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Stretching the Least Squares
to Embed Loss Function Tables

Kiyoshi Yoneda∗, Antonio Carlos Moretti∗∗, Johan Poker Jr.∗∗

Abstract. The method of least squares is extended to accommodate a class of loss functions
specified in the form of function tables. The function tables are embedded into the standard
quadratic loss function so that nonlinear least squares algorithms can be adopted for loss
minimization. This is an alternative to a more straightforward approach which interpolates
the function tables and minimizes the resulting loss function by some generic optimization
algorithm. The alternative approach has advantages over the straightforward, such as the wider
availability of the least squares programs compared to the generic optimization programs and
reduction in computational complexity. Examples are given for its application to multiplicative
utility function maximization problems.
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1. INTRODUCTION

A number of variables x := [· · · xi · · · ] are considered outcomes of a decision. The
decision variables x̌ = [· · · x̌k · · · ] consist a part of the outcomes. For notational
convenience we let x̌ be the first part of x, so that xi = x̌i for 1 ¬ i ¬ dim x̌:

x = [· · · xi · · · ] = [x̌ xdim x̌+1 · · · xdim x]

The causality relationship between the decision and the outcome variables is assumed
known in the functional form

x = f(x̌) = [· · · fi(x̌) · · · ] (1)
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where x̌i = fi(x̌) , and fi is monotone with respect to each x̌k . The solution to (1) is
defined by

x̂ = arg min
x̌

∑
i

wi `i(xi)
∑
i

wi = 1 (2)

where wi are given importance weights. Depending on `i, this includes the weighted
likelihood maximization and the weighted least squares (LS) which may be found in
textbooks such as Hansen et al., 2012.

Since writing a mathematical expression for general `i is often difficult, we propose
that the specifications be given as subloss function tables

Li :=
[
xi •
yi •

]
:=
[
· · · xij · · ·
· · · `i(xij) = yij · · ·

]
xij < xi j+1

0 ¬ yij
(3)

This representation permits loss functions which are far more complex than the
quadratic loss. Specifically, unlike in the least squares, the subloss function ` needs
not be symmetric with respect to x such that `(x) = 0.

A straightforward way to process such a specification would be:

1) Interpolate the Li to obtain `i.
2) Use a generic unconstrained optimization (UO) program to compute (2).

This paper develops an alternative solution method, which extends the method of LS
to accommodate subloss functions given as function tables (3). The method tweaks the
standard quadratic subloss function z2

i into the subloss function `i(xi) which passes
through the given knots {· · · (xij , yi,j) · · · } by setting a piecewise linear bijection
zi

xi7→ xi:

xij yij

xi yi

zi z2
i

embed

Li

embed
`i

piecewise linear bijection xi

quadratic loss

(4)

The dashed `i is uniquely determined by making the diagram commute. This situation
is further discussed in Section 4.1 and visualized in Figure 3.

Motivations for this approach have been:

1) LS programs are more widely available than UO programs, especially for resource-
constrained computers such as controllers and signal processors.

2) LS programs tend to be more robust and faster than UO programs.
3) Engineering users are more likely to be familiar with the LS than with the UO.
4) Writing a program for the LS is usually easier than for the UO for various reasons

including the availability of test data.
5) The alternative approach is computationally less complex than the straightforward.
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The method is a natural extension of the idea described in (Yoneda and Moretti,
2014), in which the function tables are limited to three entries,

Li :=
[
xi1 xi2 xi3
1 0 1

]
(5)

The rest of this paper is organized as follows. The bijection zi
xi7→ xi is presented in

Section 2 and discussed in Section 3. The proposed method is illustrated in Section 4
by examples in multiplicative utility maximization. Section 5 concludes the paper with
remarks on deployability.

2. EXTENSION OF THE LEAST SQUARES

The function table (3) is assumed to satisfy the following conditions.

– The table Li has at least three entries as in (5).
– The minimum yij = 0 is unique; the maximum yij = 1 is at the both ends of the

table Li.
– The slopes connecting adjacent points are increasing,

yij − yi j−1

xij − xi j−1
<
yi j+1 − yij
xi j+1 − xij

1 < j < dimxi •

The proposed method is as follows.

