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CAN ARTIFICIAL INTELLIGENCE
PREDICT A TSUNAMI?

In this article, we build a model for tsunami simulation based on physics-
informed neural networks and the finite difference method. We then check how
the numerical results obtained using these two methods differ from each other.
Assuming that the finite difference method gives accurate results, we estimate
the error resulting from the use of physics-informed neural networks. We com-
pare this estimate with surveys conducted among computer science students
in order to assess the level of public trust among specialists in the numerical
results obtained using artificial intelligence tools. In particular, we assess how
reliable tsunami predictions obtained using physics-informed neural networks
are and what the public perception of the reliability of such predictions is.
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1. Introduction

Physics Informed Neural Networks (PINNs) [12] and Variational Physics Informed
Neural Networks (VPINNS) [6] are modern methods for training neural network solu-
tions of partial differential equations (PDEs). PINNs and VPINNs employ the residual
loss function during the training procedure. PINNs employ a strong loss function and
use collocation points during training, while VPINNs utilize weak residuals with in-
tegration using selected test functions. The PINN is a neural network that learns the
solution to the differential equation. NNs are universal function approximators. We
use fully-connected neural networks with 3 inputs (z, y, and t) and a single output wu,
the water level at that space-time point.

In PINNs and (R)VPINNS, the loss is typically comprised of several components;
in addition to the norm of the residual, it encompasses penalty terms corresponding
to boundary and/or initial conditions. As they may differ significantly in scale and
importance, special care is required to ensure that all components are properly treated
during training. One viable approach is to construct the loss function as a weighted
sum, where the weights are automatically scaled [1]. An alternative is to treat PINN
training as a multi-objective optimization task, as in the Jacobian descent method [11].
Recently, PINNs have been applied to solving shallow-water equations [9,10], includ-
ing modeling a tsunami wave [2,7]. However, these works focus on a relatively small
region and do not allow for predicting the global impact of such an event. Of these two,
only [7] presents 2D results, although it has flat bathymetry. In [3], PINNs have been
used to solve shallow-water equations in spherical geometry. Achieving acceptable
accuracy on reasonable time scales requires splitting the temporal domain into subin-
tervals and training multiple separate PINNs connected by initial conditions. We are
not aware of any shallow-water equation simulations employing Variational PINNs.

We develop a model for tsunami simulation based on Physics Informed Neural
Networks and the Finite Difference Method. We then investigate the degree to which
the numerical results obtained from these two methods differ. We estimate the error
that arises from the use of PINNs. We compare this assumption with surveys of com-
puter science students to assess the general confidence in numerical results obtained
with Al tools. Specifically, we assess how reliable tsunami predictions obtained with
physics-informed neural networks are and how the public evaluates the reliability of
these predictions.

2. Modeling of tsunami with Physics Informed Neural Networks
and Finite Difference Method

We will start with the following wave equation approximation of the shallow water
equations, and we will improve and augment it with tides, winds, variations in the
acceleration due to gravitational forces, and the oblate spheroid geometry of the Earth
surface.
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The wave equation is derived from the shallow water theory equations. Specif-
ically, it employs the nonlinear wave equation as presented in the work of [8]. The
form of the equation is given by:

dPu(w,y,t)

A2 -V (g(u(x,y,t) - z(:my))Vu(a:,y,t)) =0 (1)

where g represents the acceleration due to gravity and z(x,y) is the seabed topog-
raphy. After expanding it using the product rule, for a two-dimensional problem, it

becomes: CCZ;";Q(;E <(uz)gz) +8% <(u2>?;)> -0 (2)

The contributions from the x and y derivatives can be combined as follows:

d*u 9?u  0%u Olu—2z)0u  O(u—=z)0u\
w0 (G a) e n T Te) 0 o

The outcome is the second-order nonlinear PDE that describes wave propagation.
Here z is the topography of the seabed, and g is a gravitational acceleration constant.
The initial condition and the boundary conditions were combined with the residual
loss using scalar linearization.

Figure 1 presents exemplary initial conditions for a given set of parameters.

