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BENCHMARKING HIGH PERFORMANCE
ARCHITECTURES WITH NATURAL LANGUAGE
PROCESSING ALGORITHMS

Natural Language Processing algorithms are resource demanding, especially when tuning to
inflective language like Polish is needed. The paper presents time and memory requirements
of part of speech tagging and clustering algorithms applied to two corpora of the Polish
language. The algorithms are benchmarked on three high performance platforms of different
architectures. Additionally sequential versions and OpenMP implementations of clustering
algorithms were compared.
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BENCHMARKING ARCHITEKTUR WYSOKIEJ WYDAJNOŚCI
ALGORYTMAMI PRZETWARZANIA JĘZYKA NATURALNEGO

Algorytmy przetwarzania języka naturalnego mają duże zapotrzebowanie na zasoby kom-
puterowe, szczególnie gdy wymagane jest dostosowanie algorytmu do języka fleksyjnego
jakim jest np. język polski. Artykuł przedstawia wymagania czasowe i pamięciowe algo-
rytmów tagowania częściami mowy oraz algorytmów klasteryzacji zastosowanych do dwóch
korpusów języka polskiego. Dokonano benchmarkingu algorytmów na trzech platformach
wysokiej wydajności reprezentujących różne architektury. Dodatkowo porównano wersję sek-
wencyjną oraz implementacje OpenMP algorytmów klasteryzacji.

Słowa kluczowe: benchmarking, tagowanie częściami mowy, klasteryzacja dokumentów,
przetwarzanie języka naturalnego, architektury wysokiej wydajności

1. Introduction

Part of speech (POS) tagging is a cornerstone of almost any text processing task
including parsing, machine translation, information retrieval [9], word sense disam-
biguation, speech recognition, and many others. Polish is a highly inflective language
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and tagging such language is much more difficult than analytic languages like En-
glish. One of difficulties is that tagging algorithms are especially computationally
time demanding when applied to languages described with large tagsets.

The documents clustering is another important technique applied in Natural
Language Processing (NLP), especially in unsupervised organization of documents,
returning web search results, creating lexico-semantic nets (wordnets) [1], information
retrieval and extraction [2]. POS tagging helps to select from a text sequence the most
important features for clustering algorithms.

Works on NLP algorithms usually focus on quality measures, expressed in terms
specific to a family of methods (e.g. accuracy for POS tagging, purity for clustering
algorithms, etc.). This paper presents different aspect, i.e., time and memory require-
ments of some of POS tagging and clustering algorithms applied to the Polish language
[5, 8]. These requirements are important factors, which can affect the choice of the
respective algorithm or make useless the algorithm, which is the best according to
the main measure. Intensive resources usage justifies application of high performance
architectures to above NLP computations.

The aim of the article is to compare performance of NLP algorithms applied to
two corpora of the Polish language on different high performance architectures.

The rest of the paper is organized as follows. Section 2 presents considered algo-
rithms and reasons NLP computations are time intensive. Section 3 describes testbed
for experiments. The detailed time and memory performance of selected POS tagging
and clustering algorithms is depicted in Section 4. Section 5 concludes the paper.

2. Considered NLP algorithms

The first group of considered experiments was application of various POS tagging
algorithms to the Polish language. We examined baseline tagging algorithms and
three groups of combined tagging methods.

Seven baseline algorithms were investigated:
• Hidden Markov Model (HMM).
• Maximum entropy method (MET).
• Memory-based learning (MBL).
• Transformation-based error-driven learning (TBL).
• Support vector machines (SVM).
• Decision Trees tagging (DT).
• Conditional random fields (CRFs).

The description of the algorithms and their accuracy for Polish can be found in
our work [4].

The combined taggers are not independent taggers and need output of several
baseline taggers (called in this context component taggers) both for training and
tagging. Output tagging is chosen due to voting procedure, vote strength of each
component tagger is established during training phase. Bigger number of component
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taggers results usually in higher accuracy of a combined tagger but requires more time
and memory. Among combined methods we focus on weighted probability distribution
voting (WPDV) method [10].

All taggers were evaluated on the modified corpus of Frequency Dictionary of
Contemporary Polish (m-FDCP)1 [5]. Two versions of the tagset were taken into
account: the full version, referred to the complex tagset; and the reduced version,
carrying only basic information about part of speech, referred to the simple tagset.