1) Define the unique piecewise linear bijection

Rdim x 3 z x7→ x ∈ Rdim x

that makes (4) commute, where R is the set of real numbers.
2) Use a nonlinear LS software to compute

ẑ = arg min
ž

∑
i

wi z
2
i with ž

x|{ž}7→ x̌
f7→ x

x−17→ z

where x|{ž} is x restricted to {ž}.
3) Recover the solution to (2) by ẑ x7→ x̌

f7→ x .

Thus the LS computation proceeds as follows, where the iterations are numbered.

ž(0) x̌(0) x(0) z(0)

ž(1) x̌(1) x(1) z(1)

ž(2) · · ·

x f x−1

LS update

x
f x−1

LS update

(6)
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To find z
x7→ x , determine the values of z at the knot points xij by:

zij :=


−y

1
2
ij j ¬ k

y
1
2
ij k ¬ j

where yik = 0

so that:

z
x7→ x = a0 + a1z

with:

a0 :=
xihzi h+1 − xi h+1zij

zi h+1 − zih
a1 :=

xi h+1 − xih
zi h+1 − zih

h :=


1 z < zi1

j zij ¬ z ¬ zi j+1

dimxi − 1 zi dim xi • < z

An example is presented in Section 4.1 in Figure 3.

3. DISCUSSION

3.1. COMPUTATIONAL COMPLEXITY

Since the causality x̌ f7→ x is described in terms of x rather than z, the bijection z x7→ x

and its inverse x x−17→ z have to be invoked for each iteration in the LS algorithm as
illustrated in (6).

The piecewise linear bijection zi
xi7→ xi induces a piecewise quadratic interpolation

xi
`7→ yi of Li. An example is presented in Section 4.1 in Figure 2. The straightforward

way mentioned in Section 1 can be used combining this piecewise quadratic interpolation
with UO:

x̌(0) x(0) y(0)

x̌(1) x(1) y(1)

x̌(2) · · ·

f quadratic interpolation

UO update

f

quadratic interpolation

UO update

(7)

It is fair to compare the computational complexities, of (6) against (7).
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For each iteration in (6) each decision variable invokes one x which involves one
multiplication, since the conversion is of the form x̌k = a0 + a1žk . This amounts to
dim x̌ multiplications. Likewise, each variable xi invokes one multiplication to compute
x−1 for the form zi = (xi − a0)a−1

1 . This amounts to dimx multiplications. Hence
the total is dim x̌+ dimx multiplications per iteration. On the other hand, for each
iteration in (7) each variable invokes one quadratic interpolation which involves four
multiplications, since the computation is of the form yi = b0 + b1xi + b2x

2
i . Hence the

total is 4 dimx multiplications per iteration.
Thus a single LS iteration involves less multiplications than a single UO iteration.

3.2. DIFFERENTIABILITY

At this point the result is that even if UO updated equally fast as LS and if UO con-
verged equally fast as LS, (6) still holds an advantage over (7) in terms of computational
complexity. However, this cannot be taken as the final conclusion.

The piecewise quadratic interpolation `i is smooth except at the knot points
(xij , yij) where the derivatives do not exist. The exception is at the minimum `k(xk) = 0,

in which case d`i
dxi

∣∣∣
xi=xik

= 0 but not generally twice differentiable. If this problem

is to be avoided, either a more sophisticated interpolation of Li with UO or a more
sophisticated bijection z

x7→ x with LS would have to be used, which take care of
differentiability at the knots. An obvious candidate would be splines, which would
require at least a cubic polynomial adding complexity to the computation.

This concern is not addressed herein but passed over to the LS program adopted.
The problem has not yet surfaced in practice perhaps because our experience is
limited. The Levenburg-Marquardt algorithm (Gavin, 2013), adopted in many of the
LS programs, tends to be robust in practice. Even in case the available LS programs
are not robust enough and other algorithms have to be considered, it is easier to code
a special purpose LS program than a general purpose UO program.

