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Selected Approaches for Testing Asset Pricing Models
Using Polish Stock Market Data
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Abstract. The main objective of this paper is to discuss alternative methods for testing the
Fama-French (FF) three-factor asset pricing model. The properties of the selected methods
are compared through a simulation study. The main stress is put on the behaviour of the
selected methods for small samples. The parameters used in the simulation study are obtained
on the basis of real data coming from the Polish stock market (Warsaw Stock Exchange).
Different sample characteristics such as homoscedasticity, conditional heteroscedasticity and
autocorrelation as well as heteroscedasticity are tested.
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1. INTRODUCTION

The cross-sectional differences in asset expected returns have attracted considerable
attention in finance literature. Eugene Fama and Kenneth French (1993, 1996) had
investigated the explanatory power of certain factors associated with a company’s char-
acteristics, such as size, book-to-market ratio or leverage. Based on their observations,
they designed a three-factor model for explaining stock excess return. The three-factor
model expands the classical CAPM model by adding to the market risk (RM) factor
two additional factors: SMB (small minus big capitalization) factor and HML (high
minus low book-to-market ratio) factor.

In the literature on solving asset pricing models, a vast amount of methods for the
estimation of unknown parameters in the cross-sectional differences in asset expected
returns can be found. However, because only asymptotic statistical properties of those
methods are well-known, therefore selection of a suitable methodology poses a problem,
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especially when only a small amount of data is available. This problem is faced when
dealing with emerging markets. Then, the verification of the significance of the risk
premium is very difficult.

The most promising approach for estimating and testing asset pricing models
that has been widely used in the literature is the two-pass regression method first used
by Jensen, Black and Scholes (1972) and Fama and MacBeth (1973). The two-pass
regression model (OLS or its generalized version GLS) is simple but suffers from the
errors-in-variables (EIV) problem.

In addition to the two pass approach, the maximum likelihood method (ML)
and generalized method of moments (GMM) are explored in the financial literature.
The ML is useful because it is asymptotically efficient under the classical independent
and identically distributed multivariate normal returns assumptions. This method was
proposed by Gibbons (1982) to solve the errors-in-variables problem. In the case of
one factor model, the formula for ML estimators was developed by Kim (1995). This
method was also discussed by Chen and Kan (2004). The ML method reduces the EIV
problem, but it is sensitive to the number of observations.

The generalized method of moments (GMM) due to Hansen (1982) have been also
considered for estimating asset pricing models. The main advantage of the GMM is that
it can easily accommodate serial correlation and conditional heteroscedasticity in the
joint distribution of returns and factors. However, it also suffers from poor small sample
performance. Generally, the small-sample properties of the above estimators make the
asset pricing research on emerging markets very difficult. Simulation studies performed,
e.g., by Amsler and Schmidt (1985), Chen and Kan (2004), and Shanken and Zhou
(2007) give some insights into the problem. Shanken and Zhou (2007) investigated the
small-sample properties of the ML, GMM and some variants of two-step cross-sectional
expected return estimators under the assumption that data-generating process has the
standard multivariate normal distribution or multivariate t-distribution with 8 degrees
of freedom. They used data coming from the US stock market in the simulation study.

The present work verifies the effectiveness of the above mentioned methods for
testing FF model on the Polish stock market (Warsaw Stock Exchange – WSE). The
simulation study is performed to investigate the finite-sample properties of various
procedures for testing the Fama-French three-factor pricing model. The data used is
obtained from the Warsaw Stock Exchange from December 2002 until March 2012.
An attempt is made to compare the OLS, GLS, ML and GMM methods under several
restrictions imposed by emerging market characteristics such as a small number
of portfolios that can be constructed from available data and the calibration of
portfolio construction parameters based on a relatively small sample. Moreover, three
different data-generating processes are used in the simulation study: the standard
multidimensional normal distribution, multidimensional t-Student distribution and
the VAR(1) process.

The paper has the following structure. Section 2 presents a general econometric
cross-sectional asset pricing model and the methodology used to estimate its parameters.
The empirical study is described in Section 3. The paper ends with concluding remarks
and recommendations for future work.
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2. THEORY AND METHODOLOGY

According to a K-factor asset pricing model, the expected return on a portfolio in
excess of the risk-free rate is explained by the sensitivity of its return to K common
factors. The expected excess returns satisfy the linear relationship that can be written
in a matrix form as:

E(Rt) = γ0 + γ1β1 + ...+ γKβK (1)

where γ1, . . . ,γk are defined as expected risk premiums. The vector Rt =
(R1t, . . . , RNt) of N portfolio excess returns at time t fulfils the following multiple
equation model:

εRt = α+ β1f1t + ...+ βKfKt + εt, t = 1, . . . , T (2)

where f1t, . . . , fKt are common factors’ values at time t, α,β1, . . . ,βK denote
N -dimensional vectors of factors’ sensitivities or loadings and εt = (ε1t, . . . , εNt)

T is
a vector of error terms at time t. The covariance matrix of εt is denoted by Σ. To sim-
plify the notation, the vector of unknown risk premium parameters γ0,γ1, . . . ,γK)T

is denoted by γ. The discussion focuses on the case where β = [β1, . . . ,βK ] is the
same throughout the entire sample period.

