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TUNING OF AGENT-BASED COMPUTING

Abstract In this paper, an Evolutionary Multi-agent system-based computing process is

subjected to a detailed analysis of its parameters in order to establish a base

for a better understanding of the meta-heuristics from the practitioner’s point

of view. After reviewing the concepts of EMAS and its immunological variant,

a series of experiments is shown, and results of the influence of the search

outcomes by certain parameters is discussed.
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1. Introduction

During the past few decades, intelligent/autonomous software agents have been gain-

ing an ever-increasing number of applications in various domains, such as power sys-

tems management [20], flood forecasting [15], business process management [16], in-

tersection management [12], or difficult optimization problem solving [18], just to

mention a few. The key to understand the concept of a multi-agent system (MAS)

is an intelligent interaction (like coordination, cooperation, or negotiation). Thus,

multi-agent systems are ideally suited for representing problems that have many solv-

ing methods, involve many perspectives and/or may be solvable by many entities [28].

That is why one of the major application areas of multi-agent systems is large-scale

computing [26, 1].

The article deals with a tuning of a hybrid evolutionary-agent approach. In most

of similar applications reported in the literature (see e.g. [23], [9] for a review), an

evolutionary algorithm is used by an agent to aid in the realisation of some of its tasks,

often connected with learning or reasoning, or to support coordination of some group

(team) activity. In other approaches, agents constitute a management infrastructure

for a distributed realisation of an evolutionary algorithm [24].

Evolutionary processes are by nature decentralised, and therefore one can imagine

the incorporation of evolutionary processes into a multi-agent system at a population

level. It means that agents are able to reproduce (generate new agents), which is

a kind of cooperative interaction and may die (be eliminated from the system), which

is the result of competition (selection). A similar idea with limited autonomy of

agents located in fixed positions on some lattice (like in a cellular model of parallel

evolutionary algorithms) was developed by e.g. [30]. The key idea of the decentralised

model of evolution employed by an evolutionary multi-agent system–EMAS [17] was

to ensure full autonomy of agents.

Such a system consists of a relatively large number of rather simple (reactive),

often homogeneous agents which possess or produce solutions to the same problem

(a common goal). The considered problem is rather closed and static, but non-

deterministic [22]. Because of both computational simplicity and a huge number

of the agents, the influence of each single agent’s behaviour on the overall system

operation may be neglected, which allows for the efficient realisation in large-scale

environments with lightweight infrastructure [6].

In other approaches, agents constitute a management infrastructure for a dis-

tributed realisation of an evolutionary algorithm [24]. Yet, evolutionary processes

are decentralised by nature and one may indeed imagine the incorporation of evo-

lutionary processes into a multi-agent system at a population level [17]. It means

that, apart from interaction mechanisms typical of MAS (such as communication),

agents are able to reproduce (generate new agents) and may die (be eliminated from

the system). A similar idea, but with limited autonomy of agents located in fixed

positions on some lattice (like in a cellular model of parallel evolutionary algorithms),

was developed by e.g., [30].
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The key idea of the decentralised model of evolution employed by an evolutionary

multi-agent system (EMAS) was to ensure full autonomy of agents. Different vari-

ants of this model have been successfully applied to different optimisation problems

e.g., optimization of neural-network architecture [4], multi-objective optimization [25],

multi-modal optimization [13], and financial optimization [14] to name a few (a sum-

mary of EMAS-related review has been given in [2]).

Proposing a complex, hybrid technique calls for justification of its applicability

and theoretical background. Strong theoretical background have already been sup-

plied (by proving the feature of ergodicity for the Markov-chain-based model of EMAS

[5]), and different applications have already been tested (as it was mentioned in the

previous paragraph). As EMAS may now be perceived as an effective tool for optimi-

sation, it is tnoteworthy that its configuration contains a vast number of parameters

that should be carefully tested before applying these meta-heuristics by other prac-

titioners to their problems. In particular, the important parameters of EMAS, such

as the necessary proper tuning of mechanisms of distributed and immunological se-

lection, could help in understanding it and further tuning the computation based on

this knowledge.

