking SNE

Require: x0, q(·), ε
1: Lver = Lpos = Lcheck = Lsmall = ∅
2: x = x(0)

3: loop
4: xold = x
5: perform the monotonicity test (Algorithm 2) on (x, x(0), xold, q)
6: perform the 2-SNE-monotonicity test (Algorithm 3) on (x, x(0), xold, q)
7: perform the “concavity” test (Algorithm 4) on (x, x(0), xold, q)
8: perform the Newton operator on (x, x(0), q)
9: if (x was discarded, but not all qi’s are monotonous on it) then

10: push (Lcheck, xold)
11: discard x
12: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
13: x = x(1)

14: push (L, x(2))
15: cycle loop
16: else if (wid (x) < ε ) then
17: push (Lsmall, x)
18: end if
19: if (x was discarded or x was stored) then
20: x = pop (L)
21: if (L was empty) then
22: break
23: end if
24: else
25: bisect (x), obtaining x(1) and x(2)

26: x = x(1)

27: push (L, x(2))
28: end if
29: end loop
30: {Second phase – verification}
31: for all (x ∈ Lsmall) do
32: check if another solution from Lsmall does not invalidate x (see Subsection 4.1)
33: verify if no box from Lcheck contains a point that would invalidate x
34: put x to Lver, Lpos or discard it, according to the results
35: end for
36: return Lver, Lpos
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Algorithm 2 The monotonicity test
Require: x,x(0),xold, q(·)
1: nmon = 0
2: for (i = 1, . . . , n) do
3: for (k = 1, . . . , ki) do
4: if ( ∂qi(x)

∂xi
k

> 0) then

5: if (xik > x
i(0)
k ) then

6: increment nmon

7: break {the inner loop}
8: else
9: set xik = x

i(0)
k

10: end if
11: else if ( ∂qi(x)

∂xi
k

< 0) then

12: if (xik < x
i(0)
k ) then

13: increment nmon

14: break {the inner loop}
15: else
16: set xik = x

i(0)
k

17: end if
18: end if
19: end for
20: end for
21: if (nmon > 0) then
22: if (nmon < n) then
23: push (Lcheck, xold)
24: end if
25: discard x
26: end if

Algorithm 3 The 2-SNE monotonicity test
Require: x,x(0),xold, q(·)
1: for (i = 1, . . . , n) do
2: for (j = i+ 1, . . . , n) do
3: ith_has_no_zero = jth_has_no_zero = false
4: for (k = 1, . . . , kj) do
5: if (xjk < x

j(0)
k and ∂qi(x)

∂x
j
k

< 0) or (xjk > x
j(0)
k and ∂qi(x)

∂x
j
k

> 0) then

6: ith_has_no_zero = true
7: end if
8: end for
9: for (k = 1, . . . , ki) do
10: if (xik < x

i(0)
k and ∂qj(x)

∂xi
k

< 0) or (xik > x
i(0)
k and ∂qj(x)

∂xi
k

> 0) then

11: jth_has_no_zero = true
12: end if
13: end for
14: if (ith_has_no_zero and jth_has_no_zero) then
15: discard x
16: return
17: end if
18: end for
19: end for
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Algorithm 4 The “concavity” test
Require: x,x(0),xold, q(·)
1: nconc = 0
2: if (not x ⊂ intx(0)) then
3: return
4: end if
5: for (i = 1, . . . , n) do
6: {check the Hesse matrix of qi(x) with respect to xi}

7: if ( ∂
2qi(x)

∂(xi
k
)2

< 0 for some k = 1, . . . , ki) then
8: increment nconc

9: end if
10: end for
11: if (nconc > 0) then
12: if (nconc < n) then
13: push (Lcheck, xold)
14: end if
15: discard x
16: end if

As the Newton operator, we use the interval Gauss-Seidel operator with the
inverse-midpoint preconditioner. We shall not present the code, as it is available in
several textbooks; e.g., (Hansen and Walster, 2004; Kearfott, 1996; Moore et al., 2009;
Shary, 2013).