2.1. SOME METHODS UNDER CONDITIONAL NORMALITY ASSUMPTION

The simplest and the most popular method for estimating and testing asset pricing
models is the two-pass cross-sectional time series regression. In the first pass, betas
of the tested portfolios are estimated using the least squares regression of returns
Rit (i = 1, . . . , N) on K common factors f1t, . . . , fKt. In the second pass, gammas
(γ0,γ1, . . . ,γK)T are estimated by cross-sectional regression of the mean vector es-
timate, E(Rt), on the betas estimates β̂1, . . . , β̂K obtained from the first pass. The
unknown gammas estimates γ̂ are calculated from the ordinary least squares (OLS)
regression:

γ̂ =
(
XTX

)−1
XTR (3)

where R = (R1, . . . , RN ), X = [1N , β̂] and β̂ = [β̂1, . . . , β̂K ]. Taking into account
error terms covariance matrix Σ, the generalised least squares (GLS) regression yields
the estimates:

γ̃ =
(
XT Σ̂X

)−1
XT Σ̂−1R (4)

where Σ̂ is an estimate of Σ.
Since in the second stage of the testing procedure betas estimates are used instead

of the real values, therefore the errors-in-variables problem occurs. When error terms
εt are assumed to have the multidimensional normal distribution, it is possible to
correct the variance of the estimators (Shanken (1992). The error-in-variables problem
can be also reduced using the maximum likelihood estimator. The analytical form of
ML estimates was obtained by Chen and Kan (2004).



28 A. Czapkiewicz, I. Skalna

Let x = (x0, x1, . . . , xK) be an eigenvector associated with the largest eigenvalue
of the matrix A−1G, where:

G =

 1 0 0T

0 0 0T

0 0 V̂ −1

 (5)

and A =
[
R, 1N , β̂

]T
Σ̂−1[R, 1N , β̂]. Then, the maximum likelihood estimate of γ is

given by:

γ̂ =
(
−x1
x0
, . . . ,−xK

x0

)
(6)

Though the ML approach reduces the errors-in-variables problem, the finite sample
properties problem is still present. Chen and Kan (2004) proved that the mean and
variance of the ML do not exist for finite samples

2.2. THE GMM APPROACH

The more general approach, than the two-stage cross sectional regression and ML,
to estimating asset pricing model parameters is the generalized method of moments
(GMM) due to Hansen (1982). This approach does not require the assumption of
normality of returns and is robust to both conditional heteroscedasticity and serial
correlation in model residuals as well as in factors. Note that in the case of homoscedas-
ticity in the model (2), unknown parameters estimates provided by the GMM method
are numerically identical to ML estimates.

When heteroscedasticity and autocorrelation of residuals are present in the model,
the computations are numerically more complicated due to the large number of
parameters to be estimated and the nonlinearity of a model. As shown by Shanken and
Zhou (2007), numerical solutions might not converge. Therefore, the classical GMM is
rarely used in practice. Instead, to simplify calculations, the two-step GMM procedure
suggested by Cochrane (2001)1 can be used. Consider the partition of unknown
parameter vector ϕ = (αT , βT1 , . . . ,β

T
K , γ

T) into two sub-vectors ϕ = (ϕ1,ϕ2) where
ϕ1 = (αT ,βT1 , . . . ,β

T
K) and ϕ2 = γT. Let then:

gt (ϕ) =

[(
εt (ϕ1)⊗

(
1
Ft

))T
, ((Rt− [1N,β])γ)T

]
= [g1t (ϕ1) ,g2t (ϕ)] (7)

and gT (ϕ) = [g1t (ϕ1) ,g2t (ϕ)] = 1T
∑T
t=1 gt (ϕ). The two-step GMM approach re-

quires the relevant moment conditions to be satisfied:

E [g1t (ϕ1) ,g2t (ϕ)] = [g1T (ϕ1) ,g2T (ϕ)] = 0 (8)

Detailed analysis of the equation (8) shows that the first part of the conditions is
exactly identified. So, estimate ϕ̂1 is indicated definitely. The problem of determining

1 Slightly different parameterization method was discussed in Shanken and Zhou (2007).
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ϕ2 estimator reduces to the problem of finding a solution to the following minimization
problem:

min
ϕ2

g2T (ϕ̂1,ϕ2)
T
W2T g2T (ϕ̂1,ϕ2) (9)

where W2T is a weighting matrix.
Following Ogaki (1993), the optimal weighting matrix is defined as:

W2T =
([
−D21D−111 , IN

]
ST
[
−D21D−111 , IN

]T)−1
(10)

where Dij(i, j = 1, 2) is the respective block of the N (K + 2) × (N + 1) (K + 1)
dimensional matrix of the gT (ϕ) derivatives with respect to all parameters and ST is
a consistent estimate of the moment conditions covariance matrix.

