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FPGA-BASED MULTI-CORE PROCESSOR

Abstract The paper presents the results of investigations concerning the possibility of

using programmable logic devices (FPGA) to build virtual multi-core proces-

sors dedicated specifically towards particular applications. The paper shows the

designed architecture of a multi-core processor specialized to perform a particu-

lar task, and it discusses its computational efficiency depending on the number

of cores used. An evaluation of the results is also discussed.
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1. Introduction

Multi-core processors are currently becoming more and more popular. Nowadays,
most desktop and high-performance computing processors feature a multi-core de-
sign. Some of the most common featured architectures include Intel R© CoreTM 2 or
AMD R© K10. The presented project followed this notion and tried to compare the
effectiveness of multi-core parallel computing, albeit on a very modest scale. As the
basis of the project, an FPGA (Field Programmable Gate Array) chip family was cho-
sen to allow for the design of a desired architecture at the register transition level (as
opposed to simulating the architecture on a ready traditional processor). The proces-
sor was designed in VHDL [1] hardware description language, using Altera Quartus II
Software [2].
FPGA chips are special programmable logic devices designed to be reconfigured

by users according to their needs and desires. This makes it possible to build, develop,
and test any user-oriented hardware data processing architecture on a single integra-
ted circuit. The description of the necessary configuration might be specified as an
electronic circuit diagram or using a hardware description language like VHDL, Veri-
log [3], or others. A massively-parallel computing feature of FPGA technology gives
designers a chance to accelerate the speed of a data-processing algorithm by splitting
(if possible) any single computing process into many independent concurrent threads.
There are a lot of computing problems which, by their nature, are easy to parallelize.
In all of these circumstances, the FPGA chips show their immense benefits. Of cour-
se, an FPGA solution also has some disadvantages; for example, design time is much
longer than for a regular software-based system. However, this does not diminish the
advantages of FPGA.
FPGA-based processors are utilized more and more in embedded application-

specific systems. For instance, Yiannacouras, Rose, and Steffan [4] propose an FPGA-
based, automatically-generated, application-specific vector processor and show the
possibility of scaling its performance. In their paper [5], Coyne, Cyganski, and Duc-
kworth present an FPGA-based co-processor for accelerating the SART method for
RF source localization. The system has been developed in VHDL and uses paralle-
lism at many levels of the SART algorithm. Another example is an FPGA-based,
massively-parallel, single-instruction, multiple-data-stream (SIMD) processor presen-
ted in [6]. The authors integrated 95 simple processors and memory on a single FPGA
chip and showed that it can be used to efficiently implement an RC4 key search engine.
The authors’ main goals of the presented work were to research and verify so-

me possibilities of flexible, resource-efficient, and problem-specific implementation of
parallel hardware data processing systems. In a standard data processing approach,
systems usually use general-purpose processors (cores) which run application-specific
software. In such circumstances, the processors usually have more features and greater
potential than needed for a particular goal. At the same time, those features which
are vital from an application point of view might be not optimal for a needed task.
With that in mind, the authors believe that using FPGA technology may let us cre-
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ate flexible and well-fitted hardware data processing architectures directly dedicated
to problems we want to solve. In such an approach, created sub-circuits and sub-
processors own and use only especially-necessary resources such as registers, memory,
instruction sets, etc. Thanks to this, it might be possible, for example, to improve har-
dware flexibility while decreasing resources, energy consumption, and data-processing
time.
In our paper, we show a simple application-specific, multi-core processor archi-

tecture example, designed to perform a simple cipher algorithm. We also check and
discuss its performance dependent on the number of cores used.

2. The chosen computational problem

The chosen problem was to encrypt/decrypt using a symmetric block cipher. The
general idea of symmetric block ciphers is as follows: source data is first split into
separate blocks of fixed and equal length. Next, a user-derived secret key is chosen,
which is the same length as the data block. The key is combined with the data block
using a specified algorithm which defines a particular block cipher type. The resulting
combination is the output cipher text. The same key can be later applied with the
same algorithm to the cipher text to decrypt the data back to normal shape — that
is why the cipher is symmetrical.
The above procedure describes only how the cipher works with one data block.