4.1. THE SECOND PHASE – VERIFICATION

Verification of the solutions obtained in the b&b-type algorithm is based on the
following property:

Property 4.1. The point x∗ = (x1∗, . . . , xn∗) is a SNE, if ∀x = (x1, . . . , xn) ∈ X:(
(∃i = 1, . . . , n)

(
qi(x) ≥ qi(x∗)

)
and (xi 6= xi∗)

)
or(

(∀i = 1, . . . , n) (xi = xi∗)
) (7)

Proof. From (3), we infer that no coalition I ⊆ {1, . . . , n} can improve the objectives
of all of its members. If x is the strategy profile when players cooperating in coalition I
deviated from x∗, it means that, at least for one i ∈ I, the value of qi has not improved,
and for i /∈ I, the players did not change their strategy; i.e., xi = xi∗.

Proposition 4.1 means that, to invalidate x∗ as a SNE, we have to find the strategy
profile x such that:(

(∀i = 1, . . . , n)
(
qi(x) < qi(x

∗)
)
or (xi = xi∗)

)
and(

(∃i = 1, . . . , n) (xi 6= xi∗)
) (8)

This condition can easilly be checked for all other points in the list Lsmall. Boxes in
Lcheck are larger, and – in general – we need to bisect them, performing a “nested” b&b-
-type procedure to verify if they contain a point invalidating a specific solution or not.
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4.2. PARALLELIZATION

The algorithm is parallelized using threads.
In the first phase, we have a shared queue L – guarded by two mutexes, as

described in (Kubica and Woźniak, 2010) – and several threads processing boxes in
parallel.

In the second phase, we verify different boxes from Lsmall in parallel; i.e., we
parallelize the loop in line 31. The verification procedure in line 33 (that is a nested
b&b-type algorithm) is not parallelized, as – being a recursive procedure – it would
require more sophisticated parallelization methods; e.g., using Intel Threading Building
Blocks; see (Kubica, 2012, 2015).

5. EXAMPLES OF GAMES TO SOLVE

We are going to present results from a few test problems. The first three have been
discussed in (Ślepowrońska, 1996) and then considered in (Jauernig et al., 2006;
Kołodziej et al., 2006; Kubica and Woźniak, 2010).

The first game has two players; each of them controls one real-valued decision
variable.

min
x1

(
q1(x1, x2) = (x1 − x2 + 1)2

)
(9)

min
x2

(
q2(x1, x2) = (x2 − x21)2 + (x1 − 1)2

)
x1 ∈ [−1, 2.5], x2 ∈ [−1, 3]

This game has three Nash equilibria: (2, 3) on the boundary and two in the interior
of the feasible set: (−0.618034, 0.381966) and (1.618033, 2.618033). It is not known
a priori if they are strong or not; our solver indicates that they are. Accuracy ε = 10−7

is used for this game.
The second game is also a game of two players, but now each of them has 9 decision

variables.

min
x1,...,x9

(
q1(x) = (x1 − 1)2 + (x2 − 1)2 + x23 + (x4 − 1)2 + x25 + (x6 − 1)2 (10)

+(x7 − 1)2 + x28 + x29 + x211 + (x12 − 0.5)2 + x213 + (x16 + 0.5)2 + (x18 − 1)2
)

min
x10,...,x18

(
q2(x) = (x10 + 1)2 + x211 + (x12 − 1)2 + x213 + x214 + (x15 + 1)2

+(x17 − 1)2 + x216 + (x18 − 1)2 + (x2 − 0.5)2 + x23 + (x4 − 0.5)2 + (x8 − 0.5)2
)

xi ∈ [−2, 2.4]9 i = 1, 2

The game has one Nash equilibrium: (1, 1, 0, 1, 0, 1, 1, 0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 1).
According to our results, this point seems to be a SNE. Accuracy ε = 10−4 is used for
our solver.
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In the third game, we have three players with two decision variables each.

min
x1,x2

(
q1(x) = (x1 + 1)2(x1 − 1)2 + (x2 + 1)2(x2 − 1)2 + x3x4 + x5x6

)
(11)

min
x3,x4

(
q2(x) = (x4 − 0.5)2(x4 + 1)2 + (x3 + 1)2 + x1x2 + x5x6

)
min
x5,x6

(
q3(x) = (x5 + 0.5)2(x5 − 1)2 + (x6 − 1)2 + x1x2 + x3x4

)
xi ∈ [−2, 2.4]6 i = 1, 2, 3

This game has 16 Nash equilibria (they are listed in (Kołodziej et al., 2006; Śle-
powrońska, 1996); none of them is a SNE. We use accuracy parameter ε = 10−7.