Under adopted assumptions in the asset pricing model D21 in (10) is equal to
zero, thus:

W2T =
(

[0, IN ]ST [0, IN ]T
)−1

= S−12T (11)

where:

S2T = Ω0 +
m∑
j=1

w (j,m)
[
Ωj +ΩT

j

]
(12)

w (j,m) is Parzen (P) or Bartlett (B) kernel (Andrews, 1991) and:

Ωj =
1
T

T∑
t=j+1

hth
T
t−j , (j = 0, 1, . . . ,m) (13)

Summing up, the constructed consistent estimate ϕ̂2 obtained via two step GMM
estimator satisfies the minimum of the function:

min
ϕ2

(
R−

[
1N , β̂

]
ϕ2

)T
W2T

(
R−

[
1N , β̂

]
ϕ2

)
(14)

where ht in (13) is defined as ht = β̂
(
Ft − F

)
+ εt.

The two-step strategy decreases the efficiency of the GMM estimates. In order to
attain the efficiency bound of the GMM estimator, thus obtained estimate ϕ̂2 was
used in the simulation study as a starting point for the iteration. The second stage
is iterated with the inverse of the long run covariance matrix until convergence. The
matrix

(
DT
22W2TD22

)−1
is considered as the asymptotic covariance matrix.

3. EMPIRICAL STUDY

The usefulness of the described methods for estimating the risk premium parameters
is analysed for the Fama and French model for the Polish market.
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According to the Fama and French asset pricing model, the expected excess
returns satisfy the linear relationships which can be written in the form:

E (Rt) = γ0 + γRMβRM + γSMBβSMB + γHMLβHML (15)

where the vector Rt fulfills the following multiple equation model:

Rt = α+ βRMRM t + βSMBSMBt + βHMLHMLt + εt (16)

The simulation study was performed under the null hypothesis that asset pricing
restrictions (15) are held. The input parameters used for the data-generating process
were calculated on the basis of the original data. The simulation study was carried
out for two sets of the data. Betas estimates β̂SMB , β̂RM , β̂HML and residuals εt
were obtained from the time series regression (16) for the twelve portfolios created
from real data of the period from December 2002 to March 2012 (Set I) and of
the boom period only of the same time horizon (Set II). The validation of FF model
in the boom period is discussed by Czapkiewicz and Skalna (Czapkiewicz and Skalna,
2011).

Table 1 presents the summary statistics for the factors from entire sample and
from two joint boom periods that occurred between December 2002 and March 2012.

Table 1. Summary statistics for the factors

RM SMB HML

Set I
Average 0.0046 0.0068 0.0067
Standard deviation 0.0690 0.0358 0.0367
Set II
Average 0.0181 0.0101 0.0192
Standard deviation 0.0589 0.0331 0.0358

It is worth to mention that the all means of the parameters in Set II are statistically
significant, whereas the mean of RM in Set I is statistically insignificant. This fact
will heavily influence the results of the simulation.

3.1. SIMULATION STUDY

In the simulation study carried out on the basis of the two sets of data – Set I and
Set II, three different scenarios of the model assumptions were considered and in each
scenario the properties of all estimators were examined for T = 60, T = 120, T = 240,
T = 480, and finally for T = 720.

The data used in the study were created as follows. In the first scenario, the vector
vt = (RM t, SMBt, HMLt, ε1t, . . . , εNt)

T was generated from the multidimensional
normal distribution. In the second scenario the t-distribution of vt was assumed. Hence,
the heteroscedasticity was introduced to the model (16). In the third scenario, it was
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assumed that vector vt satisfies VAR(1) process, i.e., vt = µ+Avt−1 +Et, where Et
is the multidimensional t-distribution. For each scenario and also for each set and for
each T , the simulation was run 100 000 times.

During the simulation, the estimates of the parameters of the model (15) were
calculated using the OLS, GLS, ML and GMM methods. The estimates obtained
by the generalized method of moments under the assumption that the first order
correlation in the data exists are denoted by GMM1lag. Additionally, the average and
root-mean-square error (RMSE) were calculated based on the obtained results. For T
was really small T (see, e.g. Amsler and Schmidt (1985), Shanken and Zhou (2007)),
the maximum likelihood estimates were extremely volatile, so theoretically unreliable
values are not included.

Table 2 presents the results obtained for Set I and Set II and subsequent scenarios:
multivariate normal distribution (the first scenario), multivariate t-distribution (the
second scenario) and VAR(1) process (the third scenario); the input parameters were
obtained from Set I and Set II. In the case of Set I, the estimated of the γSMB and
γHML parameters are very similar, thus Table 2 present only the results for the γSMB

parameter. On the other hand, for Set II, the results for the γHML parameter are
presented, because they have the larger values.