In the beginning of this paper, the concepts of EMAS and immunological EMAS,

along with selected experimental results cited after previous works, are described.

Later, an extensive analysis of particular EMAS and iEMAS parameters is presented,

concluding with a summary tackling the different interactions between the tested

parameters. In the end, the paper is finished.

2. Evolutionary agent-based computing

In this section, two already-introduced flavours of EMAS are shortly described after

[2], namely Evolutionary Multi-agent System [8] and immunological Evolutionary

Multi-agent System [3].

2.1. Basic model of EMAS

Figure 1 shows the simplest possible model of an evolutionary multi-agent system,

with one type of agents and one resource (called energy) defined. Genotypes of agents

represent feasible solutions to the problem. Energy is transferred between agents in

the process of evaluation. When the agent discovers that one of its neighbours (e.g.

chosen randomly), has lower fitness, it takes part of its neighbour’s energy; otherwise,

it passes part of its own energy to the evaluated neighbour. The level of life energy

triggers the following actions:

• Reproduction – performed when the agent’s energy raises above a certain level,

followed by production of a new individual in cooperation with one of its neigh-

bours, with genotype based on parents’ genotypes (crossed over and mutated)

and part of energy also taken from its parents.

• Death – the agent is removed from the system when its energy falls below a certain

level, the remaining energy is distributed amongst its neighbours.
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• Migration – the agent may migrate when its energy rises above a certain level,

then it is removed from one evolutionary island and moved to another according

to predefined topology.

Each action is attempted randomly with a certain probability, and it is performed

only when basic preconditions are met (e.g. an agent may attempt to perform the

action of reproduction, but it will reproduce only if its energy rises above a certain

level and it meets an appropriate neighbour).

2.2. EMAS with immunological selection

The main idea of applying immunological inspirations to speeding up the process

of selection in EMAS is based on the assumption that ‘bad’ phenotypes come from

‘bad’ genotypes. Immune-inspired approaches were applied to many problems, such

as classification or optimisation (e.g., [10]). The most frequently used algorithms of

clonal and negative selection correspond to their origin, and are used in a variety of

applications [27].

The general structure of immunological EMAS (iEMAS) is shown in Figure 2.

A new group of agents (acting as lymphocyte T-cells) is introduced [3]. They are re-

sponsible for recognising and removing agents with genotypes similar to the genotype

patterns of these lymphocytes. Another approach may introduce a specific penalty

applied by T-cells to recognised agents (a certain amount of the agent’s energy is

removed) instead of removing them from the system. Of course, there must be some

predefined affinity (lymphocyte-agent matching) function which may be based, e.g.

on the difference of percentage between corresponding genes.
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Figure 1. Evolutionary Multi-agent System (EMAS).
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Figure 2. EMAS with immunological selection (iEMAS).

Agents-lymphocytes are created in the system after the action of death. The

late-agent genotype is transformed into lymphocyte patterns by means of a mutation

operator, and the newly-created lymphocyte (or group of lymphocytes) is introduced

into the system. In both cases, new lymphocytes must undergo the process of negative

selection. In a specific period of time, the affinity of immature lymphocyte patterns

with ‘good’ agents (possessing a relatively high amount of energy) is tested. If it is

high (lymphocytes recognise ‘good’ agents as ‘non-self’), they are removed from the

system. If affinity is low, it is assumed that they will be able to recognise ‘non-self’

individuals (‘bad’ agents), leaving agents with high energy intact. The life span of

lymphocytes is controlled by specific, renewable resource (strength) used as a counter

by the lymphocyte agent.

Therefore, EMAS is enhanced by adding lymphocyte agents, altering the action

of the agent’s death and adding three lymphocyte-related actions:

• Death – EMAS action of death is redefined: during this action, the agent produces

one or more lymphocyte agents, passing along its mutated genotype to them and

setting their strength to the maximum value.

• Killing – a mature lymphocyte (with energy below a certain level) removes (or

weakens) one of its neighbouring agents, if it finds that the genotype of this agent

matches its own, using a predefined affinity function. Immature lymphocytes

(with strength above a certain level) are checked to confirm they match an agent

with high energy; in this case, the lymphocyte is removed from the system,

• Apoptosis – lymphocyte with zero level of strength is removed from the system.
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• Give – this action controls the negative selection process and overall lymphocyte

life by simply decreasing the level of lymphocyte strength, allowing it to perform

other actions (e.g., killing and apoptosis).