The fourth test problem is a game of two players; both have a single real-valued
decision variable:

min
x1

(
q1(x1, x2) = x21 · (x21 − 3.75 · x1 + 3.25) + 1 + x22

)
(12)

min
x2

(
q2(x1, x2) = x22 · (x22 − 3.75 · x2 + 3.25) + 1 + x21

)
xi ∈ [−3, 3.2], i = 1, 2

The game has a single Nash point at (2, 2), but it is not a SNE – mutually deviating
from 2 to 0 is beneficial for both players (but the point (0, 0) is not a Nash point,
at all!). Accuracy is set to ε = 10−7.

5.1. THE GAME OF MISANTHROPIC INDIVIDUALS

This game has been proposed by the first author. Inspirations for it were congestion
games (Rosenthal, 1973) and the game of dog and rabbit by Hugo Steinhaus (Steinhaus,
1960).

Consider n players, choosing their positions on a compact board – a two-
dimensional domain for which we choose rectangle D = [−3, 3]×[−2, 2]. Their objective
is to be as far from the others as possible. Specifically, we assume that each of the
players (let us give him the number i = 1, . . . , n) maximizes, by choosing position
(xi, yi) ∈ D, the following function:

qi(xi, yi) =

n∑
j=1,j 6=i

(
(xi − xj)2 + (yi − yj)2

)
(13)

Solutions of the game

Depending on n, the game can have different numbers of Nash equilibria – all or
none of them being strong.

For two players, we have 4 Nash equilibrium points, each of them are strong.
Their structures are obvious: one of the individuals is located in one of the four corners
and the other one – diagonally opposite to him. It is clear that all of them are SNE –
cooperation of both players cannot increase their distance in any way. This case is
a “degenerate” case of a game, as both players maximize the same function – the
(square of) the distance between them.
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For three players we have 36 Nash equilibria: 24 with all three individuals located
in different corners (4× 3× 2) and 12 with one of the three individuals in a corner and
both others diagonally opposite to him (one of the 3 individuals × 4 corners). In all
cases, one of the individuals has a better position than the two others. And actually,
none of these solutions is strong – the two players with worse values can always collude
to change their positions and improve their payoffs at the expense of the third player.

For four players, we have 36 Nash equilibria: 24 solutions with each individual
in his own corner (4× 3× 2) and 12 solutions with two pairs of players in opposite
corners. Counter-intuitively, formula (13) makes their values identical for both types
of solutions. All of these 36 solutions are strong Nash equilibria.

For larger number of players, it is very difficult to analyze all possible solutions
and their structures. In Section 6, we present; i.a., computational results for such
situations (Tables 2 and 3).

6. NUMERICAL EXPERIMENTS

Numerical experiments were performed on a computer with four cores (allowing hyper-
threading), namely, an Intel Core i7-3632QM with 2.2GHz clock. The machine ran
under control of a 64-bit Manjaro 0.8.8 GNU/Linux operating system with the GCC
4.8.2, glibc 2.18 and the Linux kernel 3.10.22-1-MANJARO.

The solver is written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.3) (C-XSC, 2013) was used for interval computations.

The parallelization was done using the threads of the C++11 standard. OpenBLAS
0.2.8 (OpenBLAS, 2013) was linked for BLAS operations.

6.1. RESULTS FOR PROBLEMS (9)–(11)

Computational results for these problems can be found in Table 1.

Table 1. Computational results for the solver, with a single thread

problem (9) (10) (11) (12)
cost fun. evals 26557 356776 0 238
gradient evals 6875 93914 0 134
Hesse matrix evals 204 182 609 162
bisections 49 45 101 29
deleted monot. test. 35 45 67 21
deleted strong mon. 0 0 35 1
deleted “conc.” 0 0 0 3
deleted Newton 0 0 0 7
boxes after 1st ph. 3 1 0 3
possibly dominating 41 45 102 32
deleted 2nd phase 0 0 0 3
possible solutions 3 1 0 0
verified solutions 0 0 0 0
time (milisec.) 491 2358 459 461
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6.2. RESULTS FOR THE GAME OF MISANTHROPIC INDIVIDUALS

We present results for computing SNE and plain Nash equilibria – Tables 2 and 3,
respectively. Accuracy ε = 10−8 is set in all cases.