Table 2. Pricing Intercept and Risk Premium Estimators in a three factor model

Method T = 60 T = 120 T = 240 T = 480 T = 720 T = 60 T = 120 T = 240 T = 480

γ0 = 0 (Set I) γ0 = 0 (Set II)

OLS
Average

−0.0013 −0.0009 −0.0004 −0.0003 −0.0002 0.0031 0.0018 0.0009 0.0005
−0.0017 −0.0015 −0.0011 −0.0006 −0.0006 0.0052 0.0037 0.0025 0.0014
−0.0022 −0.0021 −0.0016 −0.0011 −0.0009 0.0047 0.0033 0.0019 0.0010

RMSE
0.0183 0.0140 0.0106 0.0076 0.0063 0.0149 0.0110 0.0080 0.0059
0.0212 0.0173 0.0137 0.0107 0.0089 0.0182 0.0145 0.0111 0.0087
0.0242 0.0190 0.0150 0.0114 0.0095 0.0187 0.0147 0.0112 0.0085

GLS
Average

−0.0021 −0.0012 −0.0008 −0.0004 −0.0003 0.0037 0.0023 0.0011 0.0006
−0.0026 −0.0019 −0.0013 −0.0011 −0.0007 0.0054 0.0042 0.0027 0.0017
−0.0027 −0.0028 −0.0022 −0.0016 −0.0014 0.0051 0.0034 0.0022 0.0015

RMSE
0.0178 0.0133 0.0097 0.0069 0.0056 0.0143 0.0102 0.0072 0.0051
0.0198 0.0158 0.0122 0.0092 0.0078 0.0164 0.0129 0.0098 0.0073
0.0223 0.0173 0.0134 0.0100 0.0086 0.0185 0.0139 0.0104 0.0078

ML
Average

0.0030 0.0030 0.0025 0.0015 0.0010 0.0035 0.0004 0.0001 0.0000
0.0025 0.0021 0.0022 0.0017 0.0014 0.0061 0.0032 0.0017 0.0010
0.0008 0.0016 0.0019 0.0013 0.0010 0.0058 0.0030 0.0011 0.0008

RMSE
0.0111 0.0092 0.0075 0.0061 0.0053 0.0183 0.0127 0.0084 0.0055
0.0128 0.0100 0.0084 0.0070 0.0063 0.0195 0.0151 0.0111 0.0079
0.0155 0.0123 0.0095 0.0078 0.0068 0.0213 0.0161 0.0118 0.0085

GMM
Average

−0.0015 −0.0012 −0.0009 −0.0004 −0.0002 0.0032 0.0020 0.0012 0.0007
−0.0019 −0.0018 −0.0014 −0.0010 −0.0007 0.0043 0.0033 0.0026 0.0017
−0.0024 −0.0024 −0.0019 −0.0016 −0.0014 0.0040 0.0033 0.0022 0.0018

RMSE
0.0150 0.0122 0.0093 0.0067 0.0056 0.0117 0.0093 0.0069 0.0050
0.0166 0.0142 0.0116 0.0091 0.0078 0.0133 0.0114 0.0093 0.0072
0.0181 0.0159 0.0127 0.0098 0.0084 0.0148 0.0127 0.0099 0.0077
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Table 2. cont.

Method T = 60 T = 120 T = 240 T = 480 T = 720 T = 60 T = 120 T = 240 T = 480

γ0 = 0 (Set I) γ0 = 0 (Set II)

GMM1lag
Average

−0.0026 −0.0024 −0.0021 −0.0017 −0.0015 0.0031 0.0030 0.0022 0.0015

RMSE 0.0155 0.0141 0.0120 0.0093 0.0079 0.0114 0.0109 0.0091 0.0070

γRM = 0.0046 (Set I) γRM = 0.0181 (Set II)

OLS
Average

0.0066 0.0056 0.0051 0.0050 0.0047 0.0145 0.0161 0.0171 0.0176
0.0067 0.0068 0.0060 0.0054 0.0053 0.0122 0.0141 0.0154 0.0167
0.0070 0.0069 0.0064 0.0060 0.0056 0.0130 0.0146 0.0160 0.0171

RMSE
0.0200 0.0156 0.0120 0.0087 0.0071 0.0170 0.0130 0.0095 0.0071
0.0245 0.0199 0.0157 0.0121 0.0103 0.0214 0.0172 0.0134 0.0102
0.0263 0.0211 0.0170 0.0129 0.0107 0.0202 0.0156 0.0118 0.0089

GLS
Average

0.0070 0.0061 0.0056 0.0051 0.0049 0.0139 0.0155 0.0168 0.0175
0.0075 0.0067 0.0061 0.0058 0.0054 0.0120 0.0133 0.0152 0.0163
0.0079 0.007 0.0068 0.0062 0.0061 0.0125 0.0143 0.0156 0.0166

RMSE
0.0195 0.0150 0.0111 0.0080 0.0065 0.0167 0.0121 0.0088 0.0063
0.0229 0.0186 0.0144 0.0108 0.0091 0.0200 0.0158 0.0120 0.0090
0.0262 0.0205 0.0159 0.0119 0.0101 0.0201 0.0152 0.0114 0.0085

