COMPUTER SCIENCE e 15 (3) 2014 http://dx.doi.org/10.7494/csci.2014.15.3.253

Abstract

Keywords

PawEgr, WILK
P1oTrR NAWROCKI

NETWORK MANAGEMENT SERVICES
BASED ON THE OPENFLOW ENVIRONMENT

The subject of this article is network management through web service calls,
which allows software applications to exert an influence on network traffic. In
this manner, software can make independent decisions concerning the direction
of requests so that they can be served as soon as possible. This is important
because only proper cooperation including all architecture layers can ensure the
best performance, especially when software that largely depends on computer
networks and utilizes them heavily is involved. To demonstrate that the appro-
ach described above is feasible and can be useful at the same time, this article
presents a switch-level load balancer developed using OpenFlow. Client softwa-
re communicates with the balancer through REST web service calls, which are
used to provide information on current machine load and its ability to serve
incoming requests. The result is a cheap, highly customizable and extremely
fast load balancer with considerable potential for further development.

OpenFlow, software-defined networking (SDN), management services, load
balancing

253

http://journals.agh.edu.pl/csci/

254 Pawet Wilk, Piotr Nawrocki

1. Introduction

The aim of this paper is to demonstrate how a connection between software and ne-
twork data flows can be created. The advantages of this approach will be shown on the
basis of a switch-level load balancer service developed using the OpenFlow (OF) pro-
tocol. The main motivation to focus on this area have been the developments observed
in the data processing model. Cloud computing® makes high-performance computers
available to everyday users. Multiple applications are being migrated from traditio-
nal desktop solutions to web-based ones. Mobile devices that are always connected
to the Internet are becoming increasingly popular, thereby generating an enormous
amount of traffic. In March 2013, for instance, Facebook had more than a billion
active users [6]. Overall, this forces software developers to find new, faster solutions.
How can this be achieved? The answer is: by bringing software and hardware closer
together. The area with the highest potential for this is the interface between software
and network management services. A recently developed paradigm called software-
defined networking (SDN) opens many new opportunities in this area. Since the day
OpenFlow was released, everyone has been able to write their own network protocols
and run them in real-life environments. This article demonstrates a practical use for
such solutions by showcasing an implementation of a load balancer. As additional
functionalities, it provides a health checking mechanism and the ability to securely
shut down a server. The communication between the server and the balancer takes
place via web service calls and the entire balancing concept is completely transparent
from both the client and server sides.

2. Related work

This section is split into two main parts. The first one presents a comparison of availa-
ble load balancers together with their advantages and disadvantages, while the second
one describes the new approach to network management techniques, i.e. software-
defined networking. Only a look from both perspectives makes it possible to fully
evaluate the solution presented.

2.1. Load balancers

The concept of load balancing has been used for a long time to optimize traffic for
web servers. One of the solutions frequently used is LARD (Locality-Aware Request
Distribution) strategy [16, 11] which enables load balancing based on the content of
client request. Lately, there has been an increase in the importance of optimizing
traffic in computer networks thus new implementations of load balancers are being

1Cloud computing — a computation model based on making available services whose implemen-
tation is hidden from the user. It provides high performance in a virtualized and aggregated manner,
where user is charged in accordance with utilization. As a result, there is no need to purchase either
physical server hardware or software licenses [3, 13].

Network management services based on the OpenFlow environment 255

developed [5]. Load balancers can be implemented in various completely different
ways; the most common are described below.

. Server Farm

Figure 1. DNS load balancing.

Starting at the network level, there is the round-robin Domain Name System
(DNS) [1] presented in Figure 1. It involves linking a single domain name with multiple
IP addresses. The domain name server responds to requests with a shuffled IP list
and then the client tries to establish a connection, starting with the first IP number.
If an attempt fails, it proceeds to the next one. This solution is easy to implement
but difficult to manage because DNS responses may be cached on many levels (on
intermediate domain name servers and client machines). Furthermore, this solution
does not scale well, since every server needs to have a public IP address.

Load balancing can also be implemented directly on routers [4] as a state-
less/stateful round robin or according to the number of open sessions (Fig. 2). This
is simple to configure but load may be unfairly distributed, in particular where the
standard deviation of request processing time is high. The other disadvantage is the
fact that such solutions are only available on high-performance routers, which can be
expensive.