The second group of experiments, i.e. clustering experiments, was conducted on
the set of 10,000 articles selected from one of the main Polish newspapers, Rzecz-
pospolita (henceforth the ROL corpus)2. The aim of the experiment was to find the
best clustering algorithm among four algorithms: agglomerative, direct, repeated bi-
sections (RB), and repeated bisections with refinements (RBR) [11]. The number of
clusters was equal to six and details of the clustering experiment are given in [6].

2.1. Tuning NLP algorithms to Polish

For the POS algorithms the multiple or time intensive computations were required
due to the following issues:

• Parametric optimization of taggers. The default settings of taggers, accommo-
dated often for English, need not to be the best choice for Polish.
• Effect of training data size (analysis of learning curves). The bigger the training

corpus the higher the precision of a tagger, but this is bound to higher training
time. The detailed influence of size of a training corpus on precision of a tagger
is discussed in [4].
• Training combined taggers with n-fold cross validation. The problem arises for

this type of taggers, as they need for the training process a tuning corpus, separate
from the training corpus of baseline taggers. In our works 9-fold cross validation
was always applied.
• The number of baseline taggers used in composition of combined taggers [7].

Adding a new tagger as a component accounts to significant decline of tagging
speed of a combined tagger. The problem arises mainly for the WPDV combined
taggers.

The following aspects of documents clustering algorithms and their tuning were
considered:

• Different representations of the corpus (feature selection). The features are se-
lected on the basis of the part of speech of a token and a number of consecutive
tokens. Several representations of the corpus were taken into account:

– base representation – noun, verb and adjective tokens are represented, while
tokens with other part of speech are discarded,

1 m-FDCP corpus is available from http://nlp.icsr.agh.edu.pl
2 ROL corpus is available from http://www.cs.put.poznan.pl/dweiss/rzeczpospolita
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– noun representation – only noun tokens are taken into representation of the
corpus,

– bigram representation – base representation is enriched with presence of
bigrams,

– trigram representation – bigram representation is enriched with presence of
trigrams.

• Different term weighting schemes. The most popular term frequency-inverse doc-
ument frequency (tfidf ) scheme and slightly less popular logarithmic entropy
(logent) scheme were considered.
• Alternative between the Vector Space Model (VSM) and the Latent Semantic

Analysis (LSA) model. The VSM model represents each document as a vector
and each dimension corresponds to a separate term. Within the LSA model each
dimension corresponds to a semantic concept. The LSA space is computed from
the VSM space by the Singular Value Decomposition (SVD) of a document-term
matrix.
• Investigation of the optimal number of dimensions, in case of the LSA model.

The number of dimensions varied from 50 to 5000 in our experiments.
• Several cluster criterion functions, driving the process of building optimal clus-

ters [11]. Twelve criterion functions were applied, seven of them to partitional
algorithms and ten to the agglomerative algorithm.
• Multiple execution of clustering algorithms relying on random initial clustering,

i.e., direct and repeated bisection algorithms. Multiple runs showed average qual-
ity of the above algorithms.

3. Experimental testbed

Experiments were performed on the following three platforms:

• The first platform was the SGI Altix 3700 (SMP architecture), equipped with 256
1.5 GHz Intel Itanium 2 CPUs, 512 GB shared memory and 7.75 TB disk storage.
Processors implemented IA-64 architecture.
• The second platform was a IBM BladeCenter HS21 computing cluster consist-

ing of 56 nodes, each node containing two Intel Xeon Dual Core 5150 2.66 GHz
processors and 8 GB RAM. Totally, the cluster provides 112 processors, 448 GB
RAM, and 5 TB disk storage. Each CPU contains 4096 KB cache memory shared
between two cores. The cluster achieves 1192 Gflops theoretical computing power.
Processors implemented x86-64 architecture.
• The last tested platform was a SMP machine equipped with four dual core AMD

Opteron 865 1.8 GHz processors and 20 GB shared main memory. Each core con-
tains 1024 KB cache memory. Processors implemented x86-64 architecture.

The computational resources were shared between members of scientific commu-
nity and only small fraction of resources was available for our tasks.
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For tagging we used gcc compilation with standard compiler options and also
Perl and Java interpreters. The clustering was performed with the CLUTO toolkit
[3] distributed as binary version, compiled with gcc (sequential version) or Intel C++
8.1 compiler (OpenMP version). The distributions for SGI Altix 3700 and OpenMP
version were available as 32-bit versions only (to be used in compatibility mode),
while distributions for HS21 and SMP Opteron were full 64-bit versions.

