
Bo Tian
Mikhail Posypkin

EFFICIENT IMPLEMENTATION
OF BRANCH-AND-BOUND METHOD
ON DESKTOP GRIDS

Abstract The Berkeley Open Infrastructure for Network Computing (BOINC) is an open-

source middleware system for volunteer and desktop grid computing. In this

paper, we propose BNBTEST, a BOINC version of the distributed branch-and-

bound method. The crucial issues of the distributed branch-and-bound method

are traversing the search tree and loading the balance. We developed a subtask

packaging method and three different subtask distribution strategies to solve

these.
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1. Introduction

Many problems in the areas of operations research, and artificial intelligence can

be defined as combinatorial optimization problems. The branch-and-bound method

(B&B) is a universal and well known algorithmic technique for solving problems of

that type. The root of the tree is the original problem, and the other nodes represent

subproblems to be solved. Though the algorithm considerably decreases the com-

putational time required to explore the entire solution space, running time remains

unbearable. Using parallel or distributed processing is one of the most popular ways

to resolve this issue. The implementation of B&B algorithms on parallel machines was

studied in numerous papers [11, 13, 15, 20, 24–26]. All of these solvers are based on

parallel computation frameworks that are flexible and only useful for tightly-coupled

or shared-memory distributed systems.

Over the last decade, we have observed an emergent growth of new HPC platform

volunteer computing grids or desktop grids (DGs) [17]. Unlike conventional parallel

computers, this platform has not been sufficiently explored as a target for branch-and-

bound methods. DGs are a highly dynamic and heterogeneous distributed computing

platform. BOINC [9] is one of the typical DGs platforms, which has been developed

by a team based at the Space Sciences Laboratory (SSL) at the University of Cali-

fornia. It was originally developed to support the SETI@home [10] project before it

became useful as a platform for other distributed applications in areas as diverse as

mathematics, medicine, molecular biology, climatology, and astrophysics. BOINC has

recently become widely popular, in both theory and practice. Devising an efficient

B&B implementation for BOINC is a challenging and practically important problem.

The approach proposed in our paper addresses this issue.

We implemented a branch-and-bound solver for the NP-hard 0-1 knapsack prob-

lem [8]. The classical knapsack problem is defined as follows: given a set of n items,

each item j having an integer profit pj and an integer weight wj , one needs to choose

a subset of items such that their overall profit is maximized while the overall weight

does not exceed the given capacity c. The knapsack problem is stated as the following

integer programming model:

max

n∑

i=1

pixi (1)

subject to
n∑

i=1

wixi 6 c

where xi ∈ {0, 1}, i = 1, 2, . . . n

It is worth noting that our approach is not specific to the knapsack problem,

and we will use it to implement other branch-and-bound algorithms. The knapsack

problem was chosen as one of the most basic and well-studied optimization problems

for illustrative purposes.
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This paper is organized in the following manner. In Section II, we review the

distributed branch-and-bound approach in more detail as well as a survey of existing

work, while Section III describes the BOINC framework. A high level description

of BNBTEST is given in Section IV, and details of BNBTEST implementation are

provided in Section V. We will show experimental evaluation in Section VI, and finally

conclude our work in Section VII.

2. Distributed branch-and-bound

Branch-and-bound [18] is a universal and well-known technique for solving optimiza-

tion problems. In a nutshell, it interprets the input problem as the root of a search

tree. Then, two basic operations are recursively executed: branching the problem

(node) into several smaller (hopefully easier) problems, or bounding (pruning) the

tree node. The bounding can happen due to two reasons: either the problem has

become easy enough to be directly solved or one can prove that this node (and hence,

its descendants) cannot contribute to the optimal solution. At any point during

the search tree traversal, all subproblems can be processed independently. The only

shared resource is the incumbent. Hence, processing the search tree in a distributed

fashion is very natural and has been studied for decades.

Since the size and structure of the branch-and-bound tree are not known in

advance, the even distribution of computations among processors is a challenging

task. Load balancing has been comprehensively studied for tightly-coupled multi-

processors. Most efficient schemes use intensive communication among processors

to approach uniform distribution. Unfortunately, this approach is not suitable for

volunteer desktop grids where direct communications among computing nodes are

normally not allowed. The implementation of branch-and-bound algorithms on the

grid was also studied to some extent. The solution for distributed systems consisting

of several clusters connected via wide-area networks (WAN) was proposed in [2, 3].