A=0.5, B=1, (x,y)=(0.5, 0.5), a=50
Wave altitude

1.4

0.6

Figure 1. Initial conditions

The boundary conditions for the tsunami wave equation are defined using Neu-
mann conditions, which specify the derivative of the wave height at the boundaries.
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These conditions are expressed as:

ou
3 =0 on 90 (4)

where 0f) is the boundary of the domain 2, and % represents the normal derivative

of the wave height u. This condition ensures that there is no flux of the wave height
across the boundary, effectively simulating a reflective barrier.

The seabed topography is represented using triangular mesh data, depicting the
topography of the Valparaiso coastline region in Chile. The data come from the
Giant Metrewave Radio Telescope (GMRT), which is public and accessible online!.
The visualization of the topographic data is presented in Figure 2.

Figure 2. Seabed topography visualization

2.1. Finite Difference Method for the Tsunami Problem

In this section, the finite difference method for modeling tsunami waves is derived.
By discretizing the continuous partial differential equation, the continuous model
is transformed into a system of algebraic equations that can be solved numerically,
enabling the simulation of tsunami wave propagation over time. For the modelling of
the tsunami with FDM the residual form of the equation 3 is used:

d*u 0?u  0*u Ou—z)ou  O(u—=z)0u)
w oo (G ) TR T Te) 0 o

Thttps://www.gmrt.org/ GMRTMapTool /
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The explicit Euler time integration scheme is employed for time discretization.
2
First, the approximation of the second-order time derivative ‘2712‘ using a central dif-

ference approximation is calculated:

d2u L Ut41 — 2us + Up_1 (6)
a2 "~ At2

where u; represents the value of u at the i-th time step, and At is the time step size.

Upp1 — 22Uy + Ugp— Pu 0% ou—z)0u O(u—=z)0u
=Bk () (0P P D2 ou a2 o
At Ox dy dr O dy Oy
where z denotes the seabed. Next, to obtain equation for u;y; the equation is rear-

ranged to:

or O + oy Oy
(8)
The following expressions are used for discretizing the second and first derivatives
with respect to z and y. We start from the second derivative with respect to x and y,

Pu 0%u Olu—2z)0u Ou—2z2)0u
Ut+1=ut+ut—ut1+At29(<u_z><ax2+8y2> o ( ))

Pu i1 — iy Ui )
0x? h?

Pu  wiger — 2y + Uiy 10
oy n? (o)

the first derivative of u with respect to x and y,

8u - Ui41,5 — Ui—1,5

ox 2h
ou _ uijy1 — Uij—1
-~ Y 12
oy 2h (12)
and finally, the first derivative of z with respect to x and y,
0z Zi4+l,j — Ri—1,5
_— - ) 13
Ox 2h (13)
0z _ Zij+1 — Zij—1
dy 2h (14)
We substitute into the wave equation
Upp1 = Up +up — Up—1 + At - g - (15)
Wit1,j — 2Uij + Uim1j | Uil — 2Ui 5 + Ui i1
((um‘ - zi5) ( s Ly T R— (16)

2 2
Uitl,j — Uizl Uij+1 — Wij—1 Ritl,y — Zi-ly
ikttt 1V ) et e B ¥ R I (i o 1Y ot 1V 1
+ ( 2h ) + ( 2h ) ( 2h ) (17)

i1, — Ui—1,5 Zij+1 — Rij—1 Uj j+1 — Ui j—1
— 1
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This equation is used for simulating wave propagation using the Finite Difference
Method. By iterating over these equations for each time step and spatial point,
the dynamic evolution of the wave over time is modeled. We employ the Neumann
boundary conditions

g—z =0 on the boundary (19)
ou

where 3= represents the derivative of u in the direction normal to the boundary.

In the discrete form, this condition can be approximated as:

w =0 or wij=mwug, (20)
% =0 or un;=un-1; )
w =0 or w1 =upo (22)
% =0 or uj,m=um-1 (23)

where ¢ and j are indices representing the spatial grid points, IV is the total number
of grid points in the x-direction, and M is the total number of grid points in the
y-direction.