The most sophisticated and fastest solution is a hardware balancer called F5
Network Manager [2] (Fig. 3). The balancing process can be configured in several
different ways: random distribution, round robin, weighted round robin (making it
possible to spread the load unevenly), dynamic round robin (costs can be computed
based on the number of active connections or average response time), least connection,
fastest (according to response time). The only drawback of this device is its price,
which is in the thousands of dollars. The final method described here is a purely
software-based implementation (Fig. 4).

This would be the most flexible and cheapest approach, but it has two major
drawbacks. Firstly, every request has to pass through the balancer and this means that

256 Pawet Wilk, Piotr Nawrocki

each packet needs to be processed and subsequently its headers must be completely
rebuilt. This introduces unnecessary latency. Secondly, if there is a huge number of
requests, the balancer may turn out to be a bottleneck.

|:| Router with balancer

Client

N /
~._ServerFarm
Figure 2. Router load balancing.

AN
S _Server Farm

Figure 3. F5 load balancing.

To sum up, each of the above propositions has its advantages and disadvantages,
which makes it difficult to choose the optimum one. However, software-programmable
switches may introduce completely new solutions, and one of those will be presented
in this article.

2.2. Software-Defined Networking

In solutions that are currently popular, the decision on where a packet is to be sent
is made on network devices such as switches or routers.

Network management services based on the OpenFlow environment

257

Im

Client

Software
balancer

Server Farm

Figure 4. Software load balancing.

Application Layer

Business Applications

Business Applications ‘ ‘

Business Applications

API API

API

Control Layer

SDN Control Software

Network Services

Control Data Plane Interface
(e.g. OpenFlow)

Infrastructure Layer

Network Device

Network Device

Network Device

Network Device

Network Device

Figure 5. Software-defined networking — Architecture [14].

In software-defined networking (SDN) [15], this is left to software controllers,
thus allowing network devices to focus exclusively on transmitting packets as shown

in Figure 5.

This solution has many advantages such as:

o faster development of new features — users can run their own network solutions

without waiting for manufacturers to implement them in their hardware;

e SDN’s ability to coexist with traditional networks whereby only part of the traffic

is processed by SDN;

258 Pawet Wilk, Piotr Nawrocki

e improved hardware utilization by introducing completely new configurations such
as implementing network policing in a reactive manner using functional program-
ming languages [9].

All these advantages have contributed to the widespread use of this paradigm in
hardware devices and business applications.

SDN is just a general paradigm whose most popular implementation is Open-
Flow [17] created by the Open Networking Foundation (ONF), which is backed by
major network hardware manufacturers such as Cisco, IBM, HP and NEC.

The SDN architecture consists of three elements: a controller, an OpenFlow-
compatible switch and a secure connection between them. On the switch, there is
a flow table, which matches packets to its entries based on their source, destination
Ethernet address, IP address or port, IP type of service, ICMP code/type, VLAN ID
or incoming port. If there is no successful match, the packet is sent to the controller,
otherwise the actions listed in the relevant flow table entry are executed. The actions
available are forward or drop. A packet can be forwarded to all ports except the
incoming port, to the controller; to the local switch stack or to a specific port. The
most important optional action is the modification of packet headers. The controller
is a software process that listens for OpenFlow messages. OpenFlow only specifies the
message format so that the controller can be written in any language. The general
use case for OpenFlow is as follows:

e a packet arrives at the switch;

e the flow table is empty so the packet is sent to the controller;

e the controller pushes appropriate flow table entries;

e the controller forwards the packet received;

e from this point forward, every similar packet goes directly to its destination,
bypassing the controller.

Authors of many papers [7, 12, 18, 10] consider the problem of load balancing
in the OpenFlow paradigm. Most solutions are attempts to find a static routing path
during the initialization step without considering the dynamics of changes in network
configuration [12]. However, some solutions take network changes into account. For
instance, the LABERIO path-switching algorithm [12] makes it possible to balance
the traffic dynamically during data transmission.

Compared to the works listed above, the proposed solution (described in Sec-
tion 3) provides a load balancer service with additional functionality such as the
health checking mechanism and secure server shutdown.

2.3. OpenFlow framework comparison

OpenFlow only defines the desired pattern of communication between the switch
and the controller by stipulating the order of bits in OpenFlow messages. Writing
a controller from scratch would be extremely time-consuming and error-prone but
multiple frameworks have been developed in different languages such as Java, C,
C++, Python, Ruby and others. This section includes a comparison of the most

Network management services based on the OpenFlow environment 259

popular frameworks on the market. The basis of comparison was the implementation
in each framework of a standard switch, which learns and stores MAC addresses for
the purpose of providing traditional switching capabilities.