4. Results

In experiments we used job level parallelism with one core allocated to one sequential
process. When benchmarking clustering algorithms each job consisted from a group
(sequence) of clustering algorithms executed for one model of the ROL corpus (e.g.
bigram model) and for one, chosen number of dimensions in LSA space (e.g. 1000). A
group of clustering algorithms was executed sequentially within a job. The clustering
algorithms within a job differed in their nature (partitional vs. agglomerative) and
by applied criterion functions. To speedup computations, jobs for different models of
the ROL corpus or different number of LSA dimensions were executed in parallel on
separate cores.

The only exception were OpenMP computations, where four cores were used in
parallel by one job.

Table 1
CPU time and memory requirements of an instance of a baseline tagger trained on 90%

of the m-FDCP corpus (SGI Altix 3700)

Tagger
Training Tagging speed Memory
time [s] [tokens/s] usage [GB]

Simple tagset

HMM 2 25 100 0.02
MET 1400 120 0.20
TBL 3000 1500 0.32
MBL 80 14 100 0.11
SVM 16 600 520 0.86
DT 5 3700 0.03
CRF 54 500 9200 0.70

Complex tagset

HMM 4 12 300 0.02
MET 40 700 13 0.31
TBL 60 800 1100 1.11
MBL 100 8700 0.15
SVM 78 900 170 1.77
DT 400 1100 0.05
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Table 2
CPU time and memory requirements of an instance of a baseline tagger trained on 90%

of the m-FDCP corpus (IBM HS21)

Tagger
Training Tagging speed Memory
time [s] [tokens/s] usage [GB]

Simple tagset

HMM 1 146 500 0.004
MET 567 2200 0.08
TBL 783 4600 0.29
MBL 31 21 800 0.14
SVM 2600 1100 0.87
DT 1 183 100 0.01
CRF 48 700 14 600 4.10

Complex tagset

HMM 1 52 300 0.01
MET 12 800 80 0.08
TBL 11 400 4200 1.13
MBL 58 4600 0.13
SVM 22 600 400 1.17
DT 123 44 800 0.03

Time requirements of considered algorithms (training time, tagging speed, clus-
tering time) are expressed with help of CPU time and memory usage stands for phys-
ical memory usage. Tables 1–4 concern sequential versions of presented algorithms
while Tables 5–6 concern parallel OpenMP version.

Tables 1–3 provide training time, tagging speed, and memory usage of baseline
taggers trained on 90% of the m-FDCP corpus on three architectures described in
Section 3: SGI Altix 3700, HS21 and SMP Opteron, respectively. The taggers differ
in their performance – from the fastest and using least memory HMM tagger to the
slowest and memory consuming CRF tagger.

Table 4 presents training time, tagging speed and memory usage of the WPDV
tagger as a function of the number of component taggers. The results reveal unusual
feature of the WPDV tagger – tagging time is bigger than training time. In fact, in
the case of the complex tagset, tagging time strongly dominates training time. We
observe also exponential growth of the tagging time with the increasing number of
the baseline taggers constituting the WPDV tagger. Memory usage of the WPDV
tagger increases when moving from the simple to the complex tagset. The impact of
the number of component taggers on memory usage is observed for the simple tagset.

Time and memory requirements of the algorithms applied to documents clus-
tering of the ROL corpus are presented in Figures 1–5. The corpus preparation al-
gorithm creates input data required by clustering algorithms and includes building
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Table 3
CPU time requirements of an instance of a baseline tagger trained on 90% of the m-FDCP

corpus (SMP Opteron)

Tagger
Training Tagging speed
time [s] [tokens/s]

Simple tagset

HMM 1 75 800
MET 748 3 200
TBL 1000 3 000
MBL 38 17 700
SVM 4400 700
DT 2 63 400
CRF 86 200 9 900

Complex tagset

HMM 2 31 700
MET 18 300 150
TBL 17 300 3100
MBL 55 4400
SVM 40 200 200
DT 268 18 600

Table 4
CPU time and memory requirements of the WPDV tagger versus number of component

taggers (SGI Altix 3700)

Number 4 best 5 best 6 best
of component taggers taggers taggers taggers

Simple tagset

Training time [s] 23 20 22
Tagging speed [tokens/s] 2747 749 283
Training – memory usage [GB] 0.46 0.25 0.46
Tagging – memory usage [GB] 0.87 1.82 7.00

