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FOUNDATIONAL CERTIFICATION
OF CODE TRANSFORMATIONS
USING AUTOMATIC DIFFERENTIATION

Abstract Automatic Differentiation (AD) is concerned with the semantics augmentation

of an input program representing a function to form a transformed program

that computes the function’s derivatives. To ensure the correctness of the

AD transformed code (particularly for safety-critical applications), we aim at

certifying the algebraic manipulations at the heart of the AD process. We

have considered a WHILE-language, and have shown how such proofs can be

constructed by using appropriate relational Hoare logic. In particular, we have

shown how such inference rules can be constructed for both the forward- and

reverse-mode AD by using an abductive logical reasoning.

Keywords Certification, relational Hoare logic, abductive reasoning, Automatic
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1. Introduction

Automatic Differentiation (AD) [16] is now standard technology for computing deriva-

tives of a (vector) function f : Rn → Rm defined by a computer code. Such derivatives

may be used as sensitivities with respect to design parameters, Jacobians for use in

Newton-like iterations or in optimization algorithms, or coefficients for Taylor-series

generation. Compared to the numerical finite differencing scheme, AD is accurate

for machine precision and presents opportunities for efficient derivative computation.

There is already a large body of literature on the use of AD in solving engineering

problems.

However, the application of AD on large-scale applications is not straightforward

for at least the following reasons:

• AD relies on the assumption that the input code is piecewise differentiable.

• Prior to AD, certain language constructs may need be rewritten or the input

code be massaged for the specifics of the AD tool, see for example [28].

• The input code may contain non-differentiable functions; e.g., abs or functions

such as sqrt whose derivative values may overflow for very small numbers [27].

In principle, AD preserves the semantics of the input code provided that has not

been altered prior to AD transformation. Given this semi-automatic usage of AD,

can we trust AD for safety-critical applications?

Although the chain rule of calculus and the analyses used in AD have been

proven to be correct, the correctness of AD-generated code is tricky to establish.

First, AD may locally replace some part B of the input code by B′ that is not

observationally equivalent to B, even though both are semantically equivalent in

that particular context. Second, the input code may not be piecewise differentiable

in contrast to the AD assumption. Finally, AD may use certain common optimizing

transformations used in compiler-construction technology and for which formal proofs

are not straightforward [4, 20]. To ensure trust in the AD process, we propose shifting

the burden of proof from the AD client to the AD producer by using the proof-

carrying code paradigm [22]: an AD tool must provide proof for the correctness of

an AD-generated code or a counter-example demonstrating, for example, that the

input code is not piecewise differentiable; an AD user can check correctness proof

using a simple checker. Note that in this work, it is not our intention to certify

real arithmetic, but to certify the symbolic manipulations carried out by the AD

process. In this perspective, we have shown that, at least in some simple cases, one

can establish the correctness of a mechanical AD transformation (involving mainly

algebraic manipulations) used to that end by using a variant of Hoare logic [18,

Chap. 4]. For that purpose, we have constructed inference rules based on relational

Hoare logic [4] to establish the correctness of the forward-mode AD. We have also

investigated an abductive approach [25, 19, 5, 8], aiming at finding preconditions given

post-conditions for the correctness of the reverse-mode AD. Besides that, we aim to

put forward a viewpoint that distinguishes between performance and correctness (or
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safety) aspects of AD transformations; correctness aspects have yet to be explored in

AD literature.

2. Background and problem statement

This section gives a background on automatic differentiation, proof-carrying code,

and states the problem of certifying AD transformations.

2.1. Automatic Differentiation

AD is a semantics-augmentation framework based on the idea that a source pro-

gram S representing f : Rn → Rm,x 7→ y can be viewed as a sequence of instruc-

tions; each representing a function φi that has a continuous first derivative. This

assumes the program S is piecewise differentiable; therefore, we can conceptually fix

the program’s control flow to view S as a sequence of q assignments. An assignment

vi = φi
(
{vj}j≺i

)
, i = 1, . . . , q wherein j ≺ i means vi depends on vj , computes

the value of a variable vi in terms of previously defined vj . Thus, S represents a

composition of functions

φq ◦ φq−1 ◦ . . . ◦ φ2 ◦ φ1 (1)

Differentiating f yields the following chain of matrix multiplications that compute the

derivative of the function f represented by the program S.

f′(x) = φ′q({vj}j≺q−1) · φ′q−1({vj}j≺q−2) · . . . · φ′1
(
x) (2)

The variables x,y are called independents, dependents respectively. A variable that

depends on an independent and influences a dependent is called active.