2.3.1. NOX

When it was first created, this controller used two programming languages: C++ and
Python. The assumption was that specific modules would be developed in C++ and
connected using Python. Unfortunately, the users misunderstood this concept and
felt compelled to develop entire controllers using one of these languages, which led
to unnatural structures. Because of that, NOX creators decided to fork the project,
creating two new ones. Since that time, NOX has been used to create controllers purely
in C4++ and POX has been developed for those who prefer Python. Our opinion on
this framework is as follows:

e complicated deployment process;

e contains many external dependencies that need to be resolved manually;

e only supports Linux.

Its main advantage is performance — creators quote delays of around 0.01 milli-

seconds and a throughput of ca. 50000 flows per second.

2.3.2. POX

This framework has been developed entirely using Python and thus it supports Linux,
Mac OS and Windows. Its main purpose is to accelerate the development process
without having to worry about performance issues. Compared to NOX, it offers delays
of around 0.06 milliseconds and a throughput of around 31,000 flows per second. POX
comes with a few ready-made modules, of which the most interesting are:
e messenger — allows communication via JSON messages;
e discovery — informs the controller of network connection updates (link establish-
ment or link failure);
e proxy ARP mechanism.
Furthermore, a special external library has been created for POX called PO-
XDesk. It is a web-based GUI that enables browsing of the flow table and its modifi-
cations as well as the presentation of network topology.

2.3.3. Trema

Trema has been created using C and Ruby, but users can write controller code using
Ruby only. It only supports the Linux operating system with Ruby 1.8.7 installed.
Compared to the other frameworks, Trema provides a complete development environ-
ment with a network emulator and debug tools. Its main features are:

e simple installation — users receive a complete solution for creating controllers;

e TremaShark — the environment is automatically delivered with an integrated

WireShark;
e integration with RSpec — the ability to implement controller unit tests;

260 Pawet Wilk, Piotr Nawrocki

e modular design with predefined modules such as:

— network topology recognition;

— Routing Switch functionality;

— slice-able routing switch — makes it possible to divide the network into se-
parate segments and only service some of them.

2.3.4. Beacon

Beacon is written fully in Java, with an emphasis on modular nature (related to the
use of the OSGi framework) and on performance gains from multi-threading (as at 17
May 2011, it was twice as fast as NOX). Producers claim that after some tweaking,
it can be run on Android devices. Its main features are:

e multi-threading;

e JUnit integration;

e REST API for flow management;
e web-based GUI.

2.3.5. Floodlight

Floodlight was developed as a variant of Beacon — some programmers split from
the group, claiming that OSGi was creating too much overhead, and developed their
own solution, which has mostly been funded by the BigSwitch company. Beacon is
written in Java but may also be extended using Jython. Instead of OSGi, a customized
modularity concept is used. Its main features are:

e multi-threading;

e can be a back-end for OpenStack (the standard for private and public clouds);

e actively developed by BigSwitch;

e the only controller with declared intentions to support subsequent OpenFlow
versions (above 1.0).

This framework has been selected for the implementation of the project described
in this article because it is the most mature and well-thought controller of all tho-
se listed above. Furthermore, BigSwitch involvement in its development guarantees
regular updates and high support quality.

2.3.6. Summary

A detailed comparison of frameworks is presented in Table 1. The broad choice availa-
ble allows every user to pick one no matter what programming language they prefer.
The only thing that has to be borne in mind is the fact that even after more than two
years since the new version of OpenFlow was introduced together with OF-Config,
there are only a few controllers available that support it.

Network management services based on the OpenFlow environment 261
Table 1
OpenFlow framework comparison.

NOX POX Trema Beacon Floodlight
Programming 1 Python 2.7 | Ruby > 1.8.7 | Java Java
language
Operating system | Ubuntu Linux, Mac Ubuntu Any with Any with

12.04 (O 10-13, JVM JVM

‘Windows Debian,
Fedora 16-19
OpenFlow version | 1.0 1.0 1.0 1.0 1.0 (1.2, 1.3
planned)
Multi-threadi
ultn reading _ + + + +

support

3. Case study

The main purpose of this article is to demonstrate that OpenFlow can be used to
create a switch-level load balancer with an interface that enables communication
between the balancer and the software that needs balancing. In the solution presented,
a server farm is accessible through a single IP address completely transparent for both
the end user and the server administrator. Detailed architecture is presented below.