ML
Average

– – – – –
0.0138 0.0176 0.0181 0.0181
0.0110 0.0144 0.0162 0.0171
0.0114 0.0148 0.0169 0.0174

RMSE – – – – –
0.0215 0.0152 0.0103 0.0068
0.0236 0.0185 0.0137 0.0097
0.0233 0.0178 0.0130 0.0094

GMM
Average

0.0065 0.0059 0.0056 0.0051 0.0048 0.0136 0.0156 0.0167 0.0173
0.0070 0.0069 0.0061 0.0058 0.0054 0.0121 0.0140 0.0150 0.0162
0.0077 0.0071 0.0068 0.0063 0.0061 0.0127 0.0141 0.0157 0.0165

RMSE
0.0195 0.0150 0.0111 0.0079 0.0067 0.0167 0.0121 0.0088 0.0063
0.0227 0.0180 0.0140 0.0108 0.0092 0.0197 0.0154 0.0120 0.0090
0.0259 0.0207 0.0158 0.0120 0.0101 0.0204 0.0153 0.0115 0.0085

GMM1lag
Average

0.0076 0.0072 0.0068 0.0063 0.0062 0.0123 0.0139 0.0155 0.0165

RMSE 0.0243 0.0195 0.0152 0.0114 0.0097 0.0192 0.0147 0.0110 0.0080

γRM = 0.0068 (Set I) γRM = 0.0192 (Set II)

OLS
Average

0.0065 0.0065 0.0067 0.0067 0.0067 0.0178 0.0184 0.0188 0.0190
0.0061 0.0064 0.0065 0.0066 0.0067 0.0164 0.0174 0.0181 0.0186
0.0062 0.0064 0.0066 0.0067 0.0067 0.0165 0.0175 0.0183 0.0186

RMSE
0.0047 0.0033 0.0023 0.0017 0.0014 0.0058 0.0042 0.0030 0.0021
0.0066 0.0047 0.0034 0.0024 0.0020 0.0086 0.0062 0.0044 0.0032
0.0074 0.0053 0.0038 0.0027 0.0022 0.0095 0.0069 0.0050 0.0035

GLS
Average

0.0067 0.0068 0.0068 0.0068 0.0068 0.0190 0.0190 0.0191 0.0192
0.0067 0.0067 0.0067 0.0068 0.0068 0.0186 0.0189 0.0190 0.0190
0.0068 0.0066 0.0067 0.0068 0.0068 0.0185 0.0186 0.0188 0.0189

RMSE
0.0046 0.0032 0.0023 0.0016 0.0013 0.0054 0.0038 0.0027 0.0019
0.0064 0.0045 0.0032 0.0023 0.0019 0.0074 0.0052 0.0038 0.0027
0.0072 0.0051 0.0037 0.0026 0.0021 0.0093 0.0068 0.0048 0.0034
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Table 2. cont.

ML
Average

0.0065 0.0066 0.0068 0.0068 0.0068 0.0192 0.0192 0.0192 0.0192
0.0063 0.0065 0.0067 0.0068 0.0068 0.0190 0.0191 0.0191 0.0191
0.0059 0.0063 0.0064 0.0065 0.0066 0.0188 0.0190 0.0189 0.0191

RMSE
0.0046 0.0032 0.0023 0.0016 0.0013 0.0055 0.0038 0.0027 0.0019
0.0061 0.0045 0.0032 0.0023 0.0019 0.0077 0.0053 0.0038 0.0027
0.0065 0.0050 0.0034 0.0025 0.0021 0.0093 0.0066 0.0048 0.0033

GMM
Average

0.0067 0.0068 0.0068 0.0068 0.0068 0.0188 0.0190 0.0191 0.0191
0.0067 0.0068 0.0068 0.0068 0.0068 0.0185 0.0188 0.0190 0.0191
0.0067 0.0068 0.0068 0.0068 0.0068 0.0184 0.0187 0.0189 0.0189

RMSE
0.0046 0.0032 0.0023 0.0016 0.0013 0.0053 0.0038 0.0027 0.0019
0.0064 0.0045 0.0033 0.0023 0.0019 0.0074 0.0052 0.0038 0.0027
0.0072 0.0050 0.0036 0.0026 0.0021 0.0093 0.0066 0.0048 0.0033

GMM1lag
Average

0.0066 0.0067 0.0068 0.0068 0.0068 0.0182 0.0189 0.0190 0.0191

RMSE 0.0066 0.0047 0.0033 0.0023 0.0019 0.0083 0.0059 0.0042 0.0029

In the case of Set I it can be noticed that for each scenario the estimates of
γ0, γHML and γSMB obtained by OLS, GLS, GMM, GMM1lag methods are biased
downward, The estimators of γRM are biased upward and are characterized by huge
values of the RMSE. The OLS estimator of γ0 is the least biased, whereas the OLS
estimators of γHML and γSMB are the most biased compared to other methods.
According to RMSE, the OLS is the least precise regardless the scenarios used. The
smallest RMSE for γ0 has the ML method, although it is biased upward. The ML
method seems to be useless to estimate γRM due to lack of numerical convergence. In
the case of γHML and γSMB estimations, the results of the ML method are similar
to these of the GLS and GMM methods and all of them produce slightly downward
biased estimators and their RMSE values are comparable. It is worth to note that in
the case of the third scenario the ML estimator is more biased than those produced
by the GLS and GMM methods.