2.1.1. A simple AD example

The calculation of f will be described by a code list [16], equivalent to static single-

assignment form [10]. It is a sequence of equations

vi = ϕi(relevant previous vj), (3)

for i = 1, . . . , p + m. The ϕi are given elementary functions and “relevant previ-

ous vj” denotes those variables vj that are the actual arguments of ϕi – necessarily

all having j < i. Here, v1−n, . . . , v0 are aliases for f ’s input variables x1, . . . , xn,

while vp+1, . . . , vp+m are aliases for f ’s output variables y1, . . . , ym, and v1, . . . , vp are

intermediate variables. That is, there are n inputs, p intermediates, and m outputs.

A code list describes the values calculated by a single execution-trace through

the program code of f . To illustrate this, let us consider the function f : R2 →
R2, (x1, x2) 7→ (y1 = (sin(x2) − x1)x1, y2 =

√
sin(x2)). The left column of the table

below shows a code list for f, written in MATLAB-like notation. On the right, the
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code list variables (written in normal mathematical notation) are shown as functions

of the inputs x1, x2.

function [y1,y2] = f(x1,x2)

v1 = sin(x2) v1 = sinx2

v2 = v1-x1 v2 = sin(x2)− x1

y1 = v2*x1 y1 = x1 (sin(x2)− x1)

y2 = sqrt(v1) y2 =
√

sin(x2)

(4)

The independents are x1,x2, the dependents are y1,y2, and the intermediates

are v1,v2. We wish to generate code to calculate J = ∂(y1, y2)/∂(x1, x2), comprising

∂y1/∂x1, ∂y1/∂x2, etc.

The basic linear relations of AD are obtained by differentiating the code line-by-

line.
v1 = sin(v2)

v2 = v1 − x1

y1 = x1v2

y2 =
√
v1

dv1 = cos(x2) dx2

dv2 = dv1 − dx1

dy1 = x1 dv2 + v2 dx1

dy2 = 1
2
√
v1

dv1

(5)

The d’s mean “derivatives with respect to whatever input variables we are interested

in”. Eliminating intermediate dvk to get the dyi as linear combinations of the dxj ,

dyi =
∑

j

Jij dxj ,

one obtains J = [Jij ], the desired Jacobian matrix.

One way of computing J is by the classic forward mode AD. Here, d means

gradient with respect to the input variables. In our example, d = (∂/∂x1, ∂/∂x2).

The process is shown in the table below.

Initialize with

dx1 = (1 0)

dx2 = (0 1)

and continue

dv1 = cos(x2) dx2 = (0 cos(x2))

dv2 = dv1 − dx1 = (−1 cos(x2))

ending with

dy1 = x1 dv2 + v2 dx1 = . . .

dy2 = 1
2
√
v1

dv1 = . . .

(formulae for entries in last two rows omitted)

(6)

This of course is done numerically at run time, wherein input values are not given

in the symbolic way suggested in this table. The process amounts to eliminating the

dvk by forward substitution. If done straightforwardly, not taking into account the

sparsity in the row vectors on the right, the cost (in terms of floating-point operations)
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of computing ∇f is about 3n times the cost of computing f [16]. Note that dx is also

called the directional derivative of a given variable x, and that the forward-mode AD

will augment the input code to produce a new code, which simultaneously evaluates

the value of the function as well as its directional derivative ( dy1, dy2) = ∇f · e
wherein e is a vector in the standard basis R2.

Another classical way of computing J is by the reverse mode AD. To illustrate this

technique, let us consider our example f function for which a computer code and its

linearised computational graph are shown on the left and right respectively of Figure 1.

A vertex of the linearized computational graph represents an input, intermediate, or

output variable; an edge (vj , vi) represents a dependency relationship stating that the

calculation of vi depends on vj and is labeled by the partial derivative ∂vi/∂vj .

v1 = sin(x2)

v2 = v1 − x1

y1 = v2x1

y2 =
√
v1 s1 s2

s5 s6
s3

s4
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Figure 1. An example of code fragment and its linearised computational graph.

