
Rafał Leszko
Kamil Piętak

VERIFICATION MECHANISM
FOR LIGHTWEIGHT COMPONENT-BASED
ENVIRONMENT BASED ON IOC CONTAINER

Abstract This paper presents a concept of component verification framework dedicated
to a particular lightweight component environment. The starting point of the
paper constitutes a discussion about the significance of verification of syntax in-
consistencies in software development. Next, the need of verification in service-
oriented and component-based systems is presented, and various approaches of
verification in existing component environments are explained. The main part
of the paper introduces a concept of functional integrity of component-based
systems that utilize verification mechanisms which check consistency betwe-
en components. The proposed solution is built on a fine-grained component
environment (close to classes similarly to the Spring Framework) realized in
the AgE platform. Selected technical aspects of framework design illustrate the
considerations of the paper.

Keywords verification, component-based systems, functional integrity

19 marca 2014 str. 1/12

Computer Science • 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.577

577

http://journals.agh.edu.pl/csci/

1. Introduction

In today’s software engineering, applications are hardly ever written from scratch.
Instead, they reuse code which already exists in the form of libraries, modules, com-
ponents, services, or any other external system elements. External code can be provi-
ded by different vendors and in different versions. Such a variety of system elements
creates a situation where they may be incoherent with each other. This incoherence
concerns two aspects: the syntax or the semantics. The semantic consistency is related
to the Liskov substitution principle [9] and can be verified with the use of unit tests
or learning tests for third-party elements [10]. The syntax is often more difficult to
verify, especially in dynamically composed systems in which the late binding [3] me-
chanism is used. The verification methods for syntax inconsistencies are the subject
of this paper.

Verification is the process of checking dependencies of system elements before
running the system. According to the level of abstraction and the system architecture
[6], a system element can be a function, a module, an object, a component, a servi-
ce, or any other unit of the system. A function invokes other functions, an object
communicates with other objects, and a service uses other services. System elements
depend on each other. If any dependent element does not exist, the system fails at
runtime. In most modern programming languages, an exception is thrown in such ca-
ses; e.g., ClassNotFoundException or MethodNotFoundException in Java, NameError
or AttributeError in Python.

The main problem with runtime failures is that one can never know whether
they will occur or not. The failure may appear at any time or only under certain
conditions, which makes debugging process extremely difficult and time-consuming.
The verification process lines with the „Fail-fast“ approach [13] which states that
systems should be designed to immediately report any inconsistencies.

Verification can be partially provided by programming languages. In most compi-
led languages (like C++, Java, C#), the compilation process itself can be considered
as the verification of functions and objects, because the compilation fails with error
in case of any problems with dependencies. Nevertheless, it is neither recommended
nor desirable to compile all of the code before each system execution. A much better
solution is to use components and third-party libraries which are already compiled
and, thus, avoid the situation of waiting for the compilation process after each change
in the source code.

High-level system elements can be verified by frameworks. This paper discusses
the need of verification in Service-Oriented and Component-Based systems and intro-
duces an implementation of the verification system designed for the AgE component
platform.

19 marca 2014 str. 2/12

578 Rafał Leszko, Kamil Piętak

2. Verification in service-oriented systems

Service [4] is a software element which provides a reusable functionality through a well-
defined interface. It conceals implementation details insignificant to a client, and expo-
ses an interface independent from the platform and programming language. Due to
this independence requirement, such a service interface should be defined in an abs-
tract manner, and the service itself should be treated as a black box which receives the
input values and returns the output. Therefore, the service interface can be defined
in an independent language; for example, as an XML file (WSDL1) [4] in the case of
Web Services.

A service can use the functionality provided by another service, known as service
dependency. A service is always dependent on some other service’s interface, never
the implementation. System architecture that is based on many coupled services is
called SOA (Service-Oriented Architecture).

SOA is based on the paradigm find-bind-execute [1], which is presented in Figure
1. The service provider registers its service in a public registry (e.g., UDDI2). Then,
a client uses the same registry to find a service, obtain its address, and discover its
interface description.

Figure 1. Find-bind-execute paradigm.

Service dependency is always known at runtime, never earlier. In most cases,
a service dependency is nothing more than criteria by which dependency can by found
with the use of the find-bind-execute registry. This means that service dependencies
are found and bound during execution time, and the availability of other services as
well as the registry state may change in time. That is why service-oriented systems
cannot be verified a priori.