In [23], the branch-and-bound framework was implemented via Ninf-G middleware

that provides secure communication over WANs and LANs. The system efficiently

utilizes the hierarchical nature of distributed systems: good results were reported for

different optimization problems. The work distribution is managed on two levels: at

the top level, the work is assigned to master processes, while at the second level, mas-

ter processes distribute the work among their slaves. The system uses intra-cluster

communication implemented via Ninf-G middleware.

Another approach for a computational environment comprising of several super-

computers was studied in [4]. The proposed software called MALLBA is aimed at

solving arbitrary global optimization problems by exact heuristic and hybrid meth-

ods. To be independent on a particular middleware, MALLBA uses its own set of

communication and process management routines. Different optimization algorithms

were implemented as different skeletons with a common interface. Such an approach

reduces efforts needed to implement new problems. Successful results for some prob-

lems were reported.
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The BNB-Grid framework proposed in [1] is suitable for utilizing heterogeneous

computing resources, supports exact and heuristic search strategies, and runs on

distributed systems consisting of different nodes ranging from PCs to large, publicly-

available supercomputers. The toolset efficiently copes with difficulties arising in such

systems: software diversity, the unreliability of nodes, and different ways of submitting

jobs. The distinctive feature of BNB-Grid is the use of different communication

packages on different levels: on the top level, we use ICE middleware coupled with

TCP/IP sockets, and within a single computing element, either MPI or POSIX Thread

libraries are used. Such an approach imposes minimal requirements on the computing

element software and efficiently utilizes the communication facilities of each node by

using a native communication mechanism.

The software packages mentioned above used proprietary middleware aimed at

grids comprising moderate number of powerful computer nodes; e.g., supercomputers.

Though these approaches present some useful ideas, they are generally not suitable

for desktop grids because the latter is based on standardized middleware, and the

number of computing nodes could be very large (thousands and millions of PCs).

The approach closest to ours was proposed in [5]. The authors developed a grid-

enabled implementation of the branch-and-bound method for computational grids

based on Condor [19] middleware. The suggested approach uses a centralized load-

balancing strategy: the master keeps a queue of sub-problems and periodically sends

them to free-working nodes (slaves). When a sub-problem is sent to the slave, it is

either completely solved or the resolution process is stopped after a given number

tmax of seconds while unprocessed subproblems are sent back to the master. By

adjusting tmax, the systems can control the arrival rate of new sub-problems to

the master, preventing memory overflow and avoiding performance degradation due

to a bottleneck in the master. Authors reported successful results for several hard

quadratic assignment instances.

Condor has been proven to be a good tool for organizing corporate grids which

comprise the resources of a department or institution, but it is not aimed at volunteer

computing. World-wide volunteer grids differ from corporate grids in that communi-

cation latency can be very high due to the fact that all data is stored in file systems,

and clients can be connected to the master through slow Internet links and be sep-

arated by many intermediate hosts. Unlike Condor, volunteer grids offer directional

one-way communication from clients to the master. Clients request new jobs from the

master within a specified time, which can be quite long: minutes or even hours. The

mentioned observations suggest that data traffic should be kept as small as possible.

Thus, we decided to let clients always solve the sub-problems to the end, thus avoid-

ing sending back the remaining unprocessed sub-problems. High latency also implies

that the parcels should be large. To fulfill this requirement, our systems packs several

sub-problems into one parcel rather than exchanging individual subproblems as in [5].

In the sequel, we evaluate and compare several strategies of aggregating sub-problems

to parcels (work-units). Figure 1 shows an example of a distributed search tree in

BNBTEST.
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Figure 1. Distributed branch and bound: the frontier is a cut in the search tree separating

the completed nodes from the not-yet-explored nodes.

3. BOINC framework

We have built BNBTEST on top of BOINC – a middleware for volunteer grid com-

puting. As almost any distributed software, BNBTEST must cope with the following

issues: job distribution, load balancing, parallelism, synchronization, and nondeter-

minism. The first two points are handled by our system, while the remaining three

were implemented by BOINC. The final three are in the scope of this section.