Denoting v = ∂y1

∂v or ∂y2

∂v , the reverse-mode AD augment the input code in order

to evaluate the code of the left of equation (7) to get the function value f(x1, x2) and

then the code on its right to calculate a directional derivative (x1, x2) = e ·∇f wherein

e is a vector in the standard basis R2.

v1 = sin(x2)

v2 = v1 − x1

y1 = v2x1

y2 =
√
v1

v1 = ∂y2

∂v1
y2

v2 = ∂y1

∂v2
y1

x1 = ∂y1

∂x1
y1

v1 = v1 + ∂v2

∂v1
v2

x1 = x1 + ∂v2

∂x1
v2

x2 = ∂v1

∂x1
v1

(7)

The cost of computing ∇f is about 3m times the cost of computing f [16], but the

memory requirement may be excessive without the use of sophisticated check-pointing

or recalculation strategies [16]. It follows that gradients with m = 1 use fewer floating-

point operations with the reverse-mode AD.

Traditionally, numerical analysts use classic finite differencing schemes to esti-

mate the derivative of a mathematical function. This estimation involves guessing

a suitable step-size and incurs truncation errors, giving derivatives with an error of

O(
√
ε) at best while AD is exact within machine precision ε [12, 16]. Moreover, AD

can lead to fast derivative computation by exploiting the structure of the code. For
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example, the reverse-mode AD can evaluate the gradient of functions with a large

number number of inputs with a cost that is proportional to that of evaluating the

original function [16]. AD has been successfully applied to CFD, aerospace, finance,

design optimization, or sensitivity analysis; see www.autodiff.org for more details.

Note also that AD is not a symbolic differentiation tool à la MAPLE or MATH-

EMATICA. While AD can differentiate an implicit function (it suffices to have a

computer code that calculates the function), a symbolic differentiation tool requires

an explicit formula of the function. It is worth observing that, while AD uses sym-

bolic manipulations to differentiate the code, the evaluation of derivatives is carried

out numerically. In that sense, AD is a good example of the combination of symbolic

and numerical evaluations.

In terms of implementation, an AD tool can be written by using operator over-

loading or source-to-source transformation. The source-transformation approach of

AD relies on compiler-construction technology. It parses the original code into an

abstract syntax tree, as in the front end of a compiler, see [1]. Certain constructs in

the abstract syntax tree may be transformed into a semantically equivalent one, suit-

able to applying the AD technique. This is termed canonicalization. Then, the code

statements that calculate real-valued variables are augmented with additional state-

ments to calculate their derivatives. Data-flow analyses can be performed in order

to improve the performance of the AD transformed code, which can be compiled and

ran for numerical simulations. A standard data-flow analysis is the activity analysis

aimed at finding the set of active variables, since non-active variables will have a zero

derivative; see for example [17].

2.1.2. About non-differentiability

A real-life application may contain mathematical functions that are not differentiable

in some points in their domain. A computer code that models such an application

may contain intrinsic functions (e.g., abs or arccos) or branching constructs used to

treat physical constraints; for instance, non-physical values of model parameters. We

will now describe three situations which may cause non-differentiability problems.

First, let us consider the case related to non-differentiable intrinsic functions. For

instance, the derivative of cos−1 is not defined at x = 0 since

d cos−1(x = 1)

dx
=∞.

Moreover, consider the function abs. Its derivative evaluated at point x = 0 has more

than one possible value, including −1, 0, 1. Choosing one of these values depends upon

the numerical application. This suggests that there is no “automatic” way of treating

such a pathological case, and that code insight is crucial in guiding sensible choices.

To date, the best thing an AD tool can do is provide an exception-handling mechanism

that can be turned on in order to track down intrinsic related non-differentiable points.

Adifor is a primary example of such a mechanism, and to our knowledge is unique

in that respect (at the time of this writing).
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Second, consider an engineering application in which the independent or depen-

dent variables are real-valued, but complex-valued data has been used for compu-

tational purposes. Using the equivalence between R2 and C, a complex function

h : a + ib 7→ f(a, b) + ig(a, b) of a complex variable a + ib, where a, b are real values

and f, g are real-valued functions, is differentiable if and only if h is analytic meaning
∂f
∂a=∂g

∂b and ∂f
∂b= − ∂g

∂a . It follows that the conjugate operator z 7→ z is not differen-

tiable. The application of AD into such complex-valued functions is discussed in [23].

This may raise subtle issues for the application of AD, which relies on the assumption

that the input code is piecewise differentiable.