These boundary conditions ensure that the wave does not pass through the do-
main boundaries, effectively reflecting back into the domain, which is essential for the
accurate simulation of tsunami waves. The initial condition is directly used by Finite
Difference Methods as the initial step of the simulation.

For the solution of system of linear equations processed by the Finite Difference
Method we have employed the MUMPS solver [4,5].

2.2. Physics Informed Neural Network for the Tsunami Problem

For the modelling of the tsunami with PINN the residual form of the previously
introduced equation 3 is used:

d27u_ (U—Z) @J’_@ + @ 2+ @ 2_@@_%@ = (24)
a9 oxr2  Oy? Ox dy Oxdx Oydy |

The solution is represented by the neural network:

X
u(z,y,t) = PINN(z,y,t) = Wyo | W lo(.o(Wh [y | +0Y)... + 0771 | 4™ (25)
t

where u(z,y, t) is approximated as a function of the inputs x, y, and ¢ through a neural
network. The network consists of multiple layers, each defined by a weight matrix W*
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and a bias vector b*, with non-linear transformations applied at each layer using the
hyperbolic tangent activation function o.
Based on the Equation (3), the loss components can be determined:
e Initial Condition Loss:

Ninitial
2
Lossimitial = Y |ul@i,yi,0) — uo(xi, yi))|
i=1
where ug is determined by the initial equation
e Boundary Condition Loss:

Nboundary 2

Lossboundary = §

i=1

ou
(@4, ¥i, &
an(x Yi, ti)

This represents the Neumann boundary condition, where the derivative of u
normal to the boundary is considered.
e Residual Loss:

Nresidual 2

d*u
Lossresidual =

e V(g(u — z)Vu)

i=1

This ensures that the solution satisfies the underlying differential equation.
The total loss is defined as:

Loss = Lossinitial + Lossboundary + Lossresidual

The PINN receives x, ¥y, t as input variables. Neural Network processes these
inputs to predict the output u (the solution to the PDE). By utilizing automatic
differentiation, the necessary derivatives for the residual equation are calculated, and
these derivatives are then used to compute the final loss.

3. Comparison of Physics Informed Neural Networks
and Finite Difference Method

The Finite Difference Method simulation was run as a baseline to compare with
Physics-Informed Neural Networks. The experiment was run with a time step of
0.001 over 250 epochs. A grid of size 128 x 128 was used to discretize the spatial
domain [0,1] x [0,1] in both dimensions. The results are presented from a side view
in Figure 3.

The Figure 4 also provides a comparison between the FDM and the PINN mod-
els for simulating tsunami wave propagation over coastal topography. In the early
stages of the simulation, the PINN closely follows the FDM results, showing that it
has effectively learned the initial condition. However, as the simulation progresses,
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the differences between the models become more evident, especially in the wave’s
outer regions.

These emerging differences highlight that while the PINN performs well initially,
it struggles to maintain accuracy as the wave propagates further. The most significant
deviations occur in the later stages, suggesting that the PINN model may need further
refinement, particularly in its treatment of boundary conditions and its ability to
accurately model wave dynamics over extended periods.

Ter;ain altitude PINN for t = 0.000 Wagegrsaltitude Ter;ain altitude PINN for t = 0.030 Wagesrsaltitude

0.8 0.9 0.8 0.9

0.6 \ 0.85 0.6 0.85
\ ~

0.4 0.8 0.4 0.8

0.2 0.75 0.2 0.75

Terriain altitude PINN for t = 0.090 Wagegrsaltitude Terriain altitude PINN fort = 0.120 Wagegrsaltitude

0.8 0.9 0.8 0.9
0.6 \ 0.85 0.6 0.85
\
\ .
0.4 0.8 0.4 0.8
0.2 0.75 0.2 0.75
Terrain altitude PINN fort = 0.150 Water altitude Terrain altitude PINN for t = 0.210 Water altitude
1 0.95 1 0.95
0.8 0.9 0.8 0.9
0.6 \ 0.85 0.6 \ 0.85
\ \
0.4 0.8 0.4 0.8
0.2 0.75 0.2 0.75

