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AN ALGORITHM OF SEMI-DELAUNAY
TRIANGULATION OF POINTS CLOUD
SCATTERED ON A SURFACE

Abstract The purpose of this paper is to generalize the Delaunay[13] triangulation on-
to surfaces. A formal definition and an appropriate algorithm are presented.
Starting from a plane domain Delaunay triangulation definition, a theoreti-
cal approach is evolved (which is a background for further considerations). It
has been proven that, in the case of a plane surface, the introduced Delaunay
triangulation of surfaces is identical to classical Delaunay triangulation of the
plane domain. The proposed algorithm is implemented. and numerical results
are shown.

Keywords Delaunay triangulation, surface meshing, surface reconstruction, advancing
front technique.

26 października 2014 str. 1/20

Computer Science • 15 (3) 2014 http://dx.doi.org/10.7494/csci.2014.15.3.329

329

http://journals.agh.edu.pl/csci/


1. Introduction

The purpose of this paper is to generalize the Delaunay [1, 2, 5] triangulation onto
surfaces. A formal definition and an appropriate algorithm are presented. Starting
from a plane domain Delaunay triangulation definition, a theoretical approach is
evaluated (which is a background for further considerations). It has been proven that,
in the case of a plane surface, the introduced Delaunay triangulation of surfaces is
identical to classical Delaunay triangulation of the plane domain. The main idea of
the algorithm is a coupling of the Delaunay property and the the advancing front
technique [8, 9]. For the sake of implementation, it is assumed that points are given
on a multi-connected surface with a finite number of internal loops.

It is obviously important to perform an optimal triangulation (composition) pro-
cess of these points; i.e., their mapping onto the surface. It is worth noting that
surfaces can be represented by B-spline functions or NURBS approximations [7] as
well. For finite elements or finite differences applications [9, 11], it is necessary to
generate meshes with a prescribed density. On the other hand, triangulation of a gi-
ven surface is a two-stage process: firstly, a set of points is generated, then they are
appropriately connected to form triangles.

The main purpose of thi paper is to present a new algorithm for the triangulation
process of a surface spanning a set of points, [5]. The proposed algorithm is based
on the Advancing Front Techniques (AFT) coupled with the Delaunay triangulation,
[8]. The latter method dealt only with triangles in 2D; i.e., a plane. But the proposed
approach uses triangles for mapping a surface; e.g., spherical. The algorithm is to be
coded, and numerical results are to be generated.

2. Preliminaries

Details about triangulation of a plane with openings is described in the current section.
It is assumed that the boundary of the domain consists of k components. In Figure 1,
the domain is the area between the five outer straight lines and three inner lines. The
area inside the three inner lines is emptiness. Hence, the domain in Figure 1 consists
of two components.

It is assumed that we have a k−connected polygon Ω with k boundaries of ni
vertices i = 1, . . . , k, so the set of boundary points can be denoted:

Γ = {P1, . . . ,Pn1 , . . . ,Pni , . . . ,Pni+1 . . . ,Pnk} (1)

We define the following sets of straight line segments:

S1 = {P1P2,P2P3, . . . ,Pn1P1}Si = {Pni−1+1Pni−1+2, . . . ,Pni−1Pni−1+1}, for i = 2, 3, . . . , k
(2)

It is possible to write the boundary of Ω in the following form:

∂Ω =
k⋃

i=1

Si (3)
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Figure 1. Boundary orientation with respect to the domain.

where S1 is the external component of the boundary, and S2, . . . , Sk are the internal
components (loops) of ∂Ω like in Figure 1. We assume that curve orientation is defined
by increasing-points numbering and concurs with the counter-clockwise orientation of
the boundary with respect to the domain.

Let Θ be a set of internal points of the domain Ω.

Definition 1 A set of triangles T = {Ti}NTi=1 is called the triangulation of plane
polygonal shaped domain Ω on sets Θ and Ω if the following conditions are satisfied:

(i) Ω =
⋃NT
i=1 T i,

(ii) ∀ i, j = 1, 2, . . . , NT , i 6= j is: Ti ∩ Tj = ∅,
(iii) all the triangles vertices of T come from the set Γ ∪Θ
(iv) ∀P ∈ Γ ∪Θ ∃ k 1 ¬ k ¬ NT , such that P is a vertex of the Tk.