2.1.3. Iterative numerical solvers

An important question in using AD concerns differentiating through iterative pro-

cesses. Typically, AD augments a given iteration with statements calculating deriva-

tives. Empirically, AD provides the desired derivatives. However, questions remained

as to whether the AD-generated iteration converges and to what it converges. Con-

sider Fischer’s example as discussed in [11]. The iterative constructor xk+1 = gk(xk)

with

gk(x) = x exp(−kx2) (8)

converges to g ≡ 0 when k → ∞ whilst its derivative g
′
k(x) → 0 but g

′
(0) = 1. The

issues of derivative convergence for iterative solvers in relation to AD are discussed

in detail in [14, 15] for the forward-mode AD and in [9] for the adjoint mode. In [15],

it has been shown that the mechanical application of AD to a fixpoint iteration gives

a derivative fixpoint iteration that converges R-linearly to the desired derivative for

a large class of nicely contractive iterates or secant updating methods.

Usually, current AD tools generate derivative code using the same number of

iterations as the original solver. However, if the initial guess is close to the solution,

then this adjoint solver no longer converges to the adjoint of the solution. For example,

let us consider the following implicit iterative solver:

z0 = z0(x, y), zi = g(x, y, zi−1) for i = 1 . . . l, (9)

for l a non negative integer and the function g defined as:

g : R3 → R
(x, y, z) 7→ (y2 + z2)/x

z0 = z0(x, y) is meant z0 is initialized for some values of x and y. For given values

x = 3, y = 2 and an initial guess z = 0.5, the implicit equation

z = g(x, y, z)

has a solution z∗=z∗(x, y)=1 and ∇g(x, y, z∗)=(−1, 1). When the code in equation 9

is mechanically differentiated using, for exampl,e Tapenade, we observed:

• If the initial guess is within a radius of the solution that leads to convergence,

then the AD-generated iteration converged to the correct derivative.
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• If the initial guess is closer to the solution, say the initial value of z=1, then the

derivative iteration converged in one iteration to ∇g(x, y, z∗)=(−1/3, 1/3), which

is wrong.

This means the assumption made by most AD tools to use the same number of

iterations taken by the original iterative process for the derivative one is fair, but it

may lead to wrong derivatives in certain cases. As suggested in [9], the AD tool ought

to augment the convergence criterion to account for derivative convergence.

In summary, validating derivative calculation via AD can be difficult in the pres-

ence of non-differentiable functions and iterative solvers. It is hoped that future AD

tools will help spot such anomalies and raise warnings to the AD user since, to our

knowledge, there are no automatic ways of solving these issues.

2.2. Validating AD transformations

By validating a derivative code T from a source code S (T = AD(S)), we mean that

T and S have to satisfy the following property p(S, T ):

P (S)⇒ Q(S, T ), (10)

wherein P (S) means S has a well-defined semantics and represents a numerical func-

tion f and Q(S, T ) means T = AD(S) has a well-defined semantics and calculates

a derivative f′(x) · ẋ or y · f′(x). Checking p(S, T ) implies the AD tool must en-

sure the function represented by the input code is piecewise differentiable prior to

differentiation.

Traditionally, AD-generated codes are validated using software-testing recipes.

The derivative code is run for a wide range of input data. For each run, we test the

consistency of the derivative values using a combination of the following methods:

• Evaluate ẏ = f′(x) · ẋ using the forward mode and x = y · f′(x) using the reverse

mode and check the equality y · ẏ = x · ẋ.

• Evaluate f′(x) · ei for all vectors ei in the standard basis of Rn using Finite

Differencing (FD)

ẏ = f′(x) · ei ≈
f(x + hei)− f(x)

h
, (11)

and then monitor the difference between the AD and FD derivative values against

the FD’s step size. For the ’best’ step size, the difference should be of the order

of the square root of machine-relative precision [16].

• Evaluate f′(x) using other AD tools or a hand-coded derivative code (if available)

and compare the different derivative values; this should be the same (or within

a few multiples) of machine precision.

The question is what actions should be taken if at least one of these tests does

not hold. If we overlook the implementation quality of the AD tool, incorrect AD-

derivative values may result from a violation of the piecewise differentiability as-

sumption. The AD tool Adifor [7] provides an exception-handling mechanism, al-

lowing the user to locate non-differentiable points at runtime for codes containing
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non-differentiable intrinsic functions, such as abs or max. However, these intrinsic

functions can be rewritten using branching constructs as performed by the Tape-

nade AD tool [17]. To check the correctness of AD codes, one can use a checker,

a Boolean-valued function check(S, T ) that formally verifies the validating property

p(S, T ) by statically analyzing both codes to establish the following logical proposi-

tion:

check(S, T ) = true ⇒ p(S, T ) (12)

In this approach, the checker itself must be validated. To avoid validating a possibly

large code, we adopt a framework that relies on Necula’s proof-carrying code [22].