3.1. Parallelism

BOINC supports multi-processor and multi-core executions within the same machine

(either standalone or within a cluster). Developers may be able to use OpenCL, MPI,

OpenMP, CUDA, languages like Titanium or Cilk, or libraries of multi-threaded nu-

merical “kernels” to develop a multi-threaded app. Also, BOINC supports applica-

tions that use co-processors. The supported co-processor types are NVIDIA, AMD,

and Intel GPU. As a desktop grid system, BOINC support different kinds of platforms.

A platform is a compilation target for BOINC applications – typically, a combination

of CPU architecture and an operating system. Each application version is associated

with a particular platform. Each project can provide application versions for any set

of platforms; the more platforms that are supported, the more hosts that will be able

to participate in the project.

BNBTEST just views all multi-cores and multi-processors as individual clients,

in order to reduce the complexity of system while increasing efficiency (for example,
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if a volunteer computer has 2 processors, each with 4 cores – in BNBTEST, this

computer will be seen as 2 ∗ 4 = 8 cores, each time required 8 workunits from the

master server).

3.2. Synchronization

In the BOINC system, there are ‘Trickle messages’ that allows applications to com-

municate with the server during the execution of a workunit (job). Messages are

XML documents, and they may go from client to server or vice-versa. Trickle mes-

sages are asynchronous, ordered, and reliable. Since they are conveyed in scheduler

RPC messages, they may not be delivered immediately after being generated, so the

communication module is not available in current version of BNBTEST.

3.3. Nondeterminism

Typically, a BOINC server sends ’work unit’ to clients, then the clients perform

computations and reply to the server. But many things can happen as a result:

• The client computes the result correctly and returns it;

• The client computes the result incorrectly and returns it;

• The client fails to download or upload files;

• The application crashes on the client;

• The client never returns anything because it breaks or stops running BOINC;

• The scheduler isn’t able to send the result because it requires more resources

than any client has.

In BOINC, there is a validator that decides whether results are correct. We must

supply a validator for each application in BNBTEST, and include it in the 〈daemons〉
section of the configuration file. As we are using BOINC for ’desktop grid’ computing

(i.e., we trust all the participating hosts), then BOINC supplied a standard validator

– “sample trivial validator”, which requires a strict majority and regards results as

equivalent only if they agree byte for byte.

3.4. Limitations of job execution times

The Volunteer Grid (Desktop Grid) requires work sent to volunteer computers to be

returned within a set time limit. This is to ensure the overall project batches do

not get delayed. At the same time, this facilitates the participation of devices that

are on only a few hours per day; e.g., home computers can process a project in the

background while performing email messaging, web browsing, and other housekeeping

chores. The principle is that every cycle counts and each work unit eventually does

get completed. Frequent checkpoints will let these jobs resume very near to where

they were shut down the previous time.

BOINC does not run work in a deadline order. Normally, BOINC schedules

tasks in the order they were received. Rush jobs will show messages like “Running-

High Priority” and others like “Waiting to Run” if paused or preempted during the
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general state of Earliest deadline first (EDF), by some referred to as panic state when

the order of processing is strictly according to which jobs need to be completed the

soonest, irrespective of the project. In BNBTEST, we set Minimum execution times

at 2 minutes and Maximum at 30 minutes in order to achieve good performance.

4. BNBTEST overview

BNBTEST uses two ways to traverse the search tree – Depth-first search (DFS) and

Breadth-first search (BFS). It is known that a BFS requires more memory space,

while a DFS can use more time [12].

As in any other BOINC application, BNBTEST has two parts: a master part (or

simply ‘master’) working on a master server, and a client part that works on clients.

Initially, the master reads the problem data and runs the sequential BFS solver locally

(in an attempt to generate a large frontier) to provide adequate amounts for the client

workstation. The master workstation will stop running the sequential BFS solver until

the amount reaches an upper threshold, or the given number of iterations is done.

Using a BFS on the master allows us to generate a sufficient amount of sub-problems

in a short period of time.

Next, unexplored sub-problems of the frontier are packed in workunits that are

sent to clients. The client workstation solves sub-problems in the workunit by a se-

quential DFS solver. Figure 2 shows the parallelization and distribution strategy

across machines and cores. Standard BOINC policy assures that more-powerful ma-

chines will get more workunits.

Figure 2. Parallelization and distribution strategy with a similar approach across machines

and cores.
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5. Implementation

Although the basic structure of the BNBTEST search and distribution algorithm

is quite simple, there are several details we have to deal with in order to ensure

correctness and obtain good performance.