1WSDL (Web Services Description Language) – an XML-based language that is used for descri-
bing the functionality offered by a Web service.

2UDDI (Universal Description Discovery and Integration) – XML-based registry, by which bu-
sinesses worldwide can list themselves on the Internet.

19 marca 2014 str. 3/12

Verification mechanism for lightweight component-based environment (...) 579

3. Verification in component-based systems

A component, according to the classical definition [14], is a reusable entity of com-
position which has a well-defined interface and context of use. It has no visible state
and can be used by third parties.

The definition itself seems similar to the service definition. However, Service-
Oriented Architecture (SOA) and Component-Based Architecture (CBA) form diffe-
rent systems. This difference can be observed in the granularity of system elements,
the Business-Oriented approach and the programming abstraction level. Neverthe-
less, the real difference lies not so much in the system itself but in the approach to
its creation.

Working with components means working with code and interfaces created for
the component environment. In SOA, most important is the functionality provided
under the form of a contract. It is not crucial to know the service implementation.
Moreover, this implementation may not even be physically in the system, as it may be
provided through the network by third-party servers. The necessary knowledge is only:
the contract and the information how to find the service (e.g. using find-bind-execute
registry).

Figure 2. Start-up of a component-based system.

Components are different. While executing a component system, the information
about the used components and their availability is known. The system is „compo-
sed”, which means that all necessary components are gathered together and, by using
a start-up configuration, the execution is started (as shown in the Figure 2). Such a
system can be verified a priori, because all necessary knowledge is known when the
system is launched.

4. OSGi as a hybrid of services and components

OSGi (Open Services Gateway initiative) [7] is a module system and service platform
for the Java programming language. It combines the idea of components and services

19 marca 2014 str. 4/12

580 Rafał Leszko, Kamil Piętak

and, therefore, is a good example for discussing the verification process in different
architectural approaches.

An OSGi-based system consists of many modules (called bundles) which can be
regarded as components. Each bundle declares its contract in the MANIFEST.MF file
by describing the exported and imported Java packages. In other words, it declares
what a bundle requires and what a bundle provides. By installing appropriate bundles
together in the OSGi container, the system is built. This approach is consistent with
the Component-Based Architecture — components are gathered together and then
the system is started.

The other aspect of the OSGi platform concerns services. Each bundle can regi-
ster a service and use services registered by other bundles. A service is simply a POJO3

specially registered in the OSGi context, and its contract is nothing more than a Ja-
va interface. OSGi services form a different layer of dependencies and, thus, create
another aspect of verification. The essential fact is that services are registered and
used at runtime, so their availability is unknown until they are used. That is the main
problem with the verification of OSGi services, and that is why the dependencies of
services are not being verified.

5. Verification in existing component environments

The OSGi specification introduces a verification process which checks whether a spe-
cific bundle can be resolved before started or used by other bundles. This assures that
a bundle can be used only if all of its requirements are fulfilled. During this process,
the OSGi framework checks if all imported packages exist in the environment and
bundles required by the bundle being currently verified. If the required bundles (or
those providing imported packages) are not yet resolved, they also have to be verified.

Before any class from a bundle can be used in a system, the bundle has to
be successfully verified. Such an assumption allows us to verify all inconsistencies
at system start-up, significantly improving system resistance to any changes in the
available components set.

Another approach is introduced in Enterprise Java Beans (provided as a part of
the Java Enterprise Edition). EJB defines components called beans as classes with
additional annotations that specify component type, boundaries, life-cycle methods,
and more. Boundary conditions are satisfied at runtime by services of the component
environment while instantiating particular beans. Annotations dedicated to validation
purposes have also been introduced (defined in JSR 303 [2]). They, however, do not
verify component consistency, only the state of particular beans (i.e. they introduce
constraints on bean’s attributes such as not-null values or size of strings).

