COMPUTER SCIENCE e 15 (3) 2014 http://dx.doi.org/10.7494 /csci.2014.15.3.293

Abstract

Keywords

JAROSEAW RUDY

TURING MACHINE APPROACH
TO RUNTIME SOFTWARE ADAPTATION

In this paper, the problem of applying changes to software at runtime is con-
sidered. The computability theory is used in order to develop a more general
and programming-language-independent model of computation with support
for runtime changes. Various types of runtime changes were defined in terms of
computable functions and Turing machines. The properties of such functions
and machines were used to prove that arbitrary runtime changes on Turing
machines are impossible in general cases. A method of Turing machine decom-
position into subtasks was presented and runtime changes were defined through
transformations of the subtask graph. Requirements for the possible changes
were considered with regard to the possibility of subtask execution during such
changes. Finally, a runtime change model of computation was defined by exten-
sion of the Universal Turing Machine.

runtime changes, dynamic modification, computability theory, Turing
machines

293

http://journals.agh.edu.pl/csci/

294 Jarostaw Rudy

1. Introduction

Models of computation are theoretical concepts that allow us to reason about the
nature and limitations of computation and computability, forming a basis for all
existing physical implementations of computing machines and modern computers.
The theoretical concept of such models has received a great deal of attention since the
1930s. Many different models have been proposed since then, including the untyped
lambda calculus developed by Church [2], u-recursive functions by Kleene [4], and the
Turing machine [8]. In fact, all three models were proven to be equivalent by Rosser
[6]. While the first two models are purely mathematical, the Turing machine is closest
to the description of a real machine, therefore able to directly affect the design of
real-life computers.

The Turing machine inherently models static computation, as the algorithm is
contained in the transition function (the state graph), which does not change. The
Universal Turing Machine (UTM) is a generalization of this machine, described by
Turing in his original paper [8]. The UTM simulates another Turing machine, whose
definition is provided on the tape. Since the tape can change, the UTM has the
potential for dynamic change of algorithms while the answer is computed. No sufficient
theory or models of computation for dynamic computations exist, however.

The need for such a theoretical model is clearly evident from practice, as there
are various reasons for change in software after it has been released. Those changes
can be distinguished into several types based on their cause:

1. Requirement analysis fault — takes place when client is not completely aware of
its own needs or when the communication between the client and the developers
(programmers) is faulty.

2. Implementation fault — meaning that the created software does not meet its
requested specification.

3. Requirement change — any change in functionality that was not planned by the
client, but is necessary (e.g. due to new legal regulations).

4. Environment change — applies mostly to larger computer systems, and usually
means the changes in available resources (number of network nodes, connection
throughput etc).

5. Software optimization — includes a decrease in resources needed by the software
(e.g. time or space complexity).

The above causes are often unpredictable as they employ a human factor and,
thus, cannot be fully eliminated through the use of software engineering. Therefore,
much effort has been made through the years to make applications modifiable and
changeable to suit the various needs of the user. This is often achieved by a system
of updates or plug-ins. This method, however, usually requires that the application
in question is restarted after every update, greatly limiting the benefits and conve-
nience of a dynamic change. Runtime change without shutting down or restarting the
application is more desirable, but it is difficult to achieve.

Turing machine approach to runtime software adaptation 295

Many papers exist concerning the research of Runtime Software Adaptation
(RSA) of computer programs. Here, we will mention them briefly. Mukhija and Glinz
[5] and Wang et al. [12] use the so-called graph of components model, where the so-
ftware components of the system are represented as a graph. Runtime change is done
by changing the components of the graph, which affects the target system. Valetto
and Kaiser [9] use a more complex system in which a set of probes and gauges collects
and processes data from the target system. Then a set of controllers makes adaptation
decisions based on the model of software. In this case, the model can be represented
by a set of rules and constraints that the target system needs to meet. Lastly, a set
of effectors is used to change the target system.

It is important to note that approaches exist that provide Runtime Software
Adaptation by the use of specific programming languages or paradigms. For example,
Villazén and Binder [11] proposed an approach using aspect-oriented programming
dedicated solely for Java. On the other side, Valetto et al. [10] rely on the software
agents paradigm in their solution, once again for Java. Another approach was proposed
by Rudy [7], which is a low-level tool aimed at C++ applications for Linux.

The above examples prove that there is much interest in runtime adaptation.
However, existing approaches are mostly practical ones, and the lack of theoretical
approaches and theorems is apparent. This is natural, considering that practical re-
search often precedes the construction of corresponding theories. For example, in the
field of operation research, many metahueristic algorithms were developed years befo-
re their theoretical properties (like proofs of convergence) were considered. Therefore,
this paper will focus on the possibility to apply the concept of runtime changes on
the level of models of computation, like the Turing machine, thus creating a dynamic
model of computation. This will allow us to identify and study the properties and
limitation of such a model and, by extension, to apply the concept of runtime chan-
ge to any computer system that follows this model, regardless of the programming
language or paradigm used.