In the case of the convex polygon Ω ⊂ R2, the definition 1 is equivalent to the
definition in [13] on set Γ ∪Θ.

Definition 2 A triangulation T of a polygonal set Ω ⊂ R2 is the Delaunay trian-
gulation if for arbitrary T ∈ T the circumscribed circle on it does not contain in its
interior any point from Γ

⋃
Θ, which could create a triangle with any pair of vertices

of the T contained in Ω.

3. The Delaunay triangulation of set of points in 2-D domain

The presented algorithm of 2-D domain triangulation is based on the following pa-
pers: [4, 8, 9]. It is based on the Advancing Front Technique (AFT) and satisfies the
Delaunay condition. It is assumed that the set of boundary segments S (see 2) is
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a starting front. During the algorithm realization, the front will vary. The front will
eventually shrink to zero.
S ′D — Delaunay part of the front,
S ′N−D — non-Delaunay part of the front.
At the algorithm beginning:

S0
D = ∅ and S0

N−D = S (4)

In the successive steps of the algorithm, SiD and SiN−D are defined by induction.
During the algorithm, both parts of the front are being changed – but the following
condition is still being kept:

Si = SiD ∪ SiN−D and SiD ∩ SiN−D = ∅ for i = 1, . . . n, (5)

where i is the number of the step in AFT.
Let’s define inductively SiD and SiN−D for which the start conditions are defined

in 4. If new sides PA, BP of the triangle ABP (Fig. 4a) are not on the front, then
they are added to SiD, provided that there is one element lying on the circle passing
through the points A, B, P besides A, B; otherwise, they are added to SiN−D. It
results in obtaining successive fronts Si+1

D and SiN−D. The segment AB is always
removed from the front. In this way, condition 5 is still satisfied.

The successive step of the AFT starts at choosing from front Si a straight line
segment AB (it is recommended that the smallest one is chosen). Let Σi denote the
set of front boundary points and internal points of the domain bounded by the front.
At the beginning Σi = Θ

⋃
Γ (definition 1). For a fixed r > 0 (usually r is equal

to multiplicity of the segment length), the set of candidates associated with AB is
defined in the following way:
Definition 3 CrAB = {P ∈ Σi: where the vectors AB and BP create a pair positi-
vely oriented and P belongs to the circle with radius r and passing througth the points
A, B}

The relation � on the set CrAB:

∀ P, Q ∈ CrAB P � Q⇐⇒ if P ∈ KABQ (6)

where KABQ is a circle passing throughout A, B, Q and KABQ is its closure is
introduced. The relation � is reflexive, transitive and total (Fig. 2a, b)

Relation � is not an ordering relation, because it is not antisymmetric. This
means it does not satisfy the following condition:

∀ P,Q ∈ CrAB [P � Q ∧Q � P] =⇒ P = Q (7)

It means that the minimal element in the set CrAB is not uniquely determined. To
ensure uniqueness in the set CrAB, the following relation is also introduced:

∀ P, Q ∈ Cr
AB P ∼= Q⇐⇒ if [P ∈ KABQ ∧Q ∈ KABP] (8)

26 października 2014 str. 4/20

332 Jan Kucwaj



A B

R

Q

P

A B

P

Q

R
a) b)

Figure 2. a) Relation �; b) Singular case.

The relation ∼= is an equivalence relation (Fig. 2b). In the quotient set, the next
relation is defined; namely:

∀ P, Q ∈ Cr
AB [P]∼= �∼= [Q]∼= ⇐⇒ P � Q (9)

It is easy to check that �∼= does not depend on the choice of class representative, it
means it is right defined as well as reflexive, antisymmetric, total, and transitive (i.e.,
it is an ordering relation).

Reflexivity, totality, and transitivity are consequences of these properties for �.
To show antisymmetricity, we assume that [P] �∼= [Q] i [Q] �∼= [P], which means
that P ∈ KABQ and Q ∈ KABP, what leads to identity of circles KABQ and KABP

or P, Q are in the relation ∼= and in the consequence [P]∼= = [Q]∼=. �
Remark 1 Equivalence class of the point P ∈ SrAB is equal to: [P]∼= = {Q ∈ SrAB :
Q lies on the circumference passing throughout the points A,B,P}.

Equivalence class may contain more than one element; such a situation is called
a singular case (Fig. 2b).