Server farm .100

Figure 6. System architecture.

In Figure 6, a computer network is shown that features an OpenFlow-compatible
switch. There are servers and normal hosts in this network; each machine has its
own IP address and can ping other computers. Furthermore, servers are grouped into
a single farm accessible via the 10.0.0.100 IP address. Each server periodically registers

262 Pawet Wilk, Piotr Nawrocki

its load in the controller. Based on that information, the controller directs new users
to the server with the smallest load.

3.1. Implementation

In Figure 7, a general use case is presented that can help readers understand how the
system works.

Controller sever 2

| 1. LOAD 30%
[2. LOAD 40%
<
3.REQ
4. OF] »
@—>-Push flow l

6. REQ
g 7. LOAD 10%
¢

8. REQ

9. OF| ge

10. Push flow

11. REQ [

>
12. REQ
13. REQ
14. REQ
15. REQ
L
T T T T

Figure 7. General communication in the system.

The steps are as follows: the first server registers with a load of 30% (1) and the
second server registers with a load of 40% (2). The first host generates a request to the
server farm (3). Since there are no flow entries on the switch, the request received is
transferred to the controller, encapsulated in an OF message (4). The controller selects
the less-loaded server to process the request. For this to happen, appropriate flows
need to be pushed to the switch (5). Then the request finally arrives at the server (6).
In the meantime, the second server updates its load to 10% (7). Subsequently, a new
host generates a request to the server farm (8). Because this is the first request from
this unique user, an OF message containing the request is sent to the controller (9).
At this point, the second server is the least loaded, so a flow to it is pushed to the
switch (10). The request is sent to the second server (11). All further requests from
the same host will be automatically (without reaching the controller) transferred to
the appropriate server in accordance with the sessions started (12-15).

Figure 8 presents communication in more detail, focusing on exact packet routes
and details and leaving out the balancing aspect and the server registration process
altogether.

The host wants to send a request to the server, so it (the host or else a router
where there is traffic incoming from other networks) generates an ARP request to learn

Network management services based on the OpenFlow environment 263

IP: 10.0.0.5 . 1P: 10.0.0.10]
Controller Farm IP: 100-0100

1. ARP: 10.0.0.100 -l
> 2. ARP: 10.0.0.100 -
>

< 3. ARP RESP: 02:00:00:00:00:01
4. ARP RESP: 02:00:00:00:00:01

5. REQ:10.0.0.100

L 6. OFMessage (REQ: 10.0.0.100)
>

7. OF Flow «

8. OF Flow =

A A A

9.REQ 10.0.0.10

10. REQ: 10.0.0.10 '

L

11. RESP (src: 10.0.0.10)

<
d

:' 12. change src MAC IP
13. RESP (src: 10.0.0.100)

14. REQ: 10.0.0.100

l@—] 15 change dst MAC IP

16. REQ: 10.0.0.10 -

L

17. RESP (src: 10.0.0.10)

<
d
ZI 18. change src MAC IP

14. RESP (src: 10.0.0.100)

Figure 8. Detailed request path through the network.

the MAC address for the server farm IP (1). Because the flow table is empty, the ARP
request encapsulated in the OF message is sent to the controller (2). The controller is
programmed so that it acts as a Proxy ARP mechanism in the case of ARP requests
for the server farm address. If the ARP request is for any other IP address, the switch
will act in a traditional way. Proxy ARP responds with a configurable MAC address —
02:00:00:00:00:01 (3). This interaction is required where traffic is coming from multiple
users in other networks. In this case, all packets pass through the router so there has
to be a single MAC address representing the server farm instead of load-balancing
ARP requests because the router could cache the ARP response and always send
traffic to a single server. When the host/router gets the ARP response (4), it sends
a request to the farm address (5). There are still no flows on the switch, so packets
get transferred to the controller inside an OF message (6). The controller pushes
flows from the server with the smallest load to the client (7). The next step is to
create flows from the client to the server (8). Because everything has been set up, the
controller can now send the packet to the server (9). At this stage, it is important to
change the destination IP and MAC addresses for the specific server. Packet checksum
has to be recalculated as well. Then the switch passes the request to the server (10),
which sends a response (11). All flows have already been initialized, so the switch only
changes packet source MAC and TP addresses to appropriate farm addresses (12). All
checksums are recalculated automatically. As a final step, the response reaches the

264 Pawet Wilk, Piotr Nawrocki

client (13). Further communication goes directly to the server through the switch,
bypassing the controller (14-19). All MAC and IP addresses are replaced directly on
the switch.