The remainder of this paper is organized as follows: Section 2 introduces the
concept of dynamic computable functions and uses them to prove that arbitrary
runtime changes on arbitrary deterministic Turing machines are impossible; Section 3
describes a method of decomposition of Turing machines and computable functions - it
also presents various types of runtime changes for such machines and their limitations;
Section 4 proposes a dynamic model of computation and an algorithm used to perform
the runtime changes; Finally, Section 5 contains the conclusions.

2. Dynamic computable functions

Many different models of computations were proposed, including Turing machines,
A-calculus and p-recursive functions amongst others. Moreover, the three above-
mentioned models have been proven to be equivalent by Rosser [6], and all other
models are either equivalent or weaker than them in terms of computation power (i.e.
the class of problems solvable with them) or not feasible to our current knowledge,

296 Jarostaw Rudy

like Turing machine with oracle. By R we denote the set of all problems that can be
solved by the mentioned models, meaning that for every r € R there exists a Turing
machine, A-function and p-recursive function that solves r. Elements from R can be
treated as functions in the form of f : N — N. Thus, we define a set of computable
functions (in terms of the given model) denoted as CF.

It is currently not known whether all functions “intuitively treated as effectively?
calculable” are computable by the Turing machine. The Church-Turing thesis states
that it is so, which is supported by the equivalence of mentioned models; but since the
thesis itself uses vague concept of “effective calculability” it cannot be mathematically
proven. Fortunately, our aim is to model computations done by real-life computers,
therefore the restriction to Turing-computable functions is adequate.

We will now use the concept of computable functions to model causes for software
runtime changes described in the previous chapter. Each piece of software is created to
fulfill some sort of client requirements, which in turn generates revenue for the software
company (i.e. developers), and those requirements can be treated as function f that
assigns expected system output y of the system for every input x:

[X»X, flx)=y (1)

By X, we mean all possible states of the environment of the software (i.e. me-
mory). Let us also note that f is a partial function in general. Assuming the binary
nature of the computers, we can treat each memory cell as a single binary digit and
the entire memory as a single natural number i.e. X = N. Therefore, the client’s
requirements are a computable function. Let us consider the following computable
functions:

e r(x) — requirements intended (needed) by the client,
e ¢(x) — requirements communicated from the client to the developers,
e r'(z) — new (changed) requirements,
e pa(x) — requirements p carried out by Turing machine A.
Then, the runtime change causes from before can be formally defined as follows:

Cause 1: 7(z) # c(z) (2a
Cause 2: pa(x) # c(x) Vpa(z) # r(x) (2b
Cause 3: 7' (x) # r(x) (2¢
Causes 4 and 5: comp(pp(x)) € O(comp(pa(z))) (2d

NEZENA N NG

The cases 2a through 2c are self-explanatory; however, case 2d requires further
elaboration. In general, the last case means that the complexity of the algorithm
(Turing machine) B is at most the complexity of the algorithm A for some com-
putable function p. Therefore, asymptotically B is never worse than A in terms of
some complexity measure. Typical measures include time and space complexity. The

Leffectively, but not necessarily efficiently

Turing machine approach to runtime software adaptation 297

proposed form of the case 2d is true yet impractical, as it is still possible for A and
B to have the same complexity, at which point replacing A with B is baseless. In
practice, we want to perform the change when comp(B) < comp(A) for every x or
when comp(B) € o (comp(A)).

Before we will look closer at the changes of computable functions, let us formalize
the one-tape deterministic Turing machine as our basic model of computation. The
deterministic Turing machine (DTM) is defined (after Hopcroft and Ullman [3]) as
T-tuple M =< Q, I,b, X, 6, qo, F' > as follows:

e () — finite, non-empty set of internal states,

e ' C @ — finite, non-empty set of final states,

® gy € Q — initial state,

e [" — finite, non-empty set of tape symbols (tape alphabet),
e b € I' — blank symbol,

e Y C I' — input alphabet,

e :Q\FxI —QxFx{L,R} — the transition function.

The distinction is made between the alphabet used for input (X) and the alphabet
used for both calculations and output (I"). At the beginning, the blank symbol b
occupies all spaces on the infinite tape (in both directions), except for the spaces
containing the input. Moreover, the blank symbol is the only one that is allowed to
infinitely occupy many spaces. ¢ is a partial function that, for any non-final internal
state and any tape symbol, produces the symbol to write to the tape, the next internal
state to transit into, and L or R indicating whether we should move the head of the
machine (or the tape) by one space to the left or right. When the machine enters
one of the final states, it halts. For simplicity, we can assume that X' = I' and that
only one final state exists, called HALT. Moreover, since Turing machines compute
computable functions, it means that the natural numbers can be expressed as words
from the alphabet I

2.1. Arbitrary changes

In general, we want to be able to perform arbitrary runtime changes. Let us assume
that the client’s requirements are in the form of some arbitrary computable function
f(x). Let My be a DTM created by developers such that M computes f(x), but
is otherwise arbitrary. Then, user requirements change to the form represented by
computable function g(z), such that g(x) # f(z). In other words, we want to replace
My with arbitrary Mg, while M; may not have halted yet. We assume that the only
thing known to M, is the state of the tape left by M, when it is replaced. Let us
define a partial output of a DTM.