5.1. Traversing the tree

As noted in the previous section, there are two standard ways of traversing a search

tree. BFS processes subproblems that have a lower layer number (closer to the root)

first. This allows broad exploration of the search space and may eventually lead to

a large (exponential) number of subproblems. In contrast, DFS explores deeper nodes

first. This rule ensures that there are at most λβ open problems at any time, where

λ is the maximum height of the tree and β the maximum branching factor (number

of children) of a node [6].

A volunteer computing grid (or desktop grid) is a very large grid system, with

tens of thousands of computers. To ensure that our computational resources are

fully utilized, BNBTEST must generate enough subproblems and workunits to keep

all machines occupied. This favors BFS in the master workstation, which tends to

generate more problems. However, BFS is very memory-intensive, so the required

master server of BNBTEST has more processing power and memory. It stands to

reason that a central server should be the one most powerful. So, on the master side;

we adopt BFS, and in relative terms, on the client side, we use DFS. Using BFS at

the client side may result in a very large frontier and, as a consequence, a memory

overflow.

5.2. Load balancing

In essence, the goal of BNBTEST is to traverse a rooted tree in parallel. With k

machines, a simple algorithm to achieve this would locally split the initial problem

into k subproblems, send the subproblems to different machines, and then wait for

them to finish. Because a typical branch-and-bound tree is extremely unbalanced,

some machines will complete their subproblems much faster than the others.

Given the restrictive communication model imposed by BOINC, BNBTEST must

plan ahead of time to avoid such situations. Considering the variance of the search

tree, it is difficult to design a general algorithm to generate subproblems evenly.

Hence, in BNBTEST, we designed and implemented three different workunit pack-

aging and distribution strategies. If the number of sub-problems in the frontier is

S, the total number of workunits is W ; then, each workunit has
⌊
S
W

⌋
or
⌊
S
W

⌋
+ 1

subproblems.

A. Dense strategy: Dense strategy packages the physically close sub-problems

from the search tree into W workunits.

wi =
[
s (i−1)S

W +1
, s (i−1)S

W +2
, . . . , s iS

W

]
(2)

where i = 1, 2, . . . ,W
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B. Sparse strategy: Sparse strategy equidistantly picks subproblems then

packages them into W workunits.

wi =

[
s (i−1)S

W +i
, s iS

W +i, . . . , s (i−2+ S
W

)S

W +i

]
(3)

where i = 1, 2, . . . ,W

C. Random strategy: Random strategy we use Fisher-Yates shuffle [14] to

generate a random permutation of a finite set, in plain terms, for randomly shuffling

the subproblems. Then package them into W workunits. The pseudo code of random

strategy was shown in Algorithm 1.

Algorithm 1: Random strategy

Input: S: Number of subproblems

W : Number of workunits

L[S]: list of subproblems

Output: L[w]: Output W lists

1 for i ← S − 1 to 1 do

2 j ← random integer with 0 6 j 6 i
3 swap L[j] and L[i];

4 Sw ← S
W

5 Swl ← S mod W

6 order ← 0

7 while order 6 Swl do

8 for i ← 0 to Sw + 1 do

9 push Ls[i] into Lw[order]

10 order + +

11 while Swl < order < Sw do

12 for i ← 0 to Sw do

13 push Ls[i] into Lw[order]

14 order + +

15 return order

6. Experimental evaluation

As a high performance distributed computing platform, BOINC has about 596,224

active computers (hosts) worldwide processing 9.2 petaFLOPS on average as of March,

2013. The BOINC framework is supported by various operating systems, including

Microsoft Windows, Mac OS X, Android, GNU/Linux, and FreeBSD. Hence, BOINC

has been proven to be stable and robust (we don’t need to verify these in the very

first step). Also, because this paper is our preliminary experimentation of implement

branch and bound on DGs, we are more concerned about system implementation,
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load balancing between workunits, and the validity of the results. The robustness of

our system will be verified in future work.

We tested BNBTEST on a small cluster of 15 computers, each with 2–4 GB

of RAM and 2-8 core processors running different operation systems (primarily

GNU/Linux and Microsoft Windows series).

As already mentioned, our example application is the 0-1 knapsack problem. We

focus our experiments on Circle instances circle
(

2
3

)
[14]. The instances are generated

such that the profits as function of the weights form an arc of a circle (an ellipsis,

actually). The weights are uniformly distributed in [1, R], and for each weight w,

the corresponding profit is chosen as p = 2
3

√
4R2 − (w − 2R)2, here we set R = 200.