The final aspect of the solution described is communication between the servers
and the controller. This is based on REST web service calls. Two separate services have
been developed — one to register a server and update its load value and the second
to provide a way for excluding a server from the farm list. The project developed
features two additional functionalities that have not been presented on the diagrams
above.

The first feature is a health checking mechanism that operates cyclically at con-
figurable intervals. Where the controller notices that there have not been any updates
from a server for three update intervals, it assumes that the server in question has
crashed. The controller then removes all flows leading to the server in question. In
this case, user sessions are lost but users are distributed among the remaining servers.

The second feature is secure server shutdown. If a server needs to be turned off or
removed from the server farm, for example to execute a software update, this may be
done in a manner transparent to users. In order to do this, the server should call the
appropriate REST service. After this service has been called for the first time, no new
users are directed to the server in question. The response to that call is a JSON object
indicating if all sessions have timed out; this means that the server no longer belongs
to the server farm. This functionality has been developed based on the session tracking
mechanism. Each flow has its own time-out set to the same value as the session time-
out. If a user is inactive for a longer period and a flow disappears, the user’s next
request is checked against previously saved sessions. If a session exists for the user, the
user is assigned to the same server again. The session tracking mechanism can remove
session records when the time since the last update has exceeded two session time-outs.

3.2. Performance evaluation

Performance evaluation has only been conducted for web services. This is because
the rest of the system is fully virtualized, so running performance tests on a single
machine that runs the controller and the OpenVSwitch while simulating hosts at the
same time would be unreliable. Thus only functional tests were run for the entire
system.

An additional argument for conducting tests in a virtualized environment is the
state of implementation of OpenFlow specifications in real-life devices (switches). In
most equipment, OpenFlow specification version 1.0 is implemented. By using a vir-
tualized environment, one can take advantage of subsequent OpenFlow specification
versions (up to version 1.3), which will significantly expand capabilities, including
a multi-table processing pipeline, MPLS, IPv6 and QoS.

In the execution of the performance test, the tools listed below were used:

e Mininet — virtual network;
e Jmeter — monitoring parameters and service performance;

Network management services based on the OpenFlow environment 265

e jostat — monitoring current device load;
e VisualVM — monitoring the Java Virtual Machine.

126
ms

o
£
=,
a:
8" C
@ #
& J
B response time
B median
B avg
B throughput
Oms’ L = -]
0 Probe number 1000
median avg | min max throughput
69ms 7lms | 10ms | 198ms 40.6/sec

Figure 9. Response time for the service with actual server load (5 servers, 200 calls).

All tests were executed on a machine with the following specifications:

e processor: Intel SU2300, 2x1.2 GHz;

e memory: 4GB, Java heap memory size Xmx=512MB;
e Java 1.7_025;

e operating system: Ubuntu 12.04.

The results presented in Figure 9 illustrate a situation where there are few servers
(five in that case) but they are updating their statuses heavily. This may be the case
where the controller is configured so that server errors are detected as soon as possible.
In this case, as shown, each server could update its status 40.6/5 = 8.12 times per
second. Thus a server failure would be discovered after 369 milliseconds. As the graph
shows, throughput was constantly increasing and response times were stable. Based
on those two parameters, a conclusion may be drawn that the solution presented is
promising and may be deployed in environments that need to be highly available.
Even distribution of the response times suggest there is no request queueing and they
are being served on the fly. This may be also affirmed by the fact that controller
performance limits have not been reached.

The results shown in Figure 10 illustrate the performance of the same service in
different conditions. In this case, there are 100 servers with each potentially making
0.711 service requests per second, which means that a server failure would be dia-
gnosed after 4.2 seconds. This scenario reflects usage in a farm developed for highly
scalable solutions. This directly results in slightly lower availability, but the results are
still acceptable. Furthermore 20 times increase of the server number caused only 14.88

266 Pawet Wilk, Piotr Nawrocki

1298
ms

Response time

W response time

B median
B avg
i B throughput
O0ms
0 Probe number 1000
median avg | min max throughput
1139ms 1057ms | 37ms | 1508ms 71.1/sec

Figure 10. Response time for the service with actual server load (100 servers, 10 calls).

increase of the average response time, this may suggest linear dependency between
those two values. Sudden decrease of the response time for the probes between 450
and 550 might have been caused by the garbage collector mechanism on the stress
testing software side. Nevertheless constant throughput suggest that the controller
side is functioning properly in a predictable way.