Definition 1. Let M be a deterministic Turing machine. Partial output of M is
a function zp(x,n) : N X N - N that yields the state of the tape (a non-negative
integer) after n steps of M for input x.

298 Jarostaw Rudy

Partial output is a function of two natural numbers; but since we can uniquely
encode two natural numbers into a single one by the use of the pairing functions,
we can therefore treat zps(z,n) as N -» N whenever needed. Next, let us consider
the properties of the partial output function. In particular, such a function should be
a one-to-one function (an injection) as to prevent ambiguity; otherwise, we wouldn’t
be able to determine the original value of x based on the known values of n and zy;.
For zps(z,n) to be one-to-one function, the equation zp(x1,n1) # zpr (22, n2) must
hold for every z1,x2 # x1 and ni,ng # ni.

The above function relates to the problem of reversibility of computation. Ben-
nett [1] showed that, for specific Turing machines, such a reversibility is possible, as
a Turing machine can keep intermediate results of every operation, giving the possibi-
lity to backtrack. This, however, is not a general solution, and it is quite expensive in
terms of both time and space complexity (requiring additional steps and tape space to
store results and backtrack). In our case, we want to avoid such complexity; thus, we
will focus on the properties of the partial output function zps(z,n) for more general
deterministic Turing machines.

Let us consider deterministic Turing machine M such that I' = ¥ = {1,0}.
Moreover, let M work as follows: given a sequence of 1s M travels along the tape
until either the number of scanned 1s exceeds 10 or 0 is found, whichever comes first.
If the number of 1s exceeds 10, M travels back along the tape replacing all 1s with
0s. If 0 is found first, M clears the tape as well and then prints a single 1. M outputs
1 when 2 < 10 and 0 otherwise. Such DTM computes function f:

1 ifz <10,
f(z)_{ 0 ifx>10.

Let us consider f(8). At the beginning, the number of 1s on the tape equals 8. M
clears the tape at some point; thus, the tape contains zero 1s. Since M can clear
only one 1 per step, it follows that after some number of steps n; the number of 1s
on tape must equal 4, so zp(8,n1) = 4. The same goes for f(12): after the ny steps,
the number of 1s will equal 4, so zp7(12,n2) = 4. Therefore, zp/(8,1n1) = zp (12, n2).
Moreover, scanning the number of 1s will take more steps for o = 12 than for z; = §,
so n1 # mno. This shows that the partial output function is not a one-to-one function
in general.

As previously stated, we want to compute some arbitrary g(x) while the current
state of the tape is given by zps(x,n), with and n assumed unknown to the new
Turing machine M,. Therefore, we need a computable function h that for every x
computes g based on the partial output of My, formally:

h(za, (2,n)) = g(). 3)

Let us now prove that h is not computable in general (i.e. for arbitrary My and g),
using the DTM shown earlier.

Turing machine approach to runtime software adaptation 299

Theorem 1. Let M be the DTM shown above and let g(x) be any computable function
such that g(8) # g(12). Then function h(zpy(x,n)) = g(x) is not computable.

Dowdd. Suppose that h(zp(z,n)) = g(x) is computable for the chosen g and M. We
have already shown that, for this particular DTM, zps(8,n1) = 2zp(12,n2) for some
n1,n2 # ny. Subsequently, from h(zp(x,n)) = g(x), it follows that:

h(zn(8,m1)) = g(8),
h(zar(12,n2)) = g(12).

However, we have z5;(8,n1) = zp7(12, n2); therefore:

h(zm(12,m2)) = g(8),
h(za(12,n9)) = g(12).

In consequence, ¢g(8) = ¢(12), but we assumed g(8) # ¢(12). Contradiction: either
h(zy(z,m)) # g(x) or h has two values for zps (12, n2), meaning that A is not a function
(and therefore, not computable). O

Theorem 1 states that an arbitrary change is not possible in general terms. Unfor-
tunately, f(z) and g(x) are decided by the client, thus their arbitrarity is essential. We
can, however, make some additional assumptions about My and My, as long as both
DTMs compute f(x) and g(x) respectively. In particular, we can assume that M, will
be equipped with additional information concerning M. These may include: a) the
original input xz; b) the number of steps n carried before replacement; ¢) the internal
state of My prior to replacement; and d) the position of the head of the machine (the
currently-scanned space on the tape) prior to replacement.

The least expensive option is to let n, last internal state g., or last head position
he be known to the M. However, we will prove that this is not enough with arbitrary
f and g. Let us start with the case when n is made available to the M. If this still
makes the partial output ambiguous, then some inputs x; and x5 can lead to the
same partial output in the same number of steps n. Formally, zps(21,n) = zp (22, n).
Let us construct a DTM that has this property.