For the sake of the efficient evaluation of the relation ∼=, the local coordinate
system is introduced (Fig. 3a) with the basis u = AB

||AB|| of unit versor v perpendicular
to u and being with it a positively defined pair. The point:

O =
1
2

(A + B) (10)

is taken as the origin of the coordinate system.

In the coordinate system, the center C1 of circle KABP (Fig. 3a) has the coordi-
nate u = 0 and v appointed from condition ||AC1|| = ||PC1||. It turns out that the
definition of the relation in the set CrAB agrees with the order of coordinates v of the
appropriate circles, namely the following theorem is true:
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Figure 3. a) local coordinate system; b) Relation � and v coordinate.

Theorem 1 Let P,Q ∈ SrAB, then the following identity is true:

P � Q⇐⇒ center coordinate of KABP

is less than coordinate v of the center KABQ (11)

Proof: the centers of circlesKABP,KABQ lie on the v axis and are the intersection
points straight lines appropriately perpendicular to the tangents at point A to these
circles. If P � Q, then the mutual placement of KABP and KABQ is as in figure 3b.
The intersection of the straight line perpendicular to the tangents at point A to the
KABP with axis v is beneath the analogous intersection for circle KABQ. �

The theorem 1 efficiently allows us to check the � relation. The relation �∼= is
an ordering relation in finite quotient set CrAB/

∼=, and a minimal uniquely-defined
element exists with respect to this relation. The element [Pmin]∼= is an abstract class,
so it may contain more than one element, which means that it is the singular case
(Fig. 4a). From this class, one element is chosen which has the greatest of the minimal
angles of the triangles formed by segment AB and the points of the class. It is easy
to see that the considered criterion is equivalent to the choice of a point P, whose v
coordinate in the local coordinate system is maximal (Fig. 4).
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Figure 4. a) Singular case b) The intersection with non-Delaunay front part Si.

After the point P selection, it is necessary to check the following conditions:

PA ∩ SiN−D ∈ {∅, {A}, {A,P},PA} (12)

PB ∩ SiN−D ∈ {∅, {B}, {B,P},PB} (13)

The conditions 12, 13 ensure that the newly-created ABP triangle does not
overlap the existing triangles (Fig. 4b – marked triangles). In formulas 12, 13 appears
a non-Delanay part of the front, because, with respect to the Delaunay condition, it
is necessary to check the condition only for this part of the front.

The front modification describes the following algorithm:
Algorithm 1 1. Remove segment AB from the front Si+1 = Si \ {AB}
2. IF(PA ∈ SiD) THEN

Si+1
D = SiD \ {PA}

ELSE
Si+1
D = SiD

⋃{PA}
ENDIF

3. IF(BP ∈ SiN−D)THEN
Si+1
N−D = SiN−D \ {BP}

ELSE
Si+1
N−D = SiN−D

⋃{BP}
ENDIF.
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Thus, the algorithm of the Delaunay triangulation can be presented according to
the following scheme:

Algorithm 2

1. S0
N−D = S

2. S0
D = ∅

Perform points from a) to ...e) for i = 0, 1, 2, . . . while Si 6= ∅:
(a) IF(SiN−D 6= ∅)THEN

find the last front segment AB ∈ SiN−D
ELSE
IF(SiD 6= ∅) THEN
find the last segment of the SiD
ELSE
finish the triangulation
ENDIF.

(b) appoint the set of candidates CrAB dla r = AB according to
the definition 3

(c) Find [P∗]∼= as the minimal element in the set CrAB/
∼=

(d) IF(P∗ satisfies the conditions 12,13)THEN
add the triangle to the list of the triangles and modify
the front Si+1

D i Si+1
N−D by using the algorithm of the front

modification
ELSE

(e) CrAB ←− CrAB \ {P∗}
IF(CrAB 6= ∅) THEN
go to 2d
ELSE
r ←− r +D, where D is the front length
go to 2b
ENDIF ENDIF.

It will be proven that this algorithm leads to the Delaunay triangulation.

Theorem 2 (Delaunay theorem [13]) For a triangulation T = {Ti}NTi=1 − of a finite
set of cloud of points in the plane [13], the following is true: ∀ Ti, Tj ∈ T KTi does not
contain vertices of Tj in its interior and vice-versa, if and only if ∀ Ti, Tj ∈ T sharing
a common edge Ti does not contain vertices of Tj in its interior and vice versa.