The concept of iEMAS is especially advantageous in applications requiring time-

consuming fitness evaluation like the evolution of neural network architecture [3].

2.3. Selected EMAS and iEMAS experimental results

Experiments concerning minimisation of the benchmark functions presented below

were reported by [3]. EMAS, iEMAS, and a classical parallel evolutionary algorithm

were checked against popular benchmarks [11] in order to test their efficiency (10-di-

mensional functions of Ackley, De Jong, Griewank and Rastrigin). Variation operators

of discrete crossover and uniform mutation were used. In parallel evolutionary algo-

rithm (PEA, real-value encoding, Michalewicz version [21] with allopatric speciation

[7]), tournament selection (being the most similar selection mechanism to energetic se-

lection principle in EMAS) was used. The systems consisted of 3 evolutionary islands

with 30 agents (or individuals in PEA) in the initial configuration.
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(b) Fitness count.

Figure 3. Final result obtained in 10000th step and fitness count for Ackley problem.

The fitness values obtained in the end of experiment (in 10 000th step) are pre-

sented in Figure 3(a). It is easy to see that the results of EMAS and iEMAS are

better than PEA in three cases and worse in one. However, a more-important result

is presented in Figure 3(b), see also Table 1. The number of fitness function calls

is far lower for EMAS than for PEA and even lower for iEMAS. This makes these

systems good weapons of choice for solving problems with costly fitness function (e.g.,

inverse problems) [29].
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Table 1

Fitness count in 10000th step of system’s work for EMAS, iEMAS and PEA.

Benchmark PEA EMAS iEMAS

Ackley 6 · 105 57 840 ±43 25 596 ±149

De Jong 6 · 105 57 769 ±43 26 172 ±158

Griewank 6 · 105 58484 ±62 30829 ±379

Rastrigin 6 · 105 57 787 ±29 27 727 ±220

3. Tuning of EMAS parameters

In this section, after presenting the parameters of the tested systems, a detailed

discussion related to the process of tuning selected parameters for EMAS and its

immunological variant (iEMAS) is given. In particular, distributed selection related

parameters, immunological selection parameters, and probabilistic parameters are

discussed. In the end, the summary is given in a tabular form. In order to peform

the system tuning, one problem had to be selected. It is, in this case, the Rastrigin

function [11] described in 50 dimensions. The PEA used is the real-value based,

Michalewicz version [21] with allopatric speciation [7].

3.1. Configuration of the tested systems

The configuration of the tested systems is presented as follows.

• Common parameters:

– normal distribution-based mutation of one randomly-chosen gene,

– single-point crossover, the descendant gets parts of its parents’ genotype

after dividing them at one randomly chosen point,

– 30 individuals located on each island,

– all experiments were repeated 30 times and standard deviation was com-

puted;

– allopatric speciation (island model) was used, 3 fully connected islands were

present,

– stopping condition: reaching 3000th step of experiment,

– genotype of length 50 (50-dimensional Rastrigin function),

– agent/individual migration probability 0.01.

• PEA-only parameters: mating pool size equals to the number of individuals,

individuals migrate independently (to different islands).

• EMAS-only parameters:

– initial energy: 100, received by the agents in the beginning of their lives,

– minimal reproduction energy: 90, required to reproduce,

– evaluation energy win/lose: 40/−40, passed from the loser to the winner,

– death energy level: 0, used to decide which agent should be removed from

the system,
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– boundary condition for the intra-island lattice: fixed, the agents cannot

cross the borders,

– intra-island neighbourhood: Moore’s, each agent’s neighbourhood consists

of 8 surrounding cells,

– size of 2-dimensional lattice as an environment: 10× 10,

– all agents that decided to emigrate from one island will immigrate to another

island together (the same for all of them).

The following parameters were chosen for iEMAS:

• Energy taken by a lymphocyte from similar agent: 30

• Good fitness factor: 0.97 (percentage of the agent fitness related to average fitness

in the population, as minimisation is considered, if fitness is smaller than the

average fitness, it is considered “good”).