Let M compute f(z) =z + 10 and work as follows (I" = X' = {1,0}): given z 1s
on the tape M moves along the tape until 0 is found. Since we begin at the first space
of the tape and the first 0 is on x + 1 space, reaching it takes exactly t+1—1 ==z
shifts (steps). Then M prints ten 1s in 10 steps.

Let z1 = 8. After 10 steps, M finds the first 0 in 8 steps and manages to print 2
1s, so zpr(8,10) = 10. Now, let zo = 6. After 10 steps, M finds the 0 in 6 steps and
prints 4 1s. Thus, z37(6,10) = 10. In consequence:

ZM(& 10) = 23]\/[(67 10).

We will now use this property to show that h is not computable in general, even
when the number of steps at the moment of change is known.

300 Jarostaw Rudy

Theorem 2. Let M be the DTM shown above and let zpn(v) = zp(x,n). Let g(x)
be any computable function such that g(8) # g(6). Then function h(zan(z)) = g(x)
is not computable.

Dowdd. For the chosen M we already showed that z3;(8,10) = 2z5/(6, 10). Therefore,
Zm,10(8) = 2zam,10(6). In result h(zar10(8)) = h(2za,10(6)), so g(8) = ¢(6). But, we
assumed ¢(8) # ¢g(6). Contradiction. O

Lastly, let us assume that M, also knows g. and h. as well as the number of steps
n. For this end, we define partial state and partial head position functions of a Turing
machine, just as we defined the partial output:

Definition 2. Let M be a deterministic Turing machine. Partial state of M is a func-
tion qpr(x,n) : N x N —» N that yields the internal state of M after n steps on input
x.

Definition 3. Let M be a deterministic Turing machine. Partial head position of M
is a function sp(z,n) : N x N - N that yields the number of spaces the head of M s
away from its starting position after n steps on input x.

We will now show that some DTMs will stop after a fixed number of steps, with
exactly the same internal state and head position for two different inputs. Formally,
we need to find a deterministic Turing machine, inputs x1,x2 # x; and number of
steps n such that:

ZM(xhn) = ZM(9327TL)7
qu(z1,n) = qu(x2,n),

sp(z1,n) = sp(xe,n).

Let us note that we are not merely trying to prove that z,s, qas and sy; are not one-
to-one functions. That could mean that z,; is ambiguous only for one pair of inputs
while qjs is ambiguous for some other pair of inputs. What we want to show is that
all three functions can be ambiguous for the same pair of input x1, zo # 1 for some
deterministic Turing machine M. We assume that the new DTM knows the number
of steps, so n; = no = n. We will now construct such a machine.

Let « = (i, j) be two unary numbers separated by single 0 e.g.:
z=11111011 = (5,2).

Let M compute f({a,b)) = a+ b and let M work as follows: when M reaches the 0
separating both numbers, it will replace it with 1. Thus, two numbers are now merged
into one. However, the inserted 1 makes it that the resulting number is greater than
the intended sum. To counter this, M replaces the last 1 in the entire number with 0.
Let us assume M has four states Q = {S, A, B, HALT}, go = S. When the separating
symbol 0 is reached, M replaces it with 1 and goes into state A. Then, when the

Turing machine approach to runtime software adaptation 301

first 0 beyond the merged number is reached, M moves back one space (to the last
1) and goes into state B. Then, M replaces the 1 with 0 and goes into the final state
- halting.

Let = (5,2). Thus, M will reach the separating 0 in 5 steps and then replace
it with 1 on step 6 and go into state A and the head will move to the right (6 spaces
from the start). Therefore:

2m((5,2),6) = 11111111 = 7,
M(<5’2>) = A
m((5,2),6) =

Now let = (4,3). The 0 will be reached in 4 steps, and after step 5, M will replace
it with 1, go into state A, and move into the next space. In step 6, M will move one
space to the right (6 spaces from the start) and will remain in state A (since the end
of the second number was not yet reached). Therefore:

a((4,3),6) = 11111111 = 7,

m((4,3),6) = A,

In result:

ZM(<572>76) ZM(<4 3>’6)
QM(<5’2>76) (<47 3>76)
5M(<572>76) (<473>)

and (5,2) # (4,3) since 11111011 % 11110111,

With the above DTM, we can now prove that the arbitrary changes are impossible
even if the Turing machine is supplied with the values of zps, qas, sy and n. This is
done in a manner similar to Theorem 2.

Theorem 3. Let M be the DTM shown above and g(z) be any computable function

such that g((5,2)) # g((4,3)). Then function h(zar(z,), qar(z,m), s31(z,m)) = g(z)
is not computable.