There are a few ways this behavior can be extended to multiple blocks. The one that
was chosen for this project is called Electronic Code Book mode (ECB). In this mode,
the key is simply applied to each data block separately. The data blocks are treated
in a fully-independent manner, and therefore, this mode is well-suited for designing
a parallel algorithm. It is not cryptographically safe, though, and is rarely used in
practice. Still, the type of algorithm that can be used is not limited by the mode, and
it can be anything from the simplest (like xoring data with the key) to more advanced
(like DES or Blowfish). By choosing the right algorithm, the amount of time needed for
processing can be adjusted. For this project, the simplest method (xor) was chosen to
focus more on processor architecture rather than the implementation of complicated
algorithms.

3. Processor design and architecture

In this section, the architecture of the processor and its interface is first presented.
After that, the scalability of the proposed architecture is discussed.

3.1. Interface

The processor has its own simple instruction set. It allows the building of cipher
programs which operate on different amounts of data stored in memory. The set
contains one main instruction called exor, which tells the processor to actually cipher
the data, and 8 auxiliary instructions with rather-standard semantics: mov, add,
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sub, jmp, jz, jnz, nop, end, which help to calculate appropriate parameters for
exor and also control the flow of the program (e.g. loops). A sample code can be found
later in section 4.1. The exor instruction has two parameters: ri, rj, which denote
the registers holding the initial address of data and key respectively. Data block size
is a parameter that is set within the design but can be easily changed.
A ready-made program still needs to be placed in the instruction memory. As for

now, it has to be done by directly inputting the binary content into the VHDL design
file. The reason for this was the lack of external memory on some of the available
FPGA boards. The same has to be done with the data memory content. Still, the
results of data processing can be monitored on a set of appropriate outputs, like
LEDs.
This can be upgraded by adding support for the desired memory or interface

type to the design, thus allowing data input and output to be independent from PLD
programming files.

3.2. Schematics

The general architecture of the processor is presented in Figure 1. The processor core
consists of four main modules, called (in short) A, B, C (multiple) and D. Additionally,
there is also a monitoring module which interprets user-control signals and sends back
their results via a specified output.
The monitoring module allows the switching of the output signals indicators

between different core modules, which is especially useful when the number of outputs
(e.g. LEDs) is limited. This module is also able to trap execution of the program, count
the elapsed clock ticks, and detect idle statuses of particular modules. Therefore, it
is able to determine the end of processing and measure elapsed time automatically.
The sequential processor (labeled A) is responsible for the interpretation and

execution of a user-defined program (which is briefly covered in section 3.1). It exe-
cutes all instructions of the program one by one. When it reaches a exor instruction,
it delegates it (with the corresponding actual parameters) to module B and continu-
es to process further instructions. Of course, module B has to be free and ready to
accept a new task. It means that A can work in parallel with the B and C modules,
but sometimes processing has to wait and synchronize itself during the exchange of
needed data.
The queuing module (labeled B) is responsible for scheduling tasks received from

the module A for the C processors. A new task is scheduled for the first idle C
processor. If all C’s are busy, the task is put into an internal FIFO queue. When the
queue becomes full, further tasks are not accepted until a place in the queue is freed.
It happens when one of the C’s becomes idle and accepts the first task from the queue.
Each parallel processor (labeled C) is idle until it gets a task from module B.

After that, it starts processing the task. The processor communicates with the memory
module, requests the needed data and key fragments, combines them, and stores the
results back in the memory. The procedure is repeated a desired number of times until
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Figure 1. Overall schematics.

one data block is fully encrypted. The cipher text replaces the original data in the
memory, so subsequent executions of the same program encrypt and decrypt data by
turns.
The parallel memory (labeled D) is the most-passive module. It holds the data

and key for processing and allows for concurrent access from all C modules. According
to the block cipher idea, the parts of data on which the processors C operate should
be separate (different data blocks), although some safety mechanisms still have to
exist in the design to cover concurrent read/write problems. The priority solution
was chosen to minimize unnecessary overheads.