The right-hand side of the equivalence of the theorem 3 allows us to define equ-
ivalently to the definition 2, the definition of the Delaunay triangulation of a 2-D
domain; namely: The theorem 2 can be generalized for triangulation of a polygonal
domain:

Theorem 3 For any triangulation of 2 − D polygonal-shaped domain, the following
equivalence is true: ∀ Ti, Tj ∈ T KTi does not contain vertices of Tj in its interior
and vice-versa if and only ∀ Ti, Tj ∈ T KTi sharing a common edge does not contain
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vertices of Tj in its interior and vice-versa. (in this case, it is said about mutual
Delaunay placement of the both triangles).

Proof: if the condition of the left hand side of the equivalence is satisfied, then
∀ Ti, Tj ∈ T KTi sharing the common edge KTi does not contain vertices of Tj in
its interior and vice-versa, because the vertices of KTi create a right triangle of the
triangulation with vertices of Tj . On the contrary, if the condition of the right hand
side of the equivalence is satisfied, then from the theorem 2 follows that the conditions
of the definition 2 are satisfied. �

It turns out that the algorithm 2e leads to the Delaunay triangulation of the
polygonal-shaped domain. Before the formulation of the main theorem, the following
lemma will be proven:

Lemma 1 Triangulation T of an arbitrary polygonal domain Ω is the Delaunay trian-
gulation if and only ∀ Ti, Tj ∈ T KTi sharing a common edge KTi does not contain
vertices of Tj in its interior or vice-versa.

Proof: the conclusion of the right hand side from the left side of the equivalence
follows from theorem 3, as the conjunction implies disjunction. On the other side, if
for any two adjacent triangles 4ABC and 4ABD (Fig. 2) point D does not belong
to the circle circumscribed about the triangle 4ABC and point C belongs to the
circle circumscribed about the triangle 4ABD, then point C would be in the lower
part of the circle segment 4ABC defined by the AB straight line segment, which
would mean that point D belongs to the circle circumscribed about 4ABC.�

Theorem 4 Assume, that the boundary of Ω ⊂ R2 consists of a finite number of
closed broken lines without multiple points, then the algorithm 2 leads to the Delaunay
triangulation.

Proof: when during the consecutive step of the advancing front technique, seg-
ment AB (Fig. 5) is chosen; then, the newly-created triangle ABD (the triangle
ABC just exists in the current triangulation) has that property that the circle cir-
cumscribed about triangle ABD doesn’t contain any point from the set of candidates
(definiton 3) in its interior. As the triangulated domain is not convex, it may contain
other points, but they are separated by the boundary of the domain. So the conditions
of Delaunay triangulation of the domain are satisfied. According to algorithm 2, point
D does not belong to the circle circumscribed about triangle ABC, the analogous
situation happens when sides AD or BD of triangle ABD lie on the front (they are
sides of the triangles of the current triangulation or boundary segments). Taking into
account the lemma 1, the set of triangles obtained by adding ABD to it is still the
Delaunay triangulation. The application of mathematical induction finishes the proof.
�
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Figure 5. Ilustration of lemma 1.

4. The Delaunay-like triangulation of clouds of points
on the surface

The theorems of section 3 allow us to define the triangulation of a cloud of points
defining a surface. In this section, the generalization of algorithm 2 onto the set of
points of cloud representing surface S is presented. Like in section 3, a set of internal
points Λ and a set of boundary points Γ are distinguished.

Definition 4 A set of triangles T = {Tk}NTk=1 is called a surface S semi-Delaunay
triangulation [5], if:
a) each triangle from the set T has all his vertices from the set Γ

⋃
Λ,

b) ∀ i, j 1 ¬ i, j ¬ NT and i 6= j, then Ti 6= Tj,
c) ∀T ∈ T and for every edge PQ ∈ T the triangle T is the only triangle of the set

T having this edge PQ or there exists exactly one triangle T ′ ∈ T , T ′ 6= T , such
that PQ ⊂ T ′,

d) For every pair of triangles T1, T2 ∈ T T1 6= T2 sharing a common edge, at least
for one triangle of the pair, the sphere passing through its vertices and having the
center lying in the plane of the triangle does not contain any vertices of the other
triangle in its interior.

e) ∀P ∈ Λ
⋃

Γ ∃T ∈ T , such, that P ∈ T .