Dowdd. We already showed that for this particular DTM M:
ZM(<5’ 2>7 6) = ZM(<47 3>a 6)»

>’6) = QM(<473>76)7
>’6) = 3M(<4’3>a6)

Q
S
—~
o~
ot
N N

Therefore:

h(ZM(<57 2>’ 6)7‘]M(<5a 2>76)a 5M(<57 2>v 6)) =
= h(ZM(<47 3>a 6)7QM(<473>7 G)a 5M(<47 3>76))

302 Jarostaw Rudy

From this and h(zy(x,n),qa(z,n), sp(z,n)) = g(x) it follows that g((5,2)) =
g((4,3)). But we assumed g((5,2)) # g({(4,3)). Contradiction. O

This shows that h is still not computable, even though it is now supplied with
three arguments and n is fixed. At this point, there are still two more ways, to ensure
that runtime changes are possible for arbitrary f(z) and g(z): 1) keep the original z
on the tape; 2) impose restrictions on the structure of M.

The first option discards the partial output z,;. As long as the original x is still
present on the tape, we can merely clear the rest of the tape and then simply compute
g(z), since z is given. Unfortunately, this approach still has some disadvantages:

1) we will most likely need to make a copy of x (this can be done in time O(|z]),
but will use at least O(]z|) more space);

2) we need a method to clear the tape;

3) since g(z) starts the computation from scratch, it may actually need more time

than f(z).

The last remark is not an issue when f(z) # g(x) (i.e. slowly computed value
g(z) is still better than erroneous f(z)).

The second option assumes that there are many different M that compute f(z),
and we will restrict ourselves to those M that are favorable in the terms of runtime
changes. It is also important for such Turing machines to be obtained in a semi-
automatic manner. For example, the original DTM (program) is described by the
developers and then it is transformed (by the compiler) into an equivalent version
that is suitable for runtime changes.

3. Algorithm decomposition and change requirements

The first option (keeping the original input on the tape) is relatively straightforward,
so let us consider the second one. Assume M is a DTM such that M computes f(z).
By definition, M starts computation in state gy and the tape has the value of . Up
to this point, we have also silently assumed that at the beginning the head of the
machine is at the first space of x, denoted s1. In other words, the starting conditions
of M are as follows:

x = zp(x,0)
q0 = qum(z,0)
s1 = sap(x,0)

Let us assume that M has carried out n steps. The remainder of the steps of M
are equivalent to some other DTM, denoted by M’, that has the same definition as
M except the initial state and the starting conditions:

' = zp(x,n)
!
do = dMm (l’, TL)

sy =su(x,n)

Turing machine approach to runtime software adaptation 303

Therefore, for a given x, M can be decomposed into a set of N different DTMs
dM, = {My,Ms,... My} with starting conditions of M}, depending on the final
conditions of M_4 for k > 0. Let us also note that dM, can be different for various z;
moreover, a general dM (for each) may not be known, since determining the required
numbers of steps for a DTM to halt requires determining whether a given DTM halts
or not (the halting problem), which has been proven to be undecidable. Therefore,
we will propose a decomposition method for Turing machines that is beneficial for
runtime changes in this chapter, and we will briefly describe possible types of changes
and their requirements.

Let us start by stating that every deterministic Turing machine M can be thought
of as a set of Turing machines (subDTMs), i.e. M = {Ma, Mp,...}. SubDTM M4
contains a set Q4 of states from the original machine, i.e. Q4 C Q. Moreover,
Qs UQpU--- = Q. In the most basic case (when no decomposition is available), we
have My =M and Q4 = Q.

Our decomposition method is based on dividing the original Turing machine
(computable function) into a set of subDTMs (called subtasks) in such a way that
the state of the tape between every two subDTMs is in some kind of expected format.
For example, let us consider a quick sort procedure which roughly work as follows:
a) choose a guardian element; b) move elements lower than the guardian before it;
¢) move elements greater than the guardian after it; d) sort elements before the
guardian; and e) sort elements after the guardian. These steps clearly describe 5
subDTMs (however, further decomposition might be possible), since we can reason
about the state of the sorted array after each step. For example, after step d), the
elements up to the guardian element are always sorted. If we tried to divide d) into
two subDTMs, however, we wouldn’t be able to predict what the sorted array looks
like in the middle of step d), unless some further assumption were made.

If the above method is applied, we obtain a graph of subtasks (which correspond
to subDTMs or computable functions and relations between them) capable of per-
forming the original task, as the expected formats between subtasks are known. The
expected format before and after a subtask can be called a protocol of this subtask,
and is similar to the concept of provided and required interfaces known from the ob-
jective programming paradigm. The only thing that is missing is a set of subDTMs
that will reposition the head of the machine so the next subtask will start processing
exactly where its needs to. These subDTMs will be called repositions. A reposition
is not allowed to modify the contents of the tape (it has to write on the tape the
same symbol it read from it). In this case, the subtasks and repositions roughly cor-
respond to the functions and function calls in programming languages like C/C++.
Some examples of such decompositions are shown in Figure 1. From this figure, we
can also conclude that a single subtask can be “called” in more than one context
(using different repositions) and than one subtask can be “implemented” by many
subDTMs.