Figure 3. PINN simulation results (side view)
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Figure 4. Visualization of difference between PINN and FDM for coastal topography
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4. Survey among computer science students

Can Al tsunami predictions be trusted? To address the question, we conducted
a study among 176 first-cycle undergraduate students in computer science at AGH
University in Krakow (N = 118) and applied computer science at Jagiellonian Uni-
versity in Krakow (NN = 58). We were interested in how Al-driven computing is
perceived by todays’ students and future experts and professionals who may perform
numerical simulations in various areas, including seismic and ocean simulations. In
the study, we applied an online survey and hosted it via MS Forms. The survey
link was distributed to students at both universities by the instructors of the selected
courses. The sample was dominated by male students (81%)2.

The average age was 21 years. The third year students slightly dominated the
Bachelor’s degree programs over the last six semesters (first year students — 27%,
second year students — 24%, third year students — 49%)3. One third of the participants
in the study program took courses that introduced how to use Al in engineering or
scientific computing (32%). Additionally, every five students can apply methods for
verifying AI computations (19%) or regularly use Al-powered engineering software
for engineering or scientific computing (19%).

During the research, the students were asked several questions about AI*. Some of
these referred to assessing the credibility of computations performed by Al in specific
scenarios, such as weather forecasting, verifying the durability of residential buildings,
car construction, and testing the resistance of aircraft. The findings suggest a clear
lack of trust in AT for life-critical applications in the presented scenarios (see Figure 5).

The general trend we observe is that, as Al takes over more of the decision-making
process in physical durability verification, concerns are growing that any errors could
have more serious consequences for humans. Of the four scenarios, the highest level
of confidence in AT calculations is found in tsunami prediction. Here, the Al system
functions as an early warning tool. This suggests that the acceptance of Al results
is highest when the possible consequences of an error do not directly threaten the
respondent’s life.

2These proportions are consistent with the general trend of significantly lower female participa-
tion in STEM, which is observed in both scientific work and studies in Poland and around the world.
See:  https://unesdoc.unesco.org /ark: /48223 / pf0000377456 / PDF / 377456eng.pdf.multi.page =
1&zoom=auto,-16,842

3in applied computer studies at Jagiellonian University in Krakow, while engineer ing degree pro-
grams (computer studies at AGH University in Krakow) were evaluated over the last seven semesters.
For the purposes of the analysis, the study years were categorized as follows: the first year includes
the first and second semesters; the second year includes the third and fourth semesters; and the third
year includes the fifth, sixth, and seventh semesters.

4See also the more detailed findings from a larger and more diverse sample: Tomasz Shizalec,
Daria Wdjcik, Carlos Uriarteb, Marcin Lo$, Anna Paszyriska, Maciej Paszyniski. Reliable Physics-
Informed Neural Networks: Can we trust Al-generated numerical simulations? submitted to Jour-
nal of Computational Science
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Please respond to each statement related to
Al-driven computations in various situations

If Al predicted tsunami in the place of your holidays,
would you consider its warnings credible?

41% 9%

Would you drive your car knowing

0,
its construction was tested by Al? 20

Would you fly a plane knowing its resistance

0,
to turbulence and vibration was tested by Al? e

Do you think Al could verify the building structure
strength of the house or apartment you live in?

. Yes . No - Neutral

12%

Figure 5. Credibility assessment of Al-driven computations in various contexts (N = 176)

Students’ trust in AI numerical simulations to predict tsunamis varies signifi-
cantly according to their individual traits related to knowledge and experience of Al
(see Figure 5).

If Al predicted tsunami in the place of your holidays,
would you consider its warnings credible?