3.3. Scalability

The processor architecture can be scaled. The main factor which determines the speed
of the processing is the number of implemented C modules. The C modules can be
treated as the actual cores of the processor. Of course, there has to be proper support
for them from the adjoining B and D modules. It mostly means additional ports and
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buses, and rescaling of the internal algorithms, which can be done by a modification
of the design files. Module A is — according to its name — sequential and not meant
to be scaled.
The initial version of the processor had only two C cores. This was upgraded to

four cores before running tests presented later in this paper. A further upgrade would
surely require some automated means of generating the design elements (connections,
modules, repeating algorithm parts) for it to be convenient. For instance, VHDL
for ... generate, entity ... port map, and for ... loop commands could be
used [7].

4. Parallel characteristics

In order to determine the quality and correctness of the design, processor performance
had to be measured. The most basic metric that can be measured is the amount of
time needed to complete the processing, depending on data size and number of cores
used. From that, the standard parallel computing characteristics (like speedup and
effectiveness) can be derived. The correctness of the processing was verified fairly
easily. All that was needed was to run the program twice and check whether the
memory content first shifts to an encrypted form and then back to its normal shape.
Initial tests showed that a little-coarser granularity is required to make full use

of all 4 cores. That is why both setup and result sections are split in two parts and
cover both the initial and final tests.

4.1. Experimental setup

For test purposes, both a program for module A as well as sample data and key
(stored in module D) had to be prepared. Additionally, all the adjustable parameters
of the processor had to be determined.

The general test configuration is as follows:
• there are at most 4 parallel processors available (p = 1, . . . , 4),
• module B internal queue has 4 places (which is more than enough),
• the memory consists of 8-bit words,
• the number of cipher operations that are actually performed is adjustable
n = 1, . . . , 8. In each case, the user-defined program is the same — it only has
a different initial loop counter value (making the results easier to compare),
• there is only one key block applied to all data blocks.

4.1.1. Finer granularity

The test configuration specifications for this part are as follows:
• each data block and the key block consist of x = 4 memory words (one exor
instruction processes four words of data and key),
• there are, at most, 32 words of source data to encrypt using, at most, 8 exor
instructions.
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module A program is shown below:

; initial address of the first data block

mov r0, 0

; initial address of the key block

mov r1, 32

; loop counter - adjustable part

mov r2, 8

; data block length (address offset)

mov r3, 4

mov r4, 1

; exor loop

loop1: exor r0, r1

add r0, r3

sub r2, r4

jnz r2 loop1

end

4.1.2. Coarser granularity

The test configuration specifications for this part are as follows:

• each data block and the key block consist of x = 8 memory words (one exor
instruction processes eight words of data and key),
• there are, at most, 64 words of source data to encrypt using, at most, 8 exor
instructions.

module A program is shown below:

; initial address of the first data block

mov r0, 0

; initial address of the key block

mov r1, 64

; loop counter - adjustable part

mov r2, 8

; data block length (address offset)

mov r3, 8

mov r4, 1

; exor loop

loop1: exor r0, r1

add r0, r3

sub r2, r4

jnz r2 loop1

end
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4.2. Results

The results cover all possible combinations of problem size n and number of proces-
sors p. The time T (n, p) was measured in clock ticks automatically by the monitoring
module, so it is exact and independent of clock frequency. For each set of parallel cha-
racteristics, two charts are provided: one with a standard view: f(p) and n-dependent
data families and an alternate view: f(n) and p-dependent data families.