The magnitude of RMSE dependent on the model assumption and for all the used
estimators is the least in the first scenario and the biggest in the third scenario. When
autocorrelation in (16) is taken into account, the GMM1lag estimator is definitely the
most precise, except the estimator of γ0, for which the ML method produces the best
accuracy.

The results of the empirical study, when input parameters for the simulation
study come from Set II, are also presented in Table 2. In this case, it can be concluded
that properties of used estimators are the same for γSMB and γHML parameters as
in Set I. In contrary to Set I the different properties of the γ0 and γRM estimators is
observed. It can be noticed that for all scenarios γ0 parameter is heavily biased upward,
whereas the risk premium values γRM , γHML, γSMB are slightly biased downward.
For these parameters the difference between estimates average and real value is the
smallest for the ML estimator, when T > 120, regardless on the model assumption
(For T ¬ 60, ML turned out to be the most volatile and therefore practically useless)
but this estimator produces the highest RMSE. The GLS and the GMM estimators
are comparable according to their bias and RMSE.
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Similar to Set I case, for enough large sample (hence, for T ­ 60 in case of
normality and for T ­ 240 in case of the second and third scenarios), the OLS
estimator of γ0 is less biased but also less precise than the GLS and the GMM
estimators. The most precise estimator of γ0 is the GMM, but in the third scenario –
the GMM1lag estimator is much more precise than others. For all used estimators of
γ0 their bias and RMSE values are the least in the first and the biggest in the third
scenario.

For empirical purposes the conclusion about significance parameters is very
important. Let us now consider the tests of the null hypothesis that a given parameter
equals zero. The two-sided tests are taken into account and the nominal size of test is
set at 5 percent. The test statistic for testing a null hypothesis is defined as the ratio of
the estimate and its estimated standard error. The last parameter is adopted from the
asymptotical properties of the used estimator. If the correction on the errors-in-variable
problem (Shanken, 1992) is introduced to OLS or GLS variances, these test are denoted
as OLS + Sh or GLS + Sh respectively. During the simulation study the percentage of
null hypothesis rejections is summarized. The simulated rejection rates are presented
in Table 3. The results for each scenario: normality. t-distribution and VAR(1) process,
are presented in sequence similar to Table 2. The OLS method is also included to
illustrate its properties.

Table 3. The rates of rejection of the null hypothesis.
The significance level is 5%

Method T = 60 T = 120 T = 240 T = 480 T = 720 T = 60 T = 120 T = 240 T = 480

Set I: Test the null γ0 = 0
when γ0 = 0

Set II: Test the null γ0 = 0
when γ0 = 0

OLS
5.9 5.5 6.0 6.5 6.5 12.0 10.4 9.7 9.2
6.6 5.7 5.7 6.6 6.1 13.9 13.0 12.2 10.6
7.3 6.8 6.8 6.9 6.9 12.5 11.6 10.8 10.2

OLS + Sh
1.3 1.5 1.9 2.0 2.3 5.4 4.4 3.6 3.3
2.1 2.0 2.0 2.8 3.0 7.4 7.8 6.8 7.2
3.6 3.2 3.5 3.4 3.7 7.0 5.6 5.4 5.2

GLS + Sh
2.9 2.1 2.0 2.1 1.9 10.6 6.9 4.9 4.2
3.7 2.7 2.3 2.6 2.7 13.7 10.8 9.2 7.9
5.0 3.4 3.2 3.0 3.4 14.1 10.1 8.5 8.1

ML
2.3 1.5 1.2 2.5 3.0 16.7 9.1 5.6 3.9
2.5 1.2 1.0 1.3 2.5 19.1 13.3 10.3 8.3
4.5 2.7 2.1 2.6 3.2 18.4 13.1 9.3 9.1

GMM
3.3 2.8 2.9 3.1 3.3 9.0 7.9 7.1 6.1
3.2 2.8 2.5 3.1 3.4 9.9 9.2 9.9 9.5
3.9 4.0 3.8 3.6 4.0 9.9 10.7 10.1 9.2

GMM1lag 1.9 2.3 2.7 2.3 2.6 4.7 7.2 7.9 8.0

Set I: Test the null γRM = 0.0
when γRM = 0.0046

Set II: test the null γRM = 0.0
when γRM = 0.0181

OLS
11.8 12.8 15.9 18.9 21.8 27.2 41.7 62.4 84.2
13.7 15.0 16.0 17.0 18.7 23.3 31.0 43.2 58.4
14.3 15.3 17.5 20.0 21.4 21.3 29.7 43.2 62.9

OLS + Sh
3.3 4.6 6.1 8.1 9.6 10.9 21.5 43.6 73.0
3.7 5.1 6.4 8.2 10.6 8.2 15.0 29.0 48.0
4.8 5.7 8.1 10.4 11.9 5.7 11.9 24.4 47.3

GLS + Sh
8.2 8.4 8.5 9.9 11.5 17.4 27.9 51.2 81.5
8.3 8.5 9.0 9.9 10.8 13.4 19.0 33.3 55.5
9.2 8.8 10.7 12.8 14.9 11.7 17.5 31.5 55.4
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Table 3. cont.