Points a, b, e of the definition 4 are obvious. Point c is the well-known compa-
tibility condition [14, 15]. Point d is introduced by the author [5], and is connected
with the Delaunay triangulation by the following theorem:

Theorem 5 It is assumed, that S is a surface contained on a plane surface contained
in 3 − D space, let Λ be a set of internal points and Γ a set of boundary points of
surface S. If a set of triangles T = {Tk}NTk=1 is the semi-Delaunay triangulation of the
surface S according to the definition 4, then set T is the Delaunay triangulation of
surface S treated as the plane domain.

Proof: the condition d) of the definition 4 means that all spheres passing through
the vertices of triangles T ∈ T and the centers lying in the plane of T ∈ T lie on the
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plane surface containing S. According to definition 4, for any T, T ′ ∈ T T 6= T ′, the
sphere passing through the vertices of one of them does not contain any vertices of
the other in its interior. It is obvious that the circumferences obtained as a result of
the intersection of spheres passing through the vertices of triangles T ∈ T , with the
centers lying in the plane of T ∈ T . The considered plane has the following property:
∀ Ti, Tj ∈ T KTi sharing a common edge KTi do not contain vertices of Tj in its
interior or vice-versa. The application of the lemma 1 finishes the proof. �

Remark 2 Theorem 5 motivates us to call this type as a generalization of Delaunay
triangulation onto surfaces. The problem of its optimality is an open problem, but if
the points are very close to each other, then locally a tangent plane surface is very
close to the considered surface, and according to theorem 5, is very close to the optimal
triangulation.

5. Algorithm of semi-Delaunay surface triangulation

In this section, the algorithm of triangulation of a cloud of points on the orientable
surface S is presented. It is a generalization of algorithm 2. Similarly to section 4,
the set internal points Λ and boundary points Γ are introduced. It is assumed that
points are so enumerated that, when during moving in accordance with the growing
numbering, the surface leaves on the left. The surface may be multi-connected with
a finite number of loops. The surface is oriented by the vector product of two vectors
denoted by the triangle orientation adjacent to the current front segment (Fig. 6a). In
the case of a boundary segment, the normal vector is denoted by the vector product
of two consecutive boundary straight-line segments treated as vectors (Fig. 6b).

.
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Figure 6. a) AB — side of the triangle; b) AB — the boundary segment.
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By analogy to the 2-D case, front ΓF is introduced. At the beginning of trian-
gulation, the front consists of boundary segments. During triangulation, the front is
being modified until becomes an empty set.

Consider an arbitrary front ΓF segment AB; the following definition is introdu-
ced:
Definition 5 Point C∗ lying on front Γ∗F or belonging to set Λ∗ ⊂ Λ, where set Λ∗

is the set of points from set Λ (which do not form vertices in any current triangles)
is called a candidate if it satisfies the following condition:

(AC∗,n2) > 0, where n1 = AC×AB, n2 = n1 ×AB (14)

and triangle 4ABC is the triangle obtained during triangulation (Fig. 6a). In the
case when AB is a boundary segment (Fig. 6b), the found point Q ∈ Λ is the closest
to segment AB. Vector n1 = AB×AQ and n2 = n1 ×AB.

For the considered front segment AB, the set of candidates U = {Ci}NUi=1 ⊂
ΓF
⋃

Γ∗ is defined as a set of points satisfying definition 5 and lying in the ball
passing through points A and B with radius R (usually R = ||AB||). The center of
the ball is contained in the plane of the triangle ABC of the existing triangulation
or in the plane of the triangle ABQ in the case when AB is a boundary segment,
where Q is the end of the neighboring to AB boundary segment.

From set U , point C∗ satisfying condition 15 is selected.

∀ D ∈ U C∗ ∈ BABD (15)

where BABD (Fig. 7a) is the ball whose sphere passes through points A, B, D and
the center lying in the plane of triangle ABC.

.

.
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. .

.

.

.
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C C1
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b)a)

.
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a) b)

Figure 7. a) AB — the candidate choice; b) AB — The centers of balls BABD for D ∈ U .

It can be observed that the centers of the balls used in definition 5 lie on a straight
line perpendicular to segment AB and passing through the center of AB (Fig. 7b).
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To satisfy condition 15, the following relation in set U is introduced: (Fig. 7):

C1 � C2 ⇐⇒ C1 ∈ BABC2 (16)

Relation � defined by 16 has the following properties:

(i) ∀C1, C2 ∈ U C1 � C2 or C2 � C1 (totality),
(ii) If C1 � C2 ∧C2 � C1, then BABC1 = BABC2 ,
(iii) ∀C ∈ U C � C (reflexivity),
(iv) ∀C1, C2, C3, ∈ U, if C1 � C2 ∧C2 � C3 =⇒ C1 � C3 (transitivity).