This part conclude stress tests for the service responsible for refreshing of the
server load. For the both cases — the high availability and scalable environment —
presented solution is suitable and may be successfully applied.

Two further figures present performance test results related to the service that
provides the secure shutdown capability. Figure 11 presents results for five servers
that are making requests continuously. The throughput achieved allows each server
to make requests 7.66 times per second. As can be seen from the graph, results were
constantly improving so the final call frequency could be even higher. Response times
suggest that this solution is fully sufficient. As previously even distribution of the
response times suggests processing them on the fly. As compared to the load update
service both the average response times and the throughput are similar. This may
suggest that when talking about the small server number most of the latency comes
from the RESTful library and processing the requests with its parameters.

The final test, which is presented in Figure 12, stresses the service somewhat
more. As can be seen, the secure server shutdown service does not scale as well as
server load updating. Given a higher number of servers, overall throughput dropped
compared to the case where there were only five. Moreover twenty times increase of
the server number caused thirty time increase of the latency. This suggest the com-
plexity is higher than linear. As a result, each server could check session states every
2.7 seconds. This value is acceptable but indicates that the solution may not be fully

Network management services based on the OpenFlow environment

267

142
ms

Response time

Oms’

Probe number

W response time
B median
H avg

B throughput

1000

median

avg

min

max

throughput

75ms

80ms

12ms

250ms

38.3/sec

Figure 11. Response time for the secure server shutdown service (5 servers, 200 calls).

2850
ms
(]
£
P
2
8
@
&
i]
b B response time
: B median
B avg
B throughput
0ms
0 Probe number 1000
median avg min max throughput
2633ms 2459ms | 316ms | 2936ms 36.7/sec

Figure 12. Response time for the secure server shutdown service (100 servers, 10 calls).

scalable. Therefore, for deployments with a server farm larger than 100 machines,
administrators should consider using this service only to prevent further client assi-
gnments. The number of active sessions should be verified directly in server software.
Also bearing in mind the application of the service, probability that 100 servers would
needed to be shutdown at the same time is quite low. To prevent such unnecessary
load on the controller and unpredictable behaviour of the rest of servers, it is advised
to shutdown servers sequentially or in relatively small batches.

268 Pawet Wilk, Piotr Nawrocki

4. Summary

This article addresses the question whether it is possible and useful to create a connec-
tion between network management capabilities and the software that runs on network
nodes. As the primary example, the functionality of a load balancer developed on the
switch level is presented.

As demonstrated, the answer to the question above is affirmative. Closing the
gap between software and network management may improve general performance
and could also lead to completely new solutions that were previously unimaginable.
This article describes the architecture and operating scheme of a load balancer that
provides additional functionalities such as a health checking mechanism or secure
server shutdown. It has been fully implemented using the OpenFlow standard and
Floodlight framework. Both these tools leverage the software-defined networking pa-
radigm and provide completely new ground for developing comprehensive solutions
wherein software cooperates with hardware, especially with computer networks.

4.1. Further work

The system presented can provide an excellent starting point for further enhance-
ments. To make the solution available in a production environment, providing secu-
rity to the web services would have to be considered. Currently, any host within the
network can call the web service, thereby causing the controller to enter an invalid
state. To prevent this, a simple iptables (firewall) configuration might be sufficient.

Another thing worth analyzing would be the provision of backup servers to be
used in contingencies, for example during primary server group updates. Furthermore,
the entire system could be integrated with Continuous Delivery? software so that
servers would be updated automatically without disrupting users.

The most attractive feature for the business environment would be enabling some
servers to be turned off. For example at night, when traffic is lower, there is no need
for all servers to operate. Turning them off could lead to considerable energy savings,
thus reducing server maintenance costs.

Acknowledgements

The research presented in this paper was partially supported by the Polish Ministry
of Science and Higher Education under AGH University of Science and Technology
Grant 11.11.230.124 (statutory project).