These instances are commonly used for benchmarking sequential solvers [8, 21, 22].

The performance of our solver is competitive with a similar implementation based on

Condor Grid, which was reported in [16]. The experiment is aimed at demonstrating

the effect of three different strategies and load balancing between workunits. We

measured makespan (Mspan) defined as the time elapsed between the start of the first

task of the job and the finish of its last task, i.e.

Mspan = Tstop − Tstar (4)

Also, we defined the speedup (Sp) as a ratio between the total amount of (useful)

CPU time consumed by the application and the Mspan. The total useful time Tu for

the set of workunits (U) and the speedup Sp are defined as follows:

Tu =
∑

i∈U
T (i) (5)

Sp =
Tu

Mspan
(6)

For this experiment, all data is obtained for cir200, a circle
(

2
3

)
instance with

200 items. The grain size of the workunit is controlled by the maximum amount of

subproblems per workunit (MSW ). We choose MSW by 5, 10and20 as different test

cases. The maximum number of subproblems generated by the master is limited to

1000. Table 1 shows the makespan (Mspan), the total useful time (Tu), the speedup

(Sp) and execution time in master server (Tm) for each trial in the experiment. By

default, all time is shown in seconds.

Table 1

Performance of BNBTEST with 1000 subproblems on cir200.

MSW
Strategies

Dense strategy Sparse strategy Random strategy
Mspan Tu Sp Tm Mspan Tu Sp Tm Mspan Tu Sp Tm

5 201 3041 15.131 0.56 172 2761 16.051 2.31 133 2410 18.117 5.5

10 178 2046 14.302 0.43 170 2667 15.69 2.05 148 2223 15.022 5.01

20 191 2495 13.066 0.41 189 2996 15.057 1.92 134 2042 15.238 4.83
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We can draw some meaningful conclusions from the table:

• The parallel performance decreases with the increase of grain size when we fixed

the total number of subproblems (for all three strategies);

• In most case, random strategy gives a better performance. And the smaller of

gain size, the better parallel performance of random strategy. Meanwhile, dense

strategy parallel performs always the worst.

• In master workstation, random strategy performs better because of the lower

algorithm complexity. Random strategy has the worst Tm since the time cost

from shuffle algorithm.

As mentioned in the previous section, a typical branch-and-bound tree is ex-

tremely unbalanced, so workunit load-balance is a key indicator. Figure 3 compares

the task execution time of three different strategies in the same instance. Obviously,

we can see from the figure 3 that the random strategy has the best load-balance, while

the dense strategy gives us the worst load balancing.

Figure 3. Load-balancing of three strategies.

After the comparison of these three strategies, the random strategy gives us the

highest performance in the client workstation but the worst performance in the master

workstation. Dense strategy performs better in the master workstation, but always

worst in the client workstation; the sparse strategy always has intermediate-level

performances in both client and master workstations.

While the size of instance increases, task execution time in the master workstation

increases linearly, but it cannot be compared to the increase in the client workstation.

For a real large-scale computation, our demonstration is made on an instance cir250,

a circle
(

2
3

)
knapsack instance of size 250. Table 2 shows the performance on cir250.

The instance well proves this point. The execution time in the master workstation

increased by a few seconds, but in the client workstation, it increased 9 times. Based

on these different scales of test instances, we recommend the random strategy in most

cases.
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Table 2

Performance of BNBTEST with 1000 subproblems on cir250.

MSW
Strategies

Dense strategy Sparse strategy Random strategy
Mspan Tu Sp Tm Mspan Tu Sp Tm Mspan Tu Sp Tm

5 1821 27991 15.37 2.13 1636 26644 16.277 2.60 1473 27090 18.39 7.21

7. Conclusion

We have introduced BNBTEST, a framework for implementing the branch-and-bound

method on a desktop grid system (BOINC), which includes the following features:

multi-core parallelization, traversing, delivering the search tree, and load balancing

of the workunits. BNBTEST has been proven as a good distributed branch and

bound solver. Future work will focus on more-efficient packaging and a distribution

strategy, and make the BNBTEST to be a modular middleware, with the user interface

for users. Also, we plan to increase our volunteer grid for solve more complex and

practical optimization problems.
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