Participation in Al

Year of the study
courses
First year o o o Participation o o o
(N=47) 30% 6% 64% (N=57) 51% 12% 37%
Second year 5 o o No participation o " N
(N=43) 35% 12% 54% (N=90) 34% 8% 58%
Third year o o o No recollection . o 5
(N=86) 42% 1% 43% (N=20) 30% 10% 60%
Knowledge of Al Use of Al-driven
verification methods engineering software
Full knowledge S o o Regular use 5 5 5
(N=32) 53% 16% 31% (N=37) 32% 18% 50%
Partial knowledge N Familiarity without - o o
(N=94) 39% 7% 56% use (N=58) 43% 7% 50%
No knowledge o o o No familiarity - o o
(N=50) 30% 16% 54% (N=84) 40% 8% 50%

. Yes . No . Neutral

Figure 6. Credibility of Al-driven computations for tsunami prediction versus participation
in the AI course, the year of the study, the usage of verification methods applied to Al
computations, and the usage of Al-powered computational software
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Higher years of study and participation in an AI course within a study program
that introduces the use of Al in engineering or scientific computing increase stu-
dents’ trust in Al-driven computations to predict tsunamis. However, trust based on
theoretical knowledge may result from overly optimistic expectations or imagination
regarding the possibilities of AI, which can create a positive perception of Al and its
abilities. This perspective and declared trust are informed by practical knowledge and
experience. Trust in Al increases with the ability to verify Al-generated computa-
tions. A lack of this ability primarily leads to uncertainty in assessing the credibility
of Al-generated tsunami warnings rather than dismissing them outright. The same
applies to experience in using Al-driven engineering software. The less familiar one
is with such software, the more likely one is to trust Al calculations for predicting
tsunamis. Students who regularly use Al-supported software are less likely to assess
AT computations as credible, suggesting that experience with Al in performing nu-
merical simulations increases caution and skepticism regarding its absolute reliability
in critical situations.

Regardless of their individual traits, the students were asked to justify their
choices when declaring trust in AI’s ability to predict tsunamis. Three main themes
emerged from the gathered data. The first refers to logic and belief in numbers. This
type of trust in Al-driven computational tools used to predict tsunamis embraces ar-
guments of competence, including the belief that Al has advantages over traditional
models or human intuition in tasks involving the analysis of seismic and oceanic pat-
terns. Al is perceived as an advanced analytical or mathematical tool, which gives it
an air of objectivity: ‘Al models are tailored to such applications’ or ‘it’s still math’.
It is also highlighted that AI operates on numerous factors, large databases, and his-
torical data, which enhance its analytical capabilities; however, it is not ‘a magical
prophecy’. The other two types of justification are based on the precautionary prin-
ciple. On one hand, there are arguments about consequences: even if an alert is not
perceived as credible, it is worth taking it into consideration, as the cost of a false
warning (e.g., shortened holidays or evacuation) is lower than the cost of ignoring
a warning (e.g., losing one’s life). AI predictions should therefore form the basis for
action rather than be considered absolute, proven truths. On the other hand, there
are arguments for control: AI needs to be embedded within the remit of relevant
experts and be transparent. These two components are key to trusting AI numeri-
cal simulations performed to predict tsunamis. Students assume that the model has
been sufficiently verified by human experts and that it employs tested computational
models, as it was permitted to warn individuals about the tsunami.

5. Conclusions

So, can Al-driven tsunami predictions be trusted? This exploratory study examines
how students perceive the role of Al in tsunami prediction. While trust is readily
declared at the level of theoretical knowledge and the expectations based on it, stu-
dents exhibit a higher level of criticism and caution when confronted with experience
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and the use of practical tools. In the scenario detailed in the study (AI predicts
tsunami), trust is based not only on the power of the algorithms and AI but also
on the prevailing imperative of risk minimization and the need for human (expert)
oversight of Al

On the other hand, the Large Language Models (LLMs) can generate compu-
tational codes that employ either the Finite Difference Method or Physics Informed
Neural Networks to simulate tsunamis. They utilize the already available knowledge
or algorithms and can perform the same work as can be done by a skilled programmer.
They will, however, not propose new computational algorithms; thus, the reliability
of LLM predictions is related to the reliability of state-of-the-art algorithms.