References

[1] Aitchison R.: Pro DNS and BIND 10. Apress, 2011.

2Continuous Delivery — it is a process whose goal is the full automation of the software delivery
process (from code submission through automatic testing to production deployment) [8].

Network management services based on the OpenFlow environment 269

[2] BIG-IP: BIG-IP Local Traffic Manager: Concepts, 2013.

[3] Buyya R., Broberg J., Goscifiski A.: Cloud Computing - Principles and Para-
digms. WILEY, 2011.

[4] Cisco: Cisco I0S IP Configuration Guide, Release 12.2.

[5] Dabrowski J., Feduniak S., Balis B., Bartynski T., Funika W.: Automatic Proxy
Generation and Load-Balancing-based Dynamic Choice of Services. In: Computer
Science, vol. 13(3), 2012. ISSN 2300-7036.

URL https://journals.agh.edu.pl/csci/article/view/13.

[6] Facebook: Facebook Reports First Quarter 2013 Results. 2013.

[7] Handigol N., Seetharaman S., Flajslik M., McKeown N., Johari R.: Plug-n-Serve:
Load-Balancing Web Traffic using OpenFlow. ACM SIGCOMM Demo, 2009.

[8] Humble J., Farley D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010.

[9] Kim H., Feamster N.: Improving Network Management with Software Defined
Networking. In: IEEE Communications Magazine, pp. 114-119, 2013.

[10] Koerner M., Kao O.: Multiple service load-balancing with OpenFlow. In: A. Smil-
janic, M. Hamdi, H.J. Chao, E. Oki, C. Minkenberg, eds., HPSR, pp. 210-214.
TIEEE, 2012. ISBN 978-1-4577-0831-2.

URL http://dblp.uni-trier.de/db/conf/hpsr/hpsr2012.html#KoernerK12.

[11] Lei Y., Gong Y., Zhang S., Li G.: Research on Scheduling Algorithms in Web
Cluster Servers. In: J. Comput. Sci. Technol., vol. 18(6), pp. 703-716, 2003.
URL http://dblp.uni-trier.de/db/journals/jcst/jcst18.html#LeiGZLO3.

[12] Long H., Shen Y., Guo M., Tang F.: LABERIO: Dynamic load-balanced Routing
in OpenFlow-enabled Networks. In: 2013 IEEFE 27th International Conference on
Advanced Information Networking and Applications (AINA), vol. 0, pp. 290-297,
2013. ISSN 1550-445X.

URL http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/
AINA.2013.7.

[13] Nawrocki P., Soboit M.: Public cloud computing for Software as a Service plat-
forms. In: Computer Science, vol. 15(1), 2014. ISSN 2300-7036.

URL https://journals.agh.edu.pl/csci/article/view/519.

[14] Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks, 2012.

[15] Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks, 2013.

[16] Pai V.S., Aron M., Banga G., Svendsen M., Druschel P., Zwaenepoel W., Nahum
E.M.: Locality-Aware Request Distribution in Cluster-based Network Servers. In:
D. Bhandarkar, A. Agarwal, eds., ASPLOS, pp. 205-216. ACM Press, 1998. ISBN
1-58113-107-0.

URL http://dblp.uni-trier.de/db/conf/asplos/asplos98.html#PaiABSDZNI8.

[17] Pfaff B., Heller B., Talayco D., Erickson D., Gibb G., Appenzeller G., Tourril-
hes J., Pettit J., Yap K., Casado M., Kobayashi M., McKeown N., Balland P.,

270 Pawet Wilk, Piotr Nawrocki

Price R., Sherwood R., Yiakoumis Y.: OpenFlow Switch Specification. Stanford
University, 2009.

[18] Wang R., Butnariu D., Rexford J.: OpenFlow-based Server Load Balancing Gone
Wild. In: Proceedings of the 11th USENIX Conference on Hot Topics in Mana-
gement of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE'11,
pp. 12-12. USENIX Association, Berkeley, CA, USA, 2011.

URL http://dl.acm.org/citation.cfm?id=1972422.1972438.

Affiliations

Pawel Wilk
AGH University of Science and Technology, 30-059 Krakow, Poland,

pawel.wilk.mail@gmail.com

Piotr Nawrocki
AGH University of Science and Technology, 30-059 Krakow, Poland, piter@agh.edu.pl

Received: 26.11.2013
Revised: 10.01.2014
Accepted: 13.01.2014