• Similarity measure: Mahalanobis distance [19].

• Similarity threshold: 7.3, if similarity is smaller than this, the lymphocyte is

considered to be similar to the tested agent.

• Immaturity duration for lymphocyte: 10.

• Maturity duration for lymphocyte: 20.

• Lymphocytes cannot migrate between the islands.

3.2. Energy-related parameters

Energy-based distributed selection mechanism is an immanent feature of EMAS.

Therefore, a detailed examination of its parameters is crucial to a better understand-

ing of the search process and the ability to effectively tune them in order to adopt

the meta-heuristics to solving particular problems.

Energy exchange rate The most crucial parameter of the distributed selection mecha-

nism in EMAS is the rate of energy exchange between competing agents. The influence

of changing this parameter on the fitness and agent count in the population is shown

in Figures 4, 5. It is easy to see that increasing this parameter makes improves the

best fitness; but because of the applied logarithmic scale, this gain does not seem

to be significant. However, as it could be predicted, this parameter greatly affects

the agent count in the system. The higher the energy exchange rate, the lower the

average agent count in the system.

Initial energy level The initial energy of the agents in the system is supposed to have

a significant influence on the features of the agent population, as it is a main compo-

nent of the total energy which serves as a base for the distributed selection mechanism.

In fact, looking at Figure 6, the influence seems to be strong and straightforward.

The higher initial energy, the bigger the number of the agents during the com-

putation. It is noteworthy that the selection mechanism is stable, as the number of

agents does not grow indefinitely nor fall to zero during the whole observed compu-

tation process. It is easy to see that changing the initial energy indirectly affects the
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Figure 4. Influence of agent exchange energy on EMAS fitness bestFitness(step).
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Figure 5. Influence of agent exchange energy on EMAS agent count agentCount(step).

fitness (see Fig. 7), changing the actual number of the agents in the system that are

capable of exploring and exploiting the search space. Generally speaking, increasing

the initial energy helps achieve better results, though this effect is not very distinct.

Minimal reproduction energy Influence of minimal reproduction energy on the agent

count is shown in Figure 8.

Reproduction of minimal energy of the agents is supposed to have a significant

influence on the features of the agent population, as it directly affects the distributed

selection mechanism by controlling the “maturity” of the agents capable of repro-

duction. If this parameter value is low, agents that performed few rendezvous will

reproduce, while for its high value, only the long-living agents may generate offspring.
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Figure 6. Influence of agent initial energy on EMAS fitness bestFitness(step).
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Figure 7. Influence of agent initial on EMAS agent count agentCount(step).

In fact, looking at Figure 9, the influence seems to be strong and straightforward,

just the opposite in the case of initial energy.

It is easy to see that the higher the minimal reproduction level, the lower the

number of agents during the computation, as it is harder for them to reproduce.

Again, the selection mechanism is stable, as the number of agent does not grow

indefinitely nor falls to zero during the whole observed computation process.

The fitness is also affected (see Fig. 8), because the number of the agents varies

for different values of the minimal reproduction energy. The system is able to quicker

and better explore the search space for lower levels of this parameter (the final results

of the search are better for lower values of minimal reproduction energy, and the

search is quicker as the graph curvature is higher).
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Figure 8. Influence of minimum reproduction energy on EMAS agent count

agentCount(step).
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Figure 9. Influence of minimum reproduction energy on EMAS fitness bestFitness(step).

3.3. Probabilistic parameters

Stochastic nature of the systems brings flexibility into the computation; however in

order to effectively use EMAS and other related techniques, a detailed examination

of the most important probabilistic parameters is necessary.

Migration probability Existence of migration phenomenon between the sub-

populations should positively affect the value of fitness. It seems to be straight-

forward, because such techniques as niching and speciation are meant to increase the

exploration efficiency of the algorithm. The straightforwardness of this effect does not

allow us to draw any sophisticated conclusions; however, as a base, it is easy to see

that introducing migration into the system is connected with enhancing the quality
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of results and diversity of the population (see Fig. 10). However the observed effect

is almost discrete–if the probability is non-zero, the obtained results are significantly

better. But further tuning of this parameter does not produce distinguishable changes

in the fitness value.
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Figure 10. Influence of migration probability on EMAS fitness bestFitness(step).