ML – – – – –
27.4 39.2 56.8 82.9
18.5 26.7 38.8 58.6
17.5 24.3 37.6 58.2

GMM
9.1 8.9 10.0 11.4 13.9 24.7 37.0 60.5 86.3
8.0 8.2 8.8 11.3 12.7 17.3 24.5 37.1 59.5
11.0 11.2 12.4 14.5 16.5 16.2 22.4 37.0 59.1

GMM1lag 10.6 10.2 11.1 12.4 15.0 20.2 27.2 41.7 66.2

Set I: Test the null γSMB = 0.0
when γSMB = 0.0068

Set II: Test the null γHML = 0.0
when γHML = 0.0192

OLS
56.5 77.1 93.9 99.6 100 92.7 99.4 100 100
43.4 58.6 76.9 95.2 97.5 71.5 90.5 98.7 99.9
43.5 57.9 75.5 91.3 96.8 71.4 89.2 98.0 99.9

OLS + Sh
26.6 49.7 80.3 98.1 99.9 85.8 99.3 100 100
15.7 28.7 51.0 79.2 92.6 54.3 85.0 98.4 99.9
18.8 31.6 51.8 77.9 91.2 54.5 82.8 97.6 99.9

GLS + Sh
32.6 56.6 83.8 98.7 100.0 95.2 100 100 100
19.7 33.3 56.2 84.4 95.3 74.6 94.7 99.8 100
23.2 34.7 56.0 81.6 93.1 69.8 90.0 99.0 100

ML
30.2 53.9 83.9 98.6 99.9 94.8 99.9 100 100
17.4 31.8 56.4 83.5 95.0 73.9 94.3 99.7 100
17.2 31.4 51.7 79.5 91.7 70.2 90.7 99.2 100

GMM
32.2 56.0 83.6 98.7 99.9 95.1 100 100 100
20.8 33.6 57.1 84.2 95.2 74.4 94.4 99.8 100
22.7 34.9 56.2 81.2 93.2 70.3 90.4 99.3 100

GMM1lag 21.6 34.3 55.9 83.6 94.9 73.6 93.5 99.6 100

For Set I, the percentage rejection of the null γ0 = 0 in the case of the OLS test
used is larger than 5%, whereas the other estimators produce a test size less than
5 percent, regardless the scenario. When the null hypotheses concerns the parameters:
γSMB, γHML the OLS test also tends to reject the null hypothesis. Therefore, the
usefulness of this method might be questionable. A detailed study of testing the true
null hypothesis that a given parameter is zero, is presented only for Set II in Appendix,
Table 4. The results of GLS + Sh and GMM tests are comparable. The ML test is
slightly weaker than the GLS + Sh and the GMM tests and the OLS + Sh test is the
weakest. In the third scenario, it can be noticed that the test based on the GMM1lag
method is more powerful only for very large sample.

For small samples all used tests seem to be very weak. The rate of rejection false
null hypothesis was more than 95 percent when the sample is really big (close to 480).

The results of the test power studies results when input parameters are taken
from Set II is slightly different. Hence, while the true null γ0 = 0 is tested the rejection
rate of all used tests is large more than 5 percent, particularly in the second and third
scenarios. In the case of a false null hypothesis concerning γRM ,γSMB or γHML, the
OLS test also tends to reject the null hypothesis. The power of the GLS + Sh and
GMM tests is comparable, the ML test is weaker than these tests and the OLS + Sh
test was the weakest. In the third scenario the GMM1lag test is the strongest but only
for the big sample. The tests comparison results are similar to the Set I discussion.
However, to obtain the satisfactory results the smaller sample than in Set I is required.

Generally, the model assumptions impact on the test power of the used tests. They
are the strongest in the first and the weakest in the third scenario. From this simulation
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study it can be concluded that the most trustworthy method seem to be the GMM
and the GLS + Sh one regardless on the considered assumption of the model (15) and
input parameters used to generate data. The utility of the GMM1lag test in the third
scenario, is less than the GMM test utility since its weaknesses for small sample. The
OLS estimator, despite of its small bias in the case of some parameters estimation, is
little precise but the tests based on the OLS method tend to reject both the true and
false null hypothesis. The ML method is sensitive the input parameters used to data
generating.