Table 2. Computational results for the solver, with four threads

players number 2 3 4 5 6 7
cost fun. evals 7616 1164 4853056 70235 5576803158 1519735
gradient evals 0 0 728800 0 1210016856 0
Hesse matrix evals 3774 18141 71164 300555 1136634 4677113
bisections 943 3023 8895 30055 94719 334079
deleted monot. test. 0 0 220 168 256 1536
deleted strong mon. 0 0 0 0 0 0
deleted “conc.” 928 2960 8640 28864 90368 316160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16384
possibly dominating 944 3280 10304 41972 133120 516864
deleted 2nd phase 12 64 220 1024 3696 16384
possible solutions 0 0 36 0 400 0
verified solutions 4 0 0 0 0 0
time (sec.) 0.452 0.555 4.442 5.577 5221 189

Table 3. Computational results for computing plain Nash equilibria, using four threads

players number 2 3 4 5 6 7
cost fun. evals 5196 47335 47602 685225 1111178 14443406
gradient evals 0 0 0 0 0 0
Hesse matrix evals 3774 18141 71164 300555 1136634 4677113
bisections 943 3023 8895 30055 94719 334079
deleted monot. test. 0 0 0 168 256 1536
deleted “conc.” 928 2960 8640 28864 90368 316160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16384
possibly dominating 944 3280 10304 41972 133120 516864
deleted 2nd phase 12 28 220 624 3696 11484
possible solutions 0 32 0 336 0 4000
verified solutions 4 4 36 64 400 900
time (sec.) 0.474 0.581 1.220 7.296 37 483

7. ANALYSIS OF THE RESULTS

The algorithm finds the SNE in all cases, but it is rarely able to verify them. The
conditions are a bit complicated to be verified rigorously – actually, the verification
was successful in one case only – and a very specific one (the game of misanthropic
individuals, n = 2).



76 B.J. Kubica, A. Woźniak

The solver finds the solution for problem (11) very quickly. This is because, for
this game, all 16 Nash equilibrium points can be verified not to be SNE early – in
the first phase (see the row “boxes after 1st ph.”), using the 2-SNE monotonicity test
(Algorithm 3). See Table 1 for specific results.

In the game of misanthropic individuals – problem (13) – for some n’s, the number
of gradient evaluations is equal to zero. This usually happens when the number of
points to verify in the second phase is equal to zero.

Gradients are computed in two cases:

– in the interval Newton operator, verifying first-order conditions for the Nash
equilibria,

– in the second phase – also, in the Newton operator, but now verifying the inequality
that qi(x) is lower than the verified value.

For the game of misanthropic individuals, cost functions qi are concave, so we never
apply the Newton operator in the first phase. Nor we do in the second phase, if there
are no solutions to verify (in the case, we simply do nothing in the second phase).

It is worth noting how the computational effort changes with n for the game of
misanthropic individuals. For odd numbers of players (n = 3, 5, 7), the effort of finding
all strong Nash equilibria is particularly low. The reason is simple – there is no SNE
(this hypothesis has been verified by numerical experiments for n = 3, 5, 7; we haven’t
proven it for other values of n, but it seems plausible) and all possible solutions are
quickly discarded by comparisons with other possible solutions (see Subsection 4.1).
The time-consuming nested branch-and-bound type procedure does not have to be
executed at all. Because of this, the solver for SNE is more efficient than for plain
Nash equilibria for these points; see Tables 2 and 3.

For n = 6, the solver finds 400 points that are strong Nash equilibria, probably.
Isolating so many solutions of the game is possible thanks to the virtues of the interval
calculus: see; e.g., (Kubica, 2015; Shary, 2013).

8. CONCLUSIONS

We presented an interval solver able to compute strong Nash equilibrium points
of continuous games. We tested it on a few test problems, showing its usefulness.
Parallelization using threads allows us to handle relatively difficult problems. For one
of the examples, it allowed us to isolate 400 equilibrium points.

Also, a specific test problem has been proposed – the game of misanthropic
individuals; a continuous game with an arbitrary number of players, having various
numbers of plain and strong Nash equilibria, depending on the number of players. It
seems an interesting benchmark, due to its complex and counter-intuitive properties.
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