4. EXAMPLES

Simple examples are included herein. All examples are about multiplicative utility maxi-
mization rather than additive because of a higher demand. The current implementation
is in R (R Core Team, 2014) with nlmrt library (Nash, 2012) which was preferred
over the standard nls nonlinear least squares library because of its robustness.

4.1. PEANUTS AND BEER

This is a slight modification of the example used in (Yoneda and Celaschi, 2013;
Yoneda and Moretti, 2014) in which you wish to enjoy eating and drinking without
spending too much and preventing the risk of getting too fat.

You wish to eat peanuts drinking beer minding cost and gaining weight. Ideally,
you want to eat 15 g peanuts with 350 ml beer for 2 currency units gaining 50 kcal.
But it’s acceptable if peanuts is between 5 and 15 g, beer is between 200 and 500 ml,



110 K. Yoneda, A.C. Moretti, J. Poker Jr.

cost is between 0 and 10 currency units, and energy is between 0 and 200 kcal. As for
the beer quantity you have a more detailed specification as below:

peanuts in [g = grams], importance weight w = 0.2
Amount x [g] 5 15 20
Subutility u 1 5 1

beer in [ml = milliliters], w = 0.3
x [ml] 200 300 350 450 500
u 1 9 10 8 1

cost in [cu = currency units], w = 0.1
x [cu] 0 2 10
u 1 5 1

energy in [kcal = kilocalories], w = 0.4
x [kcal] 0 50 200
u 1 10 1

The utility function table for beer is plotted in 1. The dashed lines connecting the
knots are for the linear interpolation, which is not used hereafter. The cost’s utility here
ought to be monotone decreasing, so the first part of x is to be considered a dummy.
The cost of 2 [cu] is considered twice as desirable as 10 [cu]. Similarly for the energy.

We know the causality to be
xpeanuts

xbeer

xcost

xenergy

 =


0
0
2
0

+


1

1
1/50 1/100

592/100 142/350

[xpeanuts

xbeer

]

The major differences in treatment from the previous papers are:

– The subloss function table may now have a description longer than three; for
instance beer now has five points specified.

– The utility function is now multiplicative rather than additive, viz. there is no
fun in eating only peanuts without beer or drinking beer without peanuts: they
work together.

The transformation from the multiplicative utility to the additive loss is done by

yij :=
log uij

maxui •

log minui •
maxui •

ui • := [· · · uij · · · ]

so that 0 ¬ yij ¬ 1 For beer this transforms Figure 1 to Figure 2.
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Fig. 1. Utility specification xbeer j 7→ ubeer j
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Fig. 2. Subloss x
`7→ y for beer with knots
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The bijection z
x7→ x is illustrated in Figure 3 for the case of i = beer . In the

rest of this paragraph, the subscripts i are dropped for clarity.

‘
Fig. 3. The piecewise linear bijection z

x7→ x for beer

The upper left graph shows the standard subloss function z2 to be minimized by
the LS. The upper right graph is the same as Figure 2 showing the subloss function
x

`7→ y for beer . The lower left graph is for the piecewise linear z x7→ x . The lower
right graph is just the identity transformation x

17→ x to compose z x7→ x and x
`7→ y .

The dotted lines show the correspondence among the values at the knots.
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The residual to be minimized by the LS is

r :=


wpeanuts

wbeer

wcost

wenergy


1
2


zpeanuts

zbeer

x−1(xcost)
x−1(xenergy)


If one eats and drinks as she wishes, she gains energy beyond the permissible

range: 
0
0
2
0

+


1

1
1
50

1
100

592
100

142
350

[xpeanuts = 15 [g]
xbeer = 350 [m]

]
=


xpeanuts = 15 [g]
xbeer = 350 [m]
xcost = 5.8 [cu]

xenergy = 231 [kcal]


Nonlinear LS or generic UO programs yeield the best solution

Item x [unit] z
peanuts 9 [g] −0.614
beer 280 [ml] −0.374
cost 5 [cu] 0.373
energy 166 [kal] 0.773

Thus the recommendation is to reject some peanuts and be modest on beer to keep
the energy in the permissible range.

4.2. FUZZY GUESS

We heard through the grapevine that L.A. Zadeh, the founder of the fuzzy theory,
mentioned the following problem in one of his talks.