Two main characteristics were taken for each case [9]:

• speedup S(n, p) = T (n,1)
T (n,p)

• efficiency E(n, p) = S(n,p)
p

4.2.1. Finer granularity

The processing times for all cases are shown in Table 1. The values are ordered by the
indices p and n. Always T (n1, p1) ¬ T (n2, p2) where n1 ¬ n2, p1  p2. So, the more
processors used or the smaller the problem size, the shorter the processing time. It
proves the correctness of the design on a very basic level.

Table 1

Elapsed time [clock ticks] – finer granularity

p/n 1 2 3 4 5 6 7 8

1 39 64 89 114 139 164 189 214

2 39 48 64 73 89 98 114 123

3 39 48 57 66 75 84 93 102

4 39 48 57 66 75 84 93 102

For n = 1, the values are all the same no matter how many processors are used.
A similar situation presents itself for n = 2 and n = 3. It is normal that if the
number of tasks is smaller than the number of processors; in this case, some of the
processors are idle. It is not correct, however, that the time is exactly the same for 3
and 4 processors for all matching problem sizes. The reason for this is the fact that
module A cannot generate new tasks fast enough, at least compared to the speed
they are processed by 3 C processors. By the time the fourth task is generated, one
of the Cs finishes its job and accepts the new task, and so the fourth C processor is
idle all the time. To make real use of 4 cores, the task size should be bigger (coarser
granularity) or module A should work faster. The first solution is presented in section
4.2.2.
The Figures 2, 3 and 4, 5 show speedup and efficiency characteristics respectively.
The Figure 3 indicates that, for a fixed number of processors p = 2 and varying

problem size, the speedup is not uniform. It is slightly better for even values than for
odd. The odd value is usually similar to previous even one, or sometimes worse. That
is because it is easier to fit an even number of tasks on an even number of processors.
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Figure 2. Speedup – finer granularity (standard view).

Figure 3. Speedup – finer granularity (alternate view).

If the number of tasks is odd, then one of the cores is usually idle for some time (when
it could be handling another task).
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Figure 4. Efficiency – finer granularity (standard view).

Figure 5. Efficiency – finer granularity (alternate view).

Figure 5 shows that efficiency rises along with the problem size. It means that the
sequential part must decrease at the same time. In this architecture, the sequential
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part can be defined as the time when at least one C unit is idle, despite the fact
that there are still tasks that need to be processed (which haven’t been generated by
module A yet). The B and D modules are working fast enough not to produce any
delays, so the only source of possible delays in the design is the sequential processor A.
Speedup and efficiency increase along with the problem size because, after the initial
part, all modules can work in parallel until they finish their jobs. Of course, if the
granularity is too fine (like here), there will be some consistent wait states throughout
processing. In this case, they weren’t big enough to change the characteristics.

4.2.2. Coarser granularity

Processing times for all cases are shown in Table 2. The results are quite similar to the
ones presented in section 4.2.1; but this time, the fourth core really makes a difference.
The increased granularity gave module A a chance to occupy all of the C cores, while
working at the same speed.

Table 2

Elapsed time [clock ticks] – coarser granularity.

p / n 1 2 3 4 5 6 7 8

1 63 112 161 210 259 308 357 406

2 63 72 112 121 161 170 210 219

3 63 72 81 112 121 130 161 170

4 63 72 81 90 112 121 130 139

It can also be noted that, for n = 4, the values are slightly better than in
the corresponding finer-granularity case with n = 8. This is because module A had
fewer tasks to generate, which led to smaller communication overheads. There is one
exception, however: for p = 3, the value is worse because it is harder to fit 4 tasks on
3 processors than it is to fit 8.

Figures 6 and 7 show the speedup characteristics. The corresponding finer gra-
nularity chart presented in Figure 2 had no crossed lines. Here in Figure 6, it can be
seen that speedup for p = 2 is better for n = 2 rather than 3. The same situation is for
p = 3 and n = 3, 4, or p = 4 and n = 4, 5. Also, the alternate view presented in Figure
7 now has a more-distinct shape. This is because the time needed to process one data
block is longer now and much greater than the time needed to generate a task.