It will be shown how to fast check the condition of relation �. Let the system
of vectors {u1,u2,u3} be the local coordinate system at the origin, at point O =
1
2 (A + B), defined as follows:

u1 =
AB
||AB|| , u2 =

n2

||n2||
, u3 =

n1

||n1||
. (17)

By these notations, the following theorem is true:

Theorem 6

C1 � C2 ⇐⇒ (OO1,u2) ¬ (OO2,u2), (18)

where O1 i O2 are appropriately the centers of the balls BABC1 and BABC2 .

Proof: on the assumption that the centers of balls BABCi for i = 1, 2 lie in
the plane denoted by the vertices of triangles 4ABCi, the spheres of these balls
contain points A, B, the intersections of those spheres is the circle lying in the plane
perpendicular to the plane passing through points A, B, C with the center at the half
of the straight line segment AB and the diameter equal to the length of AB. The
centers of balls BABCi lie on a straight line perpendicular to the plane denoted by
the circle being the intersection of these spheres and passing through the center of the
circle. That means that centers O1, O2, O3, . . . of balls BABC1 , BABC2 , BABC3 . . .

lie on a straight line passing through the center of the straight line segment AB. The
intersection of the plane of triangle ABC with ball BABCi is a circle with center Di

(Fig. 7b). If C2 ∈ BABC1 , then the center of BABC2 is moved to the left with respect
to the center of BABC1 , which completes the proof.

Theorem 6 means that the coordinate of OO1 associated with basis vector u2 is
not greater than the the corresponding coordinate of OO2.

The introduced relation � is not yet an ordering relation, because the antisym-
metry condition is still not satisfied. Practically, it means that the minimal element
always exists, but unfortunately, it is not defined uniquely. For the sake of the unique
definition of the minimal element, the following relation is introduced:

Definition 6 Two arbitrary C1, C2 ∈ U are in the relation ∼=, if:

C1
∼= C2 ⇐⇒ BABC1 = BABC2 (19)
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It can be checked that relation ∼= is an equivalence relation. An equivalence class
of the relation is a set of points from U lying on the sphere passing through points A
i B, with the center lying in the plane of triangle 4ABC.

Quotient set:

U∗ = U/ ∼= with the following relation: (20)

[C1] �∗ [C2]⇐⇒ C1 ∈ BABC2 (21)

is an ordered set.

The satisfaction of the relation �∗ doesn’t depend on the choice of a representa-
tive of a given class, and all of the conditions of an ordering relation are satisfied. The
lowest element according to this relation is an equivalence class which may contain
more than one element. In this case we have a singular case (by the analogy to 2−D
case); otherwise, the selection of a point to create a triangle on front segment AB is
finished. In the singular case the points having the largest coordinate corresponding
to basis vector n2 are selected. From these points that one is chosen which coordinate
corresponding to basis vector n3 is the smallest.

After the point C∗ ∈ U selection, which is to create a new triangle with vertices
A, B, it is necessary to check whether front ΓF is intersected by the two strips of
planes perpendicular to the plane of the triangle ABC∗ (Fig. 8b) the first passing
through points A, C∗ and the second through points B, C∗. These two strips are
bounded by the two straight lines passing appropriately through the points A, C∗

and B, C∗.

u1

u2

u3

A B

.

.
C2C1

.

A

B

C

C*

a) b)

a)

b)

Figure 8. a) Points C1 i C2 with that same coordinate with respect to u2; b) Intersection of
the bands of the planes with the front.

26 października 2014 str. 14/20

342 Jan Kucwaj



If there are no intersections, the following condition is checked:

{C∗A}
⋂

ΓF ∈ {{∅}, {A}, {C∗,A}, {C∗A}} (22)

{BC∗}
⋂

ΓF ∈ {{∅}, {B}, {C∗,B}, {BC∗}} (23)

The whole algorithm of the semi-Delaunay surface cloud points can be written in the
following form:

Algorithm 3

1. ΓF ⇐= the set of boundary segments denoted
by boundary points and defining positive
orientation with respect to the surface.