The above decomposition is similar to the graphs of components mentioned in
the introduction, but more general. A single subtask can correspond to a function

304 Jarostaw Rudy

(or method), software component, the entire program (or a single thread). Loops,
conditional statements, and code blocks can be defined as subtasks. In some cases,
even single statements can work as a single subtask. This is a much more powerful
concept than graphs of components, as it offers a higher degree of control and is inde-
pendent from the programming languages or paradigms used. Moreover, one subtask
can be composed of several smaller components (called its children), which further
enhances the flexibility of this method. An important thing to note is that the cho-
ice of decomposition is left to the programmer or to some automatic tools, therefore
allowing different decompositions for the same DTM and remaining flexible.

OO

(a) f(z) = g(h(x))

Figure 1. Examples of decompositions for Turing machines. H and G are subtasks. R; to
Rs are repositions. My to My are subDTMs.

As stated before, every deterministic Turing machine can be decomposed with
this method. In the worst-case scenario, we will obtain a single subtask with no
repositions. With a graph of subtasks present, we can now define the runtime change
in terms of changes done to the graph of subtasks. A subtask to be changed can be
simply replaced with other subtasks, as long as some requirements are met. We will
now briefly consider these requirements for several possible types of runtime change.

A basic type of change is an inner change of subtask, i.e. subtask realizes the same
computable functions as before but in a different way (with different algorithm). That
means that the protocol of the subtask remains unchanged and does not affect any
other subtask. However, the subtask can change its starting or ending tape position,
possibly forcing changes in all repositions connected to this subtask. In result, the
changes cannot take effect as long as the affected subtask or any of the affected
repositions are executing. Note that, parent-children subtasks aside, only one subtask
or reposition can execute at a time.

Another type of change is when a subtask changes the computable function it
realizes, therefore changing either its expected input format, its expected output for-
mat, or both. This forces changes in all subtasks (and their repositions) which are
connected to the given subtasks, so the input and output formats of the connected
subtasks match. This defines a range or set of subtasks that cannot execute for the
change to occur. Examples of such ranges are shown in Figure 2. We can also consider

Turing machine approach to runtime software adaptation 305

subtask removal or addition, but those cases are similar to the change of the input
protocol of a subtask and impose the same requirements. Other types of runtime
changes may be possible as well.

Output protocol change
A

R

Input pI]otocol change
| BN | |
-~ | S |
o { re(Srer(Drer()
a ® ® ®) ®
I | l

| No protocol change

Figure 2. Range of subtasks that cannot execute for the subtask ¢ to change safely.

Finally, let us note that the above-mentioned requirements only define which
parts of the system cannot execute for the change to occur safely. In particular, we
assume that the proposed changes are logical, e.g each pair of connected subtasks
has its output and input protocols matched. The task of supplying a valid change
schedule is left to the developer and automation tools (i.e. compilers).

4. Runtime adaptation model

In this section, we will propose a new model of computation with the ability to apply
runtime changes by extending the existing model of Universal Turing Machine. We
will start by describing our version of the UTM, and then we will extend it to create
a dynamic version and facilitate runtime changes.

Our basic UTM has three bidirectional, infinite tapes. All tapes have independent
tape heads, and only one tape head can shift per step (a less-restricted model is
possible where at least one head tape shifts every step). The first tape is used for
processing, i.e. it contains input in the beginning and output in the end. We limit
ourselves to a binary alphabet of 1s and 0s. This limitation does not reduce the
number of problems solvable by our UTM, as every problem can be encoded using
binary representation — the size of the alphabet can be reduced as long as the number
of states of the machine is increased in response.

Since UTMs work by simulating other DTMs, we need a description of a DTM
to simulate. This is precisely what the second tape is used for. We use an alphabet
of 9 symbols: D, B, A, R, L, 0, 1, H, and blank symbol b to store information abo-
ut the simulated Turing machine, i.e. its states and transition function. Exemplary
description of a state may look as shown in Figure 3.

Symbol D starts the state description and is followed by a number of As, which
define the state number. In the above example, we have four As (AAAA), therefore
this is state number 4. Similarly, DA is state 1 and D is state 0. Next, we have

306 Jarostaw Rudy

State number 1 section

1
DAAAAROBAAL1BAAAAA
(I

0 section

Figure 3. Exemplary state description for Universal Turing Machine.

two sections describing actions to be taken when 0 or 1 are scanned on the current
space of the processing tape. In our example, we have ROBAA when 0 is scanned and
L1BAAAAA when 1 is scanned. 0 and 1 indicate what symbol to write in the current
space (on the processing tape), R and L indicate whether to shift to the right or left
(on the processing tape) and the last element (BAA and BAAAAA) indicate what
state to go to next (in this case, BAA means state 2 and BAAAAA means state 5).
This, however, describes a non-final state. An example of a final state looks like this:
DAAH. This would be state 2, which is at the same time a final state. The entire
DTM program is simply a string of all its states. For example, a 3-state DTM that
searches the input for the second 1 and then halts would have a program as follows:

DROBR1BADAROBARIBAADAAH.