Similar solutions exist in Spring Framework, which utilizes an IoC container to
produce objects (called beans) based on the start-up configuration (given for exam-
ple in an XML file). In this case, classes instantiated by the container can be also

3POJO (Plain Old Java Object) – an ordinary Java object

19 marca 2014 str. 5/12

Verification mechanism for lightweight component-based environment (...) 581

perceived components – they define a provided interface and dependencies to other
classes expressed by dedicated annotations (e.g. defined in JSR-330 [8]) or convention
(e.g. bean convention). The framework can validate in run-time if a given configura-
tion (application context) is proper. This verification process is performed optionally
before accessing any bean instance.

The above examples show that the verification process is an important issue in the
context of building component-based software. This process assures that systems are
properly assembled (i.e. all components requirements are fulfilled). In this paper, the
authors present a concept of a functional integrity [12] of component-based systems
that utilize verfication mechanisms which check consistency between components. The
proposed solution is built on a fine-grained component environment (close to classes
similarly to the Spring Framework) implemented in AgE platform [11].

6. The realization of Component Dependencies Verification

Component descriptors and a configuration comprised of component definitions are
necessary for the verification process, as they constitute an input for the process. The
architecture for the verification process consists of verifier, verification result, and
a collection of independent verification modules which can be attached arbitrarily.

Verifier implements a Visitor design pattern [5] and traverses every component
definition registered in the IoC Container. While visiting a component, it verifies de-
pendencies according to the proper component descriptor. Any errors are aggregated
and returned after finishing the process. The Figure 3 presents the overview of the
verifier model.

Verifier

<<Interface>>
IComponentDefinition

<<Interface>>
IComponentDescriptor

+accept(Visitor)

Container

+traverse(Object)
+visit(Container)

<<Interface>>
Visitor

<<Interface>>
IVerificationResult

returns

<<use>><<use>>

<<use>>

<<use>>

Visual Paradigm for UML Standard Edition(AGH University of Science and Technology)

Figure 3. Verifier UML scheme.

19 marca 2014 str. 6/12

582 Rafał Leszko, Kamil Piętak

In fact, the verification process is performed by independent verification modules
which are attached to the verifier.

Each independent verification module gets a single component definition, the IoC
container, and a results queue, and then verifies if the component can be properly
instantiated according to rules defined by the module.

Verifier

<<Interface>>
IVerificationModule

ConcreteModule

<<Interface>>
IComponentDefinition

<<Interface>>
Container

<<Interface>>
IVerificationResult

1..*

<<use>>

<<use>>

<<use>>

Visual Paradigm for UML Standard Edition(AGH University of Science and Technology)

Figure 4. Verifier modules UML scheme.

We propose the following default verification modules that verify the basic rules
described below:
• ComponentLackVerificationModule – verifies if a component definition provides

all the component dependencies described in a component descriptor.
• DependenciesTypeVerificationModule – verifies if a component definition pro-

vides components whose types are consistent with those described in a component
descriptor,
• DependenciesExistVerificationModule – determines recursive verification;

component is verified negatively if its dependencies are verified negatively, even
if they exist and their types are consistent,
• DependenciesCycleVerificationModule – checks if there are any cyclic depen-

dencies; the module should contain DependenciesExistVerificationModule,
• ConstructorVerificationModule – verifies if a constructor used in a component

definition is consistent with those described in a component descriptor.
Verification modules can be arbitrarily attached to the verifier and can also con-

stitute a hierarchical structure. The sample modules configuration is shown at the
Figure 5.

The presented configuration implies a process started by the verifier.
It visits each component definition and invokes the verify method from
DependenciesCycleVerificationModule. Afterwards, the DependenciesCycle-

19 marca 2014 str. 7/12

Verification mechanism for lightweight component-based environment (...) 583

VerificationModule invokes verify methods sequentially from the child modu-
les. The DependenciesExistVerificationModule module, before finishing its pro-
cess, passes the Visitor to all dependent components. Module configuration can
be constructed differently and it does not change the result. The only require-
ment is that DependenciesExistVerificationModule must be a child module of
DependenciesCycleVerificationModule.

Verifier

DependenciesCycleVM

ComponentLackVM

DependenciesTypeVMDependenciesExistVM

ConstructorVM

Visual Paradigm for UML Standard Edition(AGH University of Science and Technology)

Figure 5. Verifier Built-in modules.

Each verification module adds its result to the IVerificationResult object,
which is returned from the verification process. Afterwards, there is aggregated infor-
mation about all errors that occurred during the verification process.