2. IF(ΓF 6= ∅) THEN
find the lowest segment AB belonging to ΓF .
ELSE
finish the triangulation
ENDIF.

3. R⇐= ||AB||.
4. appoint the set of candidates U ⊂ Λ∗

⋃
ΓF belonging to ball

with the center lying in the plane of triangle ABC
with radius r and the sphere passing through points A, B
and satisfying condition 14.

5. find the subset of the points C∗ ∈ U1 ⊂ U
satisfying condition:

C∗ ∈ U ∀D ∈ U, C∗ � D. (24)

6. If #U1 = 1 (#X denotes the number of elements of set X), go to
8.

7. Find the set U2 ⊂ U1 about the maximal coordinate
corresponding to the basis vector u2

IF(#U2 = 1) go to 8
ELSE
Determine set U3 ⊂ U2 of points with the minimal
coordinate corresponding to the vector u3 and accept
any point from the set U3 as the searched point C∗.

8. If the appropriate plane bands lying in the perpendicular
planes to the triangle ABC plane and passing through
the points A,C∗ and B,C∗ as in figure 8b
don’t intersect front ΓF
then

a) add the triangle 4ABC to the triangles list,

b) modify the front Γ.
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otherwise
U ⇐= U \ {C∗}
IF(U 6= ∅) THEN
go to 6
ELSE
R⇐= R+R

go to 5
ENDIF
ENDIF.

6. The numerical examples

Algorithm 3 was implemented, and its results are given now. The computer program
GRID3-S was created and tested, and some numerical results are presented. Most of
the examples are surfaces of revolution, so the points were equidistantly generated on
parallel circles. The surfaces were split into a few pieces to distinguish internal and
boundary points.

Figures 9, 10 present torus covered with a mesh about the constant size ρ = 0.35.
Figure 10 illustrates how algorithm 3 functions.

Figure 9. Torus covered with the triangular mesh

Figure 11 presents the cylinder connected with the part of the sphere, the assumed
mesh size was ρ = 0.09. Figure 12 presents the cylinder connected with cubicoid, the
assumed mesh size was ρ = 0.15.
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Figure 10. Part of the torus illustrating the method of triangulation.

Figure 11. Cylinder connected with the part of sphere.

In Figures 11, 12, it can be observed how different types of surfaces are connected.
In this case, the points are generated on the common curves of those surfaces.

The meshes in Figures 9 and 10 are created on the surfaces of the same types,
the triangles formed at common curves are well conditioned, as is the whole mesh.

Figure 13 shows the triangulated cap of a sphere. The cap of the sphere was
divided into 3 patches consisting of spherical triangles. Each spherical cap is oriented
by the order of its vertices regarding the surface orientation with respect to the
external normal (like in a 2-D domain, where the external normal to x − y plane is
the versor of z axis). It is important to keep that same surface orientation for each
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Figure 12. Cylinder connected with the cuboid.

Figure 13. The cap of sphere covered with 10279 triangles.

patch. The enumeration of points on boundaries of each patch is described by the
enumeration of its vertices.

The numerical analysis of computational complexity is shown in Table 1. The
simulations were performed on a DUAL CORE INTEL 2×2,4 GHz with 3 GB RAM.

Table 1
The dependence between number of triangles and CPU time for the surface from Figure 13.

Number of triangles 326 530 1286 4963 7779 10279
CPU TIME 0.006s 0.007s 0.013s 0.038 0.051 0.0905
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7. Summary and closure

In this paper, an algorithm of unstructured grid generation of clouds [12, 16] of po-
ints on a surface is provided. The paper contains a theoretical background, the formal
definition of the semi-Delaunay property, and the triangulation algorithm of points
scattered on the surface. It was proven that the proposed definition is a correct ge-
neralization of 2 − D Delaunay algorithm of coupling Delaunay approach (coupled
with the advancing front technique). The surface algorithm was implemented, and
numerical results were obtained.

The original elements of the paper are:

• The definition of the semi-Delaunay triangulation of clouds of points on a surface
of any shape.
• Theorem 2–6 and the lemma 1.
• Algorithm 3 of combining Advancing Front Method and semi-Delaunay Triangu-

lation of clouds of points given on a surface of any shape.
• The computer code and numerical results.

The proposed approach can be applied to the triangulation of disjoint, multi-
patch surfaces, (even in close proximity to each other).
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