The UTM simulates the target Turing machine as follows: the head on the pro-
gram tape starts at the beginning of the first state description and shifts to position
itself after the state number (after the “DAA” sequence). Then, the symbol on the
processing tape is scanned and the program head may shift again to reach the first
symbol of the corresponding section (for 0 or 1). Then, the information in the cor-
rect section is used to write the desired symbol on the processing tape and shift the
processing head left or right. Now, all that is left is to reach the next state.

For this purpose, the third tape (the target state tape) is used. After the symbol
on the processing tape was written and the tape was shifted, the number of the
next state (for example “AAA”) is copied into the target state tape. After that, the
program head is shifted to the right until the next state candidate is found (indicated
by reaching symbol D). Then, the target state tape is used to check whether the
candidate state is the desired one. The check is performed simply by moving the head
of the target state tape to the beginning and then checking step-by-step whether the
number of As in the candidate state and on the target state tape matches. If not,
we shift right once more in search for another candidate state. When the end of the
program is reached, then we perform the search in the opposite direction until the
desired target state is found. Finally, when the state is found, the program head is
positioned once again after the state number (the “DAA” sequence) and the cycle
repeats itself. If a halting state is entered (indicated by H symbol after the “DAA”
sequence), then the machine halts.

The described UTM can simulate any DTM with a binary alphabet and works
much slower then the DTM it simulates, as in each cycle a part (possibly considerable)
of the program must be traversed. The original UTM researched by Turing meant the
smallest possible UTM (i.e. the smallest alphabet size or number of states), but our

Turing machine approach to runtime software adaptation 307

aim was not to discover the best UTM out there — at the moment, we prefer less
efficient yet more clear examples.

Now we will define our runtime adaptation model of computation by extending
the above-mentioned UTM to create a Dynamic Universal Turing Machine (DUTM).
Let us start with the source of the changes. To this end, we add another (fourth)
tape which will be called the change tape. When no changes are requested, this tape
remains empty. When the requests appear, then two pieces of information will appear
on this tape: 1) the list of subtasks that cannot execute for the change to occur; and
2) the new program for our DUTM. The first part follows the previous convention: if
the subtasks 2 and 5 cannot execute at the moment of change, then this part will take
the following form: CAACAAAAA. The symbol C is therefore added to the alphabet
to indicate subtasks (where D and B indicate states and target states). If another
request is made, then it is added after the first one.

In order to apply changes, our DUTM needs to check for new content on the
change tape. It is logical to do so only when the currently-executed subtask changes.
Therefore, we modify the format of the program. States that are not starting states
for subtasks remain as before. States that start a new subtask will receive another
part which describes which subtask has just begun. If we used the exemplary state
from before and define that this state starts subtask 3, then the state description will
look as follows:

DAAAACAAAROBAALIBAAAAA.

With this information, we can modify how our DUTM works. In each cycle, we
were positioning the program head on the 0 or 1 section. If during this process symbol
C is scanned, then this indicates that a new subtask was reached. Therefore, we use
another (fifth) tape to copy the current subtask number (“AAA” for subtask 3). Let
us call this tape the subtask tape. After this, we check the change tape for changes.
If no changes are present, we carry on as before (write symbol, shift processing tape,
go into the next state). If changes are present, we check whether the current subtask
is in the list of “forbidden subtasks”. If we find that our subtask is in the list (the
number of As in our subtask and in the current one from the list is equal), then
the changes cannot be applied now and we carry on as before. If we reach symbol D
instead (meaning we went past the list of “forbidden” subtasks), then the change can
be applied safely.

The process of applying changes is as follows: the number of the current state is
stored on the target state tape. Then, the program tape is cleared (i.e. we shift to
the end of the tape and erase all symbols until we reach the beginning). After this,
the new program from the change tape is copied into the program tape. Finally, we
need to move to the state we stored on the target state tape. For this purpose, we
use the next state-searching procedure from before. When this step is completed, we
reach a new cycle (program head above the 0 section), and the program tape has the
desired new contents.

Formally, we defined a 5-tape deterministic Turing machine with an alphabet
of 10 symbols I' = {A,B,C,D, R, L,0,1, H,b}. The set of states and the transition

308 Jarostaw Rudy

function is too complex to present here, so we will limit ourselves to the flowchart of
the DUTM, which is shown in Figure 4.

Shift to the
0 section for
this state

Copy the current
state to the target
state tape

Current
subtask on the
forbidden list?

requests

Remove the
old program

Copy the new
program from
the change tape

Search for a
state candidate

Shift to the
1 section for
this state

Write symbol
to the processing
tape

Copy the
target state to
the target state
tape

Shift the
processing tape

Figure 4. Flowchart for the Dynamic Universal Turing Machine.

Let us note that the above-mentioned model assumes that all changes are cor-
rect, i.e. the supplied new program is valid and has passed all necessary checks from
the developers and the development tools (compilers). Our model is only aimed at
applying the specified runtime changes safely and allowing possibly arbitrary changes.
The list of the “forbidden” subtasks should be valid as well, and its creation is left
once more for the developers or the automation tools.