4. CONCLUSIONS

This paper investigated the small sample properties of several methods for estimating
risk premium parameters in the Fama-French three factor asset pricing model. The
simulation study was performed to investigate the bias, the precision and power differ-
ences across the estimation methods in three considered scenarios: homoscedasticity,
conditional heteroscedasticity and autocorrelation and conditional heteroscedasticity.
Two sets of input parameters were considered to simulate returns, calibrated from real
data from the Warsaw Stock Exchange.

Based on the obtained results, it can be concluded that the most trustworthy seem
to be the GMM and the GLS + Sh methods, regardless on the considered assumption
on the model. For small samples, all methods produced biased estimators and relatively
big RMSE. The tests of parameters significance are very weak. From this fact implies
that when all used methods produce a significant parameter, the probability that
this parameter is differ from zero is very high. In contrary, in the case of intercept
testing, where the significance level is overestimated, when all used methods produce
an insignificant parameter, the probability that this parameter is zero is also very high.

APPENDIX

Table 4. The rates of rejection of the null hypothesis.
The significance level is 5%

Method T = 36 T = 60 T = 120 T = 240 T = 480 T = 36 T = 60 T = 120 T = 240 T = 360

Testing the null γ0 = 0.0
when γ0 = 0.012

Testing the null γRM = 0.0
when γRM = 0.0

OLS
32.8 34.3 42.1 55.0 71.5 9.7 9.9 9.4 9.9 9.3
33.7 35.6 38.9 45.9 55.4 12.3 12.8 12.2 11.8 10.9
31.2 32.0 37.0 44.9 55.4 9.5 10.1 8.9 8.6 8.2

OLS + Sh
25.3 24.7 29.3 38.9 57.6 2.1 2.4 2.7 3.0 2.6
25.6 27.4 30.1 37.1 49.4 2.8 3.0 4.0 4.9 5.0
21.4 22.2 25.5 32.6 45.5 1.4 1.5 2.0 2.5 2.7

GLS + Sh
40.6 37.8 40.0 50.9 70.8 6.6 4.3 3.4 3.1 3.0
42.9 39.5 42.1 47.3 60.3 6.0 5.5 4.8 5.1 5.0
38.9 35.9 37.3 44.9 57.6 5.8 4.5 3.6 3.7 3.9
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Table 4. cont.

Testing the null γ0 = 0.0
when γ0 = 0.012

Testing the null γRM = 0.0
when γRM = 0.0

ML
45.2 38.2 35.9 45.6 65.3 12.7 10.1 6.7 4.1 4.0
45.6 41.9 41.3 45.5 57.0 9.2 8.5 8.7 6.8 5.8
43.3 38.1 37.0 41.5 54.3 7.4 7.8 7.2 5.8 4.6

GMM
27.1 32.4 42.8 57.9 78.3 8.8 7.9 6.1 5.4 4.7
26.0 32.3 39.8 50.3 64.7 8.2 7.4 6.7 6.6 5.8
24.7 29.2 36.2 46.2 60.3 7.5 6.3 5.1 4.8 4.5

GMM1lag 10.6 18.3 32.1 44.7 61.9 1.4 1.9 3.0 3.6 4.3

Testing the null γHML = 0.0
when γHML = 0.012

Testing the null γSMB = 0.0
when γSMB = 0.0

OLS
8.3 8.6 8.7 9 10.8 11.7 11.7 12.0 12.2 12.2
11.8 11.8 10.5 9.7 9.7 14.3 13.9 12.9 12.4 11.3
12.8 13.9 13.4 13.6 13.4 15.7 16.8 16.4 16.2 15.3

OLS + Sh
1.9 2.4 2.6 2.5 2.6 2.2 2.7 2.6 2.7 2.5
1.9 2.4 3.0 3.2 3.3 2.4 2.4 2.2 2.8 2.9
3.5 3.9 4.7 4.8 5.2 4.3 4.7 4.6 4.6 5.0

GLS + Sh
3.1 2.8 3.0 2.5 2.9 2.9 2.8 2.8 2.4 2.2
3.4 3.2 3.0 2.7 2.8 2.9 2.7 2.7 2.9 2.7
6.2 6.3 6.6 6.4 6.8 5.5 5.3 5.1 5.3 5.0

ML
3.3 3.2 2.5 2.5 2.4 2.9 2.5 2.5 2.7 2.5
3.3 2.9 2.8 2.6 3.1 3.1 3.1 2.4 2.7 2.8
6.6 6.4 6.4 6.5 6.2 5.3 5.3 5.0 5.0 4.6

GMM
3.7 3.0 3.2 3.0 3.0 2.9 3.0 2.5 2.5 2.7
3.1 3.2 3.0 2.8 3.0 2.9 3.0 2.8 2.9 2.6
6.6 6.5 6.6 6.3 6.6 5.0 5.6 5.5 5.1 5.0

GMM1lag 6.2 5.5 5.0 4.2 4.1 4.5 4.1 3.8 3.2 3.0
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