Complex tagset

Training time [s] 27 30 32
Tagging speed [tokens/s] 14.58 5.69 2.49
Training – memory usage [GB] 1.02 1.19 1.33
Tagging – memory usage [GB] 11.28 11.28 11.33

the document-term matrix in the VSM space, its further SVD transformation to the
LSA space and normalisation. The SVD factorization constitutes the main part of the
preparation algorithm. Time and memory required by this preparation algorithm is
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Fig. 1. Average CPU time usage of the ROL corpus preparation algorithm versus number
of LSA dimensions (Altix 3700, HS21, SMP Opteron)

given in Figures 1 and 2. Once fixed the number of dimensions of the LSA space, the
preparation algorithm was run several times, each time using different representation
of the corpus (e.g. base, noun, logent representation, etc.). The resource requirements
presented in Figures 1–2 are averaged over these several runs, and their standard devi-
ation is also given. Requirements of the clustering algorithms themselves are shown in
Figures 3 and 4. Entries in Figure 3 provide total time of execution of all investigated
clustering algorithms (four algorithms, twelve cluster criterion functions) applied to
one representation of the corpus in fixed LSA space and Figure 4 shows peak memory

Table 5
Walltime of execution of clustering algorithms [s]

Method
Criterion Altix HS21 HS21 Opteron Opteron
function openMP openMP

RB I2 804 142 145 274 300
RBR I2 857 145 282
Direct I2 614 97 187
Agglo I2 452 114 180
Agglo H1 28871 13859 3440 24919 5982
Agglo H2 32184 18433 3114 26917 5596
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Fig. 2. Peak memory usage of the ROL corpus preparation algorithm versus number of LSA
dimensions (Altix 3700, HS21)

usage. Taking into account that run of each direct and bisection algorithm was repeat-
ed 10 times to average their results, each group of clustering algorithms consists of 100
runs of algorithms. As for Figures 1 and 2, the results in Figures 3–6 and Table 5 are
averaged over runs on different representations of the corpus transformed to the LSA
space of fixed number of dimensions. We can observe in Figure 1 that time of corpus
preparation grows approximately linearly with increasing number of LSA dimensions.
The linear dependence holds also for memory usage versus number of LSA dimen-
sions. Contrary to the preparation algorithm, both time and memory requirements
of clustering algorithms remain nearly constant, independent of the LSA space inside
which clustering is performed and number of dimensions (Figures 3 and 4).

Figure 5 presents walltime and total CPU time requirements of the group of
clustering algorithms. OpenMP enabled versions of these algorithms were applied,
wherever possible. The OpenMP versions were run with four CPU cores per process.
Among clustering algorithms RB algorithm and agglomerative algorithm with Zhao’s
H1 and H2 criterion functions were OpenMP aware. Total CPU time means the sum
of CPU time consumed by four cores used by the group of clustering algorithms.
Table 5 shows time requirements of the this experiment from another perspective –
agglomerative algorithm with H1 and H2 criterion functions dominates execution of
the whole group, and speedup of the their OpenMP versions is approximately equal to
four, i.e, number of cores single algorithm was running. Figure 6 gives peak memory
usage for the last experiment.
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Fig. 3. Average CPU time usage of the group of algorithms applied to documents clustering
of the ROL corpus versus number of LSA dimensions (Altix 3700, HS21, SMP Opteron)
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Fig. 4. Peak memory usage of the group of algorithms applied to documents clustering of
the ROL corpus versus number of LSA dimensions (Altix 3700, HS21, SMP Opteron)
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Fig. 5. Average time usage of the group of algorithms applied to documents clustering
of the ROL corpus versus number of LSA dimensions (32-bit mode, OpenMP, SMP Opteron

and HS21)
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Fig. 6. Peak memory usage of the group of algorithms applied to documents clustering
of the ROL corpus versus number of LSA dimensions (32-bit mode, OpenMP, HS21)
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5. Conclusions

Some of POS tagging and clustering algorithms are time and memory consuming
but tuning above algorithms to Polish requires consideration of many parameters
and multiple, even more intensive computations. The high-throughput architectures
are well suited to such multivariant computations and satisfy well time and memory
demands.

The big advantage of SGI Altix 3700 and HS21 machines was availability of
many CPUs, what allowed to run many tasks concurrently. The x86-64 architecture
turned out however to be more effective than the Itanium 2 architecture. Among
two implementations of x86-64 architecture Intel Xeon was more robust than AMD
Opteron, what may be caused by two times bigger size of cache per core for the
former one. Taking additionally into account considerably higher failure frequency rate
for SMP architectures than for cluster architectures, IBM BladeCenter HS21 turns
out the most suitable for our experiments out of three considered high performance
architectures.
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