5. Conclusions and future work

In this paper, the authors presented research on the possibility of applying the concept
of models of computation to the problem of runtime software changes. The possible
types of runtime changes were represented by changes to computable functions and
Turing machines. This allowed for applying this to every software system that con-
forms to the Turing machine model. In result, this concept could be used with a wide
range of programming languages and paradigms that are based on Turing machines
and equivalent models of computations.

This paper also presents a method of decomposition for Turing machines into
graphs of subtasks and defining runtime changes through certain transformations of

Turing machine approach to runtime software adaptation 309

those graph. Different transformations were considered, and certain prerequisites of
runtime changes (namely, subtasks execution conditions during given change) were
studied and described as well.

Finally, a new model of computation, the Dynamic Universal Turing Machine,
was proposed as an extension to the Universal Turing Machine model known from the
literature. This model is capable of recognizing the changes requested by an external
source (i.e. developers) and apply them as soon as possible without the need to
shutdown or restart the machine. This model is an extension of the classic UTM
model, therefore it is capable of solving every problem that is solvable using the
original UTM model (even though the alphabet of the simulated Turing machine was
limited to two symbols for convenience).

The study of the theoretical and practical properties of the proposed model,
especially in comparison with the basic Turing machine, still remains an open problem.
The same applies for the possibility of performing runtime changes in similar models
of computations like RAM or RASP.

References

[1] Bennett C.H.: Logical Reversibility of Computation. IBM J. Res. Deuv.,
vol. 17(6), pp. 525-532, 1973. ISSN 0018-8646.
http://dx.doi.org/10.1147/rd.176.0525.

[2] Church A.: An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, vol. 58(2), pp. 345-363, 1936. ISSN 00029327.
http://dx.doi.org/10.2307/2371045.

[3] Hopcroft J., J.D. Ullman: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Cambridge, 1979.

[4] Kleene S. C.: Introduction to Metamathematics. North Holland, 1952.

[5] Mukhija A., Glinz M.: Runtime Adaptation of Applications Through Dynamic
Recomposition of Components. In: Proceedings of the 18th International Con-
ference on Architecture of Computing Systems Conference on Systems Aspects
in Organic and Pervasive Computing, ARCS’05, pp. 124-138. Springer-Verlag,
Berlin, Heidelberg, 2005. ISBN 3-540-25273-8, 978-3-540-25273-3.
http://dx.doi.org/10.1007/978-3-540-31967-2_9.

[6] Rosser B.: An Informal Exposition of Proofs of Gédel’s Theorems and Church’s
Theorem. The Journal of Symbolic Logic, vol. 4(2), 1939. ISSN 00224812.
http://dx.doi.org/10.2307/2269059.

[7] Rudy J.: Runtime software adaptation: approaches and a programming tool. Jo-
urnal of Theoretical and Applied Computer Science, vol. 6(1), pp. 75-89, 2012.
ISSN 2299-2634.

[8] Turing A.: On Computable Numbers with an Application to the Entscheidungs
Problem. In: Proc. London Mathematical Society, vol. 2(42), pp. 230-265, 1936.

310 Jarostaw Rudy

[9] Valetto G., Kaiser G.: A Case Study in Software Adaptation. In: Proceedings of
the First Workshop on Self-healing Systems, WOSS 02, pp. 73-78. ACM, New
York, NY, USA, 2002. ISBN 1-58113-609-9.
http://dx.doi.org/10.1145/582128.582142.

[10] Valetto G., Kaiser G.E., K¢ G.S.: A Mobile Agent Approach to Process-Based
Dynamic Adaptation of Complex Software Systems. In: Proceedings of the 8th
European Workshop on Software Process Technology, EWSPT 01, pp. 102-116.
Springer-Verlag, London, UK, UK, 2001. ISBN 3-540-42264-1.

[11] Villazén A., Binder W., Ansaloni D., Moret P.: Advanced Runtime Adaptation
for Java. SIGPLAN Not., vol. 45(2), pp. 85-94, 2009. ISSN 0362-1340.
http://dx.doi.org/10.1145/1837852.1621621.

[12] Wang Q., Huang G., Shen J., Mei H., Yang F.: Runtime Software Architecture
Based Software Online Evolution. In: Proceedings of the 27th Annual Interna-
tional Conference on Computer Software and Applications, COMPSAC ’03, pp.
230-. IEEE Computer Society, Washington, DC, USA, 2003. ISBN 0-7695-2020-0.

Affiliations

Jarostaw Rudy
Institute of Computer Engineering, Control and Robotics, Wroctaw University of Technology,
Janiszewskiego 11-17, 50-372 Wroclaw, Poland, jaroslaw.rudy@pwr.wroc.pl

Received: 31.01.2014
Revised: 31.03.2014
Accepted: 01.04.2014