Meeting probability Rendezvous probability is an important parameter affecting the

frequency of the meetings between the agents (as the decision whether the agent

performs a rendezvous or not is based on the outcome of probabilistic sampling). The

higher the rendezvous probability is, the more frequently the agents will meet and

exchange their energy.

However, this parameter does not influence the number of agents in the popula-

tion (see Fig. 11), as the same number of agents simply exchange the energy faster or

slower (also in memetic versions of EMAS). Again, the selection mechanism is stable,

as the number of agent does not grow indefinitely nor falls to zero, during the whole

observed computation process.

Increasing the rendezvous probability makes it possible to achieve the desired

solutions quicker (see Fig. 12), as the energy flow from the “worse” agents to the

“better” ones is faster, so the “better” ones may reproduce quicker. Therefore, the

final results of the search are better for higher values of rendezvous probability, and

the search is quicker as the graph curvature is higher. Again, changing this parameter

does not affect gravely-memetic modifications of EMAS.

Very important information may be obtained when observing the diversity shown

in Figures 13, 14. Increasing the rendezvous probability decreases the diversity. As

having a diverse population is important in a population-based search [7], one should

choose the value of this parameter in such a way that the desired solution is ap-

proached as fast as it was planned (as a result of exploitation), and the diversity is

high enough (to maintain the exploration). Choosing an appropriate value of this
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Figure 11. Influence of meeting probability on EMAS agent count agentCount(step).
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Figure 12. Influence of meeting probability on EMAS fitness bestFitness(step).

parameter seems to be crucial to maintain the balance between the exploration and

exploitation for EMAS and its variations.

3.4. Immunological parameters

As it was stated in [2], an immunological variant of EMAS (iEMAS) is an important

weapon of choice when dealing with problems which have a complex fitness function.

Therefore, examination of selected parameters influencing the immunological selection

is necessary.

Penalty threshold One of them surely is the penalty threshold (quantity of energy

taken from the agent that turns out to be similar to a lymphocyte during affinity

testing). It is easy to see that changing this parameter significantly influences the
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Figure 13. Influence of meeting probability on EMAS MSD diversity divMSD(step).
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Figure 14. Influence of meeting probability on EMAS MOI diversity divMOI (step).

number of agents in the system; however a very interesting fact is that the fitness re-

mains almost unchanged (see Fig. 15(a)) for the examined range of parameters. This

observation clearly indicates that introducing such a defined distributed tabu mecha-

nism does not hamper the search capabilities of the system. Of course, the higher the

penalty, the more agents are removed from the system; therefore the relation visible

in (Fig. 15(b)) is predictable.

Observation of the diversity measures (see Fig. 3) shows that changing the penalty

threshold (at the same time changing the immunological selection pressure) does not

hamper the diversity. Moreover, quicker removal of “bad” agents makes the system

more diverse (in the means of MSD metric).

Penalty threshold also has a predictable influence on the number of lymphocytes

in the system (see Fig. 17), closely connected with reducing of the agent population.
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Figure 15. Influence of penalty threshold on fitness and agent count in iEMAS.
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Figure 16. Influence of penalty threshold on diversity in iEMAS.

In such cases when the number of agents is lower, the same total sum of energy is

distributed amongst the individuals of the smaller population; therefore, the average

value of energy per agent is higher and agents die less frequently than when the

population is bigger, generating smaller number of lymphocytes.

Lymphocyte life length Longer lymphocyte life (see Fig. 18) again does not signifi-

cantly worsen the fitness; however, certain influence may be observed as the fitness

becomes a little better in the case of shorter lymphocyte life. At the same time, of

course, agent count is decreased with the rise of lymphocyte life as the lymphocytes

may require more time to remove the individuals from the population.