The module architecture described above provides a configurable and extensible
method for the verification process.

7. Integration with PicoContainer

PicoContainer provides a verification mechanism based on the Visitor design pat-
tern. Each PicoContainer instance has a hierarchy of components, and the visitor
walks down this logical hierarchy, starting from the component on the top. Class Ve-
rifyingVisitor is implementing Visitor’s pattern, and the method traverse() is used
for crawling. Each component provides an abstract method verify() which is invoked
by the visitor on each one. Details can be found at Figure 6.

The proposed Component Verification solution is based on the mechanism pre-
pared by PicoContainer. Main class Verifier extends the VerifyingVisitor class and
realizes the Visitor design pattern.

The mechanism of Component Verification is a multi-level process due to its
module architecture. The verify() method is, in fact, a set of verification functions
(from each module, one function is applied). Such a mechanism provides a complex

19 marca 2014 str. 8/12

584 Rafał Leszko, Kamil Piętak

and complete process of configuration validation. Moreover, the mentioned modularity
guarantees flexibility in choosing the needed type of verification. For example, different
verification modules may be applied for different component systems.

Figure 6. Integration with PicoContainer.

8. Case study

The main purpose of the AgE component platform is to execute distributed agent-
based simulations and computations. An exemplary computation is to find a global
minimum of a given function using the vanilla genetic algorithm.

In order to run a computation, the user has to provide the platform configuration
in the form of an XML file. A part of a sample configuration is presented in the
Listing 1.

1 <strategy name="operator" class="org.jage.realvalued.RastriginLocalOperator" />
2 <strategy name="evaluator" class="org.jage.evaluator.LocalPopulationEvaluator" >
3 <constructor-arg>
4 <reference target="operator" />
5 </constructor-arg>
6 </strategy>

Listing 1: A fragment of the AgE XML configuration file

We can see that the LocalPopulationEvaluator component is dependent on the
SolutionOperator component (for which the RastriginLocalOperator implementation
of the SolutionOperator interface is provided).

If the user made a mistake in the configuration (e.g. a component dependency
is missing), the platform will crash, leaving an unclear message containing the stack
trace with the NullPointerException on top. Assume that the line number 1 is missing

19 marca 2014 str. 9/12

Verification mechanism for lightweight component-based environment (...) 585

in the Listing 1. Without the verification module, the application crashes, and the
result is presented in the Listing 2.

The component verification module checks dependencies before they are used, so
the error message is clear (See Listing 3).

1 Exception in thread "main" java.lang.NullPointerException
2 at org.jage.agent.GeneticActionDrivenAgent.getResultLog(ActionDrivenAgent.java:124)
3 at org.jage.agent.GeneticActionDrivenAgent.finish(ActionDrivenAgent.java:117)
4 at org.jage.agent.SimpleAggregate$1.run(SimpleAggregate.java:136)
5 ...

Listing 2: Missing dependency – AgE crashes (no component verification)

1 ERROR pico.PicoInstanceProvider -- Container verification failed. 4 verification errors:
2 Verification error for ’evaluator’ of type ’class org.jage.evaluator.LocalPopulationEvaluator’:
3 unsatisfied dependency ’operator’ in PicoInstanceProvider{id=27994965, parent=2622421}
4 ...

Listing 3: Missing dependency – clear message (produced by component verification)

Component dependencies verification helps a lot while debugging an XML con-
figuration file. It provides a clear message that contains all errors that have occurred
(instead of a NullPointerException – only for the first failure of the dependency re-
solution). The user immediately becomes aware of all mistakes which need to be
corrected.

The case described above is not the only benefit the user can gain while using the
component verification module for the vanilla genetic algorithm. Not less important
is the „Fast-fail“ approach. To understand this, it is important to present how the
computation is realized inside the AgE platform.

During its activity, the platform iterates over agents and executes the step() me-
thod. Inside this method, an agent performs an algorithm expressed by the sequence
of actions. Each action is a strategy component which represents a part of the algo-
rithm. In the vanilla genetic problem, for example, an agent performs the following
actions:

1. Preselection Action,
2. Variation Action,
3. Evaluation Action,
4. Statistics Update Action.

Each action is a strategy component which can have its own dependencies. As-
sume that the Evaluation Action takes a long time to perform and that the Statistics
Update Action has an unsatisfied dependency. Without the verification module, the
user would wait a long time just to receive a NullPointerException. The verification
module fulfills the „Fast-fail” paradigm and provides an error message before the long
computation starts.