It all leads to a generalization of the facts concluded earlier in section 4.2.1:
for a given number of processors p, it is best to fit the number of tasks n which is
a multiple of p. Any other values of n are less optimal and cause speedup and efficiency
drops.

Figures 8 and 9 present efficiency characteristics. Similar to speedup, the peaks
are located at full multiples n of p values. Also, the bigger the problem size, the more
the distortions are scaled down; but, they still have the same shape.
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Figure 6. Speedup – coarser granularity (standard view).

Figure 7. Speedup – coarser granularity (alternate view).
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Figure 8. Efficiency – coarser granularity (standard view).

Figure 9. Efficiency – coarser granularity (alternate view).
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4.3. Corollaries

The time measurement is strict — it is not measured in real time units (like seconds)
but in the number of processing steps. Also, the processor itself works in a determined
way; and, for a given task, it always needs the same number of steps to complete it.
Therefore, the measured values should not be random. Indeed, a closer look reveals
that all of them can be described using a single formula:

T (n, p) =
{

di + y + dl(n− 1) + (y − dl · p)⌊n−1p ⌋ if y > dl · p
di + y + dl(n− 1) otherwise

(1)

where:

di – initial delay [clock ticks] – total processing time before the first exor command
actually starts being executed by one of the C processors;

dl – loop delay [clock ticks] – delay between generating subsequent exor commands
by the A processor (processing time of all the instructions inside the loop1 of the
program);
y – time needed to encrypt one data block consisting of x memory words — it
depends on a chosen algorithm and its implementation in module C. For current
xor implementation y = 6x+ 1.

The additional part (y − dl · p)⌊n−1p ⌋ describes the fact that, when the task size
is too big (or, conversely, there are too few processors), some tasks will have to wait
until they are generated before they will actually be processed. When y < dl · p, it
means that there is always a free C module to handle a new task, and the speed of the
processing is only limited by the speed of module A. Adding more processors to a job
that already satisfies this condition will not provide any speedup, which is exactly
what was observed in section 4.2.1. The y element in di + y + dl(n − 1) corresponds
to the processing time of the last task, after module A has finished its job.

The factor ⌊n−1
p
⌋ is an integer division. When y  dl · p, each p-th task has to

wait y − dl · p cycles in queue before being processed. The first task that has to wait
is (p+ 1)-th task, followed by (2p+ 1)-th, (3p+ 1)-th, and so forth.

Of course, the formula (1) is only true for a user-defined program shaped like the
ones in sections 4.1.1 and 4.1.2. For both of these, the actual parameters values for
the equation are as follows:

di = 14

dl = 9

Each instruction requires 2 cycles except exor, which requires 3. Plus, there is
one cycle delay before one of the C processors actually starts processing the first task,
which gives 14 cycles total for di. Inside loop1, there are 3 regular instructions and
1 exor instruction. There is no additional delay here, because the wait state between
subsequent tasks of a C module is already included as +1 in y parameter.
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The formula (1) is true for p = 1, where the C processor is always busy. It is also
satisfied for both considered granularities even though the finer granularity does not
use fourth C processor at all. Based on that, the formula should also be true for any
valid range of parameters n, p, x, y, but it was not tested in this experiment.

5. Conclusion

The project had two main goals to accomplish: first, design a microprocessor multi-
core architecture which would show significant improvement over sequential compu-
ting; and second, make this architecture scalable.
The achieved results did show an improvement with speedup reaching 1.85 with

two cores and 2.92 with four cores active. This yields the efficiency of 0.93 and 0.73
respectively. Additionally, the sequential part decreases with the problem size, so the
characteristics should be even better with more tasks to process.
The architecture is also scalable. It had already been rescaled from 2 cores to 4 in

its current shape, so further expansion seems limited only by the number of necessary
repeatable changes in the design files. But this still could be managed with the help
of appropriate VHDL commands.
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