At the same time, manipulating the life length of the lymphocytes does not

hamper the diversity measures, though a little positive influence may be observed in

the case of MSD diversity, when the lymphocyte life is longer (see Fig. 19).
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Figure 17. Influence of penalty threshold on lymphocyte count.
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Figure 18. Influence of lymphocytes’ life lenght on fitness and agent count.

It is interesting that the length of the lymphocytes’ life does not at all affect the

number of lymphocytes in the system (see Fig. 20). It points out that the immunolog-

ical selection mechanism is stable and the lymphocytes do not tend to overpopulate

the agents; though, the average number counted has a significant diversity because of

fully stochastic nature of the selection mechanism.

Percentage of “good” fitness During the negative selection process, the lymphocytes

are removed when they are still considered immature, though they match a “good”

agent in the population. This is the case when an immature lymphocyte matches

an agent having fitness certainly related to the average fitness in the population (an

appropriate percentage is considered). In Figure 21, the results of changing this

percentage are shown along with the MSD diversity of the population. It is easy to

see that these two graph sets are related. When the population is diverse (mostly
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Figure 19. Influence of lymphocytes’ life length on diversity.
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Figure 20. Influence of lymphocytes’ life length on lymphocyte count.

in the beginning of the computation), the level of “good” fitness is lower than later

when the diversity falls down. So, the lymphocytes tend to be removed more often;

therefore the population of agents is higher.

Other important parameters such as fitness, MOI diversity, and lymphocyte count

are quite similar to the ones obtained earlier, being unchanged in the relation with

the considered parameter.

Affinity measure In order to measure the affinity of the lymphocytes to the examined

agents, Mahalanobis distance was used [19]. Lower value of distance meant that

lymphocyte must match closer agent before penalising it (and vice versa). Therefore,

it is easy to see that increasing the distance slightly hampers the obtained fitness,

and of course, decreases the number of agents in the system (see Fig. 22).

Tuning of agent-based computing 507



 40

 60

 80

 100

 120

 0  500  1000  1500  2000  2500  3000  3500  4000

0.94
0.96
0.98

1.0

(a) agentCount(step)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  500  1000  1500  2000  2500  3000  3500  4000

0.94
0.96
0.98

1.0

(b) divMSD(step)

Figure 21. Influence of “good” fitness percentage on agent count and diversity.
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Figure 22. Influence of similarity threshold on fitness and agent count.

At the same time, observation of the lymphocyte count reveals that, if the dis-

tance is lower, more lymphocytes are created in the system as it is easier to remove

the agent. It is connected, of course, with the similarity measure (this effect has been

already observed before) that removing lymphocytes increases the MSD similarity

measure (see Fig. 23).

3.5. Parameters tuning recapitulation

The performed experiments may surely become a base for researchers who are willing

to apply the EMAS-like computing to their problems. In order to make this easier,

the summary of the parameters’ tuning is presented in Table 2.

Based on the results presented in this table, in order to appropriately parametrise

the computation, one must focus not only on attaining the specified goal (e.g., good

fitness), but also check whether other parameters comply with this goal (e.g., need to
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Figure 23. Influence of similarity threshold on lymphocyte count and MSD diversity.

Table 2

Parameters tuning summary.

Increase of the parameter Fitness Agent count MOI MSD Lymphocyte count

Energy exchange rate ր ց ր —

Initial energy level ր ր — —

Minimal reproduction energy ց ց ց —

Migration probability ր — ր —

Meeting probability ր — ց ց

Penalty level — ց — ր ց

Good fitness percentage — ց — — —

Lymphocyte life length ց ց — ր —

Similarity distance ց ց — ր ց

reduce the fitness function calls that is closely connected with the number of agents

in the population).

4. Conclusion

In the course of this paper, Evolutionary Multi-agent system and its immunological

variant (iEMAS) became a base for extensive testing of selected parameters. After

presenting the concepts of the systems and citing important EMAS-related experi-

mental results, the configuration of the systems was described and the detailed tests

of selected parameters (distributed selection related parameters, immunological se-

lection parameters and probabilistic parameters) were presented. The summary was

given in a tabular form, in order to get an insight into relations between different

parameters of the system. This work may be used as a reference for the practitioner

who would like to apply EMAS meta-heuristic in a particular case.
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