19 marca 2014 str. 10/12

586 Rafał Leszko, Kamil Piętak

9. Conclusions

The main advantage of the proposed Component Verification System is early error
detection. The first stage of verification is performed before the components are in-
stantiated. This prevents the whole system from failures in execution time. What is
more, the verification process does not stop after the first error is found – all of the
rules and possible errors are checked. In the result, a list of all faults is returned. This
allows us to fix the majority of errors at once instead of correcting them one at a time.

Verification System is also easily extensible. In order to extend its functionality,
the only required action is to create and plug in the new VerificationModule (for
details see section 6). Component Verification is designed for systems based on the
IoC pattern, which is a common idea for Spring and PicoContainer frameworks. Due
to this, Component Verification might be applied (with minor changes) to the Spring-
and PicoContainer-based systems.

The main disadvantage of the proposed component verification solution is the fact
that it is not versatile. Despite the possibility of generalization to other component
platforms (Spring-, PicoContainer-based), the current version works only for the AgE
platform. In future work, we hope to achieve versatility: the verification module should
be applicable to any component environment.

References

[1] Agrawal A.: Service-Oriented Architecture. http://www.rightwaysolution.
com/soa.html, 2009. Rightway Solution (India) Pvt. Ltd.

[2] Bernard E. et al.: JSR 303: Bean Validation.
http://jcp.org/en/jsr/detail?id=303, 2009.

[3] Crnkovic I., Henrik M. P.: Building Reliable Component-Based Software Systems.
Artech House, 2002.

[4] Erl T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2005. ISBN 0131858580.

[5] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1998.

[6] Garlan D., Shaw M.: An introduction to Software Architectures. 1994. School of
Computer Science, Carnegie Mellon University, Pittsburgh.

[7] Hall R. S., Pauls K., McCulloch S., Savage D.: OSGi in Action. Manning Publi-
cations, 2011.

[8] Lee B., Johnson R.: Dependency Injection for Java.
http://jcp.org/aboutJava/communityprocess/final/jsr330/index.html,
2009.

[9] Liskov B., Wing J.: A Behavioral Notion of Subtyping. vol. 16, 1994.
[10] Martin R.: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice

Hall, 2008.

19 marca 2014 str. 11/12

Verification mechanism for lightweight component-based environment (...) 587

[11] Piętak K., Kisiel-Dorohinicki M.: Agent-Based Framework Facilitating
Component-Based Implementation of Distributed Computational Intelligence
Systems. In: N. T. Nguyen, J. Kołodziej, T. Burczyński, M. Biba, eds., Trans-
actions on Computational Collective Intelligence X, Lecture Notes in Computer
Science, vol. 7776, pp. 31–44. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
38495-0. http://dx.doi.org/10.1007/978-3-642-38496-7_3.

[12] Piętak K., Woś A., Byrski A., Kisiel-Dorohinicki M.: Functional Integrity of
Multi-agent Computational System Supported by Component-Based Implemen-
tation. In: Proceedings of the 4th International Conference on Industrial Ap-
plications of Holonic and Multi-Agent Systems: Holonic and Multi-Agent Sys-
tems for Manufacturing, HoloMAS ’09, pp. 82–91. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-03666-8. http://dx.doi.org/10.1007/
978-3-642-03668-2_8.

[13] Shore J.: Fail Fast. IEEE Software, vol. 21(5), pp. 21–25, 2004.
http://dblp.uni-trier.de/db/journals/software/software21.html#Shore04a.

[14] Szyperski C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd ed., 2002.
ISBN 0201745720.

Affiliations

Rafał Leszko
AGH University of Science and Technology, Institute of Computer Science, Krakow, Poland,
leszko@agh.edu.pl

Kamil Piętak
AGH University of Science and Technology, Institute of Computer Science, Krakow, Poland,
kpietak@agh.edu.pl

Received: 20.02.2013
Revised: 03.07.2013
Accepted: 03.07.2013

19 marca 2014 str. 12/12

588 Rafał Leszko, Kamil Piętak