From the computational science perspective, as we can see from the presented
comparison, Physics Informed Neural Networks differ from Finite Difference Simula-
tions, and there is a need to develop additional algorithms and methods to increase
the reliability of numerical simulations performed by these methods.

6. Tsunami simulational code

The python code for running tsunami simulations at the Valparaiso seashore of Chile
is available at https://github.com/alicenoknow /tsunami_pinn
This code has been created as an integral part of the Master Thesis of Alicja

Niewiadomska entitled "Modeling of tsunami caused by Earthquake at the seashore
of Chile with Physics Informed Neural Network (PINN)”.

7. Appendix — students answers

In this appendix we present a collection of students answers to the following question:
If AT predicted a tsunami in the place where you are on vacation, would you consider
these warnings credible?

1. I believe that, with some lead time, tsunami prediction can be carried out with
almost perfect accuracy, even considering Al’s shortcomings.

2. Yes, credible, because a warning is always worth paying attention to. I believe
AT information always follows from something.

3. If an advanced Al system warned about a tsunami, and if that Al were at all
reliable, I would evacuate.

4. 1 think that at the current stage of Al development and available data, such
predictions can be considered reliable.

5. If T even have slightly unreliable indications that something bad might happen,
I prefer to err on the side of caution.

6. Prudence.

7. Someone had to create the software that calculates this, and Al had to take some
information into account, but I would still listen to human opinions as well.


https://github.com/alicenoknow/tsunami_pinn

176

Daria Wdjcik, Alicja Niewiadomska, Maciej Paszyriski

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.

25.
26.

27.

28.

. In my opinion, Al has analyzed quite a lot of information about tsunamis, so it

can accurately predict this situation.

. Al is a highly advanced statistical model based on historical data. If AT has access

to readings, e.g., from seismographs, then based on historical data analysis it can
predict the formation of a tsunami.

AT can take many factors into account more efficiently, relying on previous events
rather than, for example, intuition.

AT also gathers information from the internet and experts.

Human life is not worth the risk.

In my opinion, Al can analyze large datasets far better. For repetitive weather
phenomena, Al can more easily estimate the likelihood of similar events based
on historical data.

I think that in a critical situation, I would prefer to be cautious and trust Al
forecasts, as my safety is more important than my vacation.

Not so much credible, but I would follow it because even a small chance of a
natural disaster is enough to evacuate.

It depends how we understand Al - if it’s something like ChatGPT, then no,
but a tool for predicting tsunamis and other events based on AI and concrete
collected data - yes.

I assume that the process by which Al predicts this event would be previously
verified by experts and deemed sufficiently accurate.

Tsunami prediction has been well described and studied for a long time, which
gives Al models a lot of data, so they can predict with high accuracy.
Assuming that some expert, after entering reliable data, obtained such a simu-
lation result, I see no reason why predictions should be less accurate than those
made without Al.

Weather forecasts also rely on probabilistic models, so I would also consider such
Al-based predictions plausible.

It’s a warning based on data, so I would probably be concerned.

If it’s a specialized network, then it’s pure data analysis.

Not 100% credible, but I wouldn’t dismiss it.

Better to run away just in case - there’s a chance it’s right, and you only live
once.

Well, it’s better to be cautious.

Even if it turned out to be unreliable, I would consider it appropriate to remain
cautious.

Often such projects, especially those concerning natural disasters, would likely
be supported by the government, so they would have to be fairly reliable.

A specialized weather-forecasting model could predict future weather events with
fairly high precision.
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29.

30.
31.
32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

If a model were created that would warn earlier about a potential tsunami than
existing non-Al solutions, I would definitely trust it in the case of a tsunami
alarm - but not in the opposite situation where Al says there is no danger while
other infrastructure warns of an incoming wave.

Such a risk should not be ignored, even if I didn’t fully trust the model.

It would make me check information on the topic.

T understand we’re talking about models trained on good tsunami data under spe-
cialists’ supervision, not LMs to which I simply ask “Will there be a tsunami?”.
In that case, my trust would not differ much from trust in an expert who cal-
culated it manually. I suspect a good model could find even more correlations
between data than a human.