A box contains about 20 balls of various sizes. Most of them are large. The number of
large balls is several times the number of small balls. How many small balls are there in
the box?

A solution may be found by feeding enough prior knowledge.
The utility specifications are:

small in [balls], w = 0.1
x [balls] 0 1 10 19 20
u 1 3 4 3 1

several in [none], w = 0.2
x [none] 3 5 8
u 1 2 1

all in [balls], w = 0.7
x [balls] 15 17 19 20 70
u 1 5 9 10 1
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If there are 10 small balls and “several” means 5, then the total number of balls
would be 50, a lot more than “about 20.” A multiplicative utility is assumed. The
causality is:  xsmall

xseveral

xall

 =

 xsmall

xseveral

(1 + xseveral) xsmall


About the two decision variables we are not confident; about the pure outcome we are
relatively confident.

The residual is:

r :=

wsmall

wseveral

wall

 12  zsmall

zseveral

x−1(xall)


The solution is:

Item x [unit] z
→ small 3.5 [balls] −0.328

several 5.0 [none] −0.010
all 21.0 [balls] 0.020

So our guess is that there are 3 or 4 small balls.
The guess could be done by the weighted log-likelihood maximization as well

resulting in a similar numerical computation but in quite different interpretation
involving probability.

4.3. PLASTICS PRODUCTION

This problem is the same as in (Yoneda and Celaschi, 2013) except that the utility
function is now multiplicative, the marginal utilities are more detailed, and the
importance weights are set all equal.

You run a factory that produces plastics, hard and soft. You need to decide how much of
them you will produce this coming week.

The sales department says that they want 4 and 6 [t = tons] of hard and soft plastics.
Since you have product stocks and some space in the warehouse, the quantities produced
would be acceptable if they are between 3.5 and 5 [t] for hard and between 4 and 7 [t]
for soft plastics.

The purchase department says that they will have 10 [t] raw material mix available,
which serves to produce both hard and soft plastics. Considering the relationship with
the supplier, it is undesirable to order less than 8 [t]. Also, it will be difficult to prepare
more than 13 [t] even considering purchase not only from the supplier but also from the
market.

The personnel department says that they have 8 [p = persons] available for the next
week. It is possible, however, to adjust it between 7 and 9 [p] by reducing or extending
work hours, without hiring or firing.
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The engineering department says that they have 15 [m = machines] leased for
production, but can reduce to 12 [m] or increase to 17 [m] by adjusting operation time
and machine speed.

The production department says that in order to produce 1 [t] of hard plastics you
need 2 [t] material, 1 [p] labor, and 3 [m] machines, while to produce 1 [t] of soft plastics
you need 1 [t] material, 1 [p] labor, and 1 [m] machine.

The requirements are:

hard in [t = tons], w = 0.2
x [t] 3.5 4 5
u 1 3 1

soft in [t], w = 0.2
x [t] 4 6 7
u 1 3 1

mix in [t], w = 0.2
x [t] 8 10 13
u 1 5 1

labor in [p = persons], w = 0.2
x [p] 7 8 9
u 1 10 1

machines in [m = machines], w = 0.2
x [m] 12 15 17
u 1 4 1

The causality is: 
xhard

xsoft

xmix

xlabor

xmachines

 =


1

1
2 1
1 1
3 1


[
xhard

xsoft

]

If the production is done in the way that the sales considers optimal, then mix, labor,
and machines will all be short by one unit. The best compromise is to reduce a little of
the production of hard plastics and more of soft plastics to keep the resources needed
within the permissible ranges:

Item x [unit] z
hard 3.8 [t] −0.465
soft 4.3 [t] −0.849
mix 11.8 [t] 0.612
labor 8.1 [p] 0.069
machines 15.6 [m] 0.302
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5. CONCLUDING REMARKS

This paper extended the method of least squares to accommodate the loss specification
given as function tables.

We hope to apply the method to large scale real world problems to assess its
practicability. The bottleneck to deploy this method for those not versed in mathematics
is not the description of subloss tables (3) but remains to be the description of causality
relationship (1).
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