Because Al can process various data better than humans, and despite computa-
tional errors, I believe a good model will better assess risks.

I assume the models are trained under the guidance of top specialists in the
field and operate far better than standard algorithms, including heuristic ones.
However, I would still exercise considerable caution in trusting models, especially
on issues such as structural stability and durability.

As long as we treat %o0AI” as a tool rather than an infallible oracle, it does not
differ significantly from traditional models - it’s still mathematics.

Better to be cautious; I'm not sure whether Al is right, but it would be foolish
to risk it, so I would probably leave.

Better be safe than sorry.

I think that a model trained to predict tsunamis, if it were deployed, would also
be reliable; people need guidance, and I'm not a specialist myself.

I don’t want to take risks - if there is even a small chance that the warning is
true, I prefer to take it seriously and take precautions.

If it were allowed to issue warnings, I assume it would be reliable enough to trust.
Environmental simulation models seem fairly advanced.

If such information were somehow confirmed by experts. It’s not like suddenly
I’d feel threatened — there would need to be confirmation.

This is such a critical area of activity that I trust how the AI was implemented
and supervised, and that there is human oversight.

It would be good to know how reliable previous predictions were.

In this situation, the negative consequences of an Al error are minimal. I assume
AT calculations are correct in 99% of cases, so I have no problem accepting a
warning generated by Al. Problems arise when Al analysis is the only guarantee
of safety.

I would be skeptical of the results themselves, but a cautious person always
protects themselves.

The result would likely be based on some evidence; I would make sure it is
possible.
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48

49.

50.

ol.

92.

93.

54.
95.

96.

o7.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

. I don’t trust AI as much as experts, but if such signals appeared, they should
not be ignored.

AT does not make human errors; the only things that matter are the input data
and how it was trained. A well-trained model will perform better in such com-
putational tasks.

AT performed the data analysis, so it can predict a tsunami.

If this resulted from a simulation, it’s better to be careful. I assume that some
experts supervise such a system and that it was properly built.

As long as the results were confirmed in some way by specialists (i.e., not replacing
them with AT but supporting their work), then yes - I would consider the warnings
justified.

Artificial intelligence has access to huge datasets and can analyze weather or
seismic changes faster than humans.

The situation is quite similar to Pascal’s wager.

In the case of threats, better be safe than sorry, and if Al thinks something may
happen, there is probably something to it, and it’s good to be preventive.

I assume that people working in alert centers and similar institutions are respon-
sible enough not to cause panic and that they carefully choose and use different
computational models, including machine-learning ones.

I rarely encounter AI that makes mistakes, and it’s better not to risk it — if Al
came to such conclusions, then there’s probably something to it.

I know that neural networks can predict weather more effectively than much
more computationally expensive physical models, so this seems similar.

A tsunami depends on many factors; the vector of properties is wide. Al doesn’t
care if the weather was nice or cloudy - it just looks at its inputs and decides
whether these are tsunami - conducive factors or not.

I would consider it credible, but I would also listen to the opinions of experts and
specialists in this field to be more certain about the events.

Only if the predictions were sequentially verified by an expert.

I think that in this situation, I would definitely want to know experts’ opinions
as well, but T would not ignore such warnings.

If T considered the specific model used in this case reliable, then yes.

A tsunami is a significant threat, and some percentage chance - even if predicted
by AI - could prompt me to evacuate. Of course, I would prefer for an expert to
support these predictions.

If the model were trained to predict this (only this type of) phenomenon based
on data from previous tsunamis, I could consider the warnings valid.

Tsunami modeling is mainly based on data extrapolation; AI models are well
suited for such applications.

AT relies on historical data if trained that way. If a tsunami occurred under
similar conditions previously, there is a chance it could happen again.
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68. If, for some reason, the data allowed calculating a probability higher than mini-
mal, it should not be ignored. These systems specialize in specific tasks - in this
case, detecting tsunami threats.

69. It’s better not to ignore a potential threat.
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