2.3. Proof-Carrying Code

Proof-Carrying Code (PCC) [22] is based on the idea that the complexity of ensuring

code safety can be shifted from the code consumer to the code producer by providing

proof that the code satisfies some safety rules defined by the code consumer. Safety

rules are verification conditions that must hold in order to guarantee the safety of

the code. Verification conditions can be, for example, that the code cannot access

a forbidden memory location, the code is memory-safe or type-safe, or the code ex-

ecutes within a well-specified time or resource usage limits. In the PCC paradigm,

certification is about generating a formal proof that the code adheres to a well-defined

safety policy, and validation consists of checking if the generated proof is correct by

using a simple and trusted proof-checker.

3. Unifying PCC and AD validation

Unifying PCC and AD validation implies that it is the responsibility of the AD pro-

ducer to ensure the correctness of the AD code T from a source S by providing a

proof of the property p(S, T ) in equation (10) along with the generated code T or a

counter-example (possibly an execution trace leading to a point of the program where

the derivative function represented by T is not well-defined). For a given source code

S, certifying AD software will return either nothing or a couple (T = AD(S), C)

wherein C is a certificate that should be used along with both codes S and T by the

verifier check in order to establish the property p(S, T ) of equation (10). If we can

generate the certificate C with the help of a proof-generator tool, then the correctness

proof of the derivative code becomes

check(S, T, C) = true ⇒ p(S, T ). (13)

In this case, the AD user must run the verifier check, which is simply a proof-checker,

a small and easy to certify program that checks whether the generated proof C is

correct. There are variants of the PCC framework. For example, instead of gener-

ating an entire proof, it may be sufficient for the AD software to generate enough

annotations or hints so that the proof can be constructed cheaply by a specialized

theorem prover at the AD user site.
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3.1. The Piecewise Differentiability Hypothesis (PDH)

The PDH (piecewise differentiability hypothesis) is the AD assumption that the input

code is piecewise differentiable. This may be violated even in cases where the function

represented by the input code is differentiable. A classic example is the identity

function y = f(x) = x written symbolically as

if x = 0 then y = 0 else y = x endif. (14)

Applying AD to this code will give f ′(0) = 0 in lieu of f ′(0) = 1. This unfortunate

scenario can happen whenever a control variable in a guard (logical expression) of

an IF construct or a loop is active. Recall that a variable is active if it depends on

an independent variable and it impacts a dependent variable. These scenarios can

be tracked by computing the intersection between the set V (e) of variables in each

guard e and the set A of active variables in the program. If V (e) ∩ A = ∅ for each

guard e in the program, then the PDH holds; otherwise, the PDH may be violated, in

which case an AD tool should at least issue a warning to the user that an identified

construct in the program may cause non-differentiability of the input program.

Ideally, one would like to check the PDH for a given computer code to be differ-

entiated. The following scheme outlines such a procedure:

1. Compute A the set of active variables of the program.

2. For each guard e, compute V (e) the set of variables in e.

3. If V (e) ∩A = ∅ then the PDH holds,

Else find the boundary values B described by the guard e,

For each value b ∈ B, check if the local derivative obtained by AD is the same as

that obtained using the standard definition of derivative evaluation,

f ′(x0) = lim
x→x0, x6=x0

f(x)− f(x0)

x− x0
. (15)

One can notice that, by applying the standard definition of derivative evaluation to

the code in Equation (14), we can recover that f ′(0) = 1, while an AD-generated code

will produce f ′(0) = 0. The remainder of this paper is devoted to how AD-generated

codes can be certified using a variant of Hoare logic.

3.2. Certifying AD Code Properties

In differentiating a computer code, an AD user may wish to ensure confidence in the

AD-generated code by specifying desirable properties to be checked. A property can

be that the PD hypothesis holds or the AD-generated code is memory or type safe

if the original code is. Generally speaking, AD software may have a canonicalization

mechanism. That is, it may silently rewrite certain constructs within the input code

prior to differentiation. The transformed input code should be proven semantically

equivalent to the original one so that the AD user can trust the AD-generated code.

This is even more necessary for legacy codes for which maintenance is crucial, and
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the cost of maintaining different versions of the same code is not simply acceptable.

In addition to the piecewise differentiability hypothesis, any prior transformation of

the input code must be proven correct, and all extra statements involving derivative

calculation must adhere to a safety policy defined by the AD user. For example, if

the input code is thread-safe, then the differentiated one must also be thread-safe.

The following describes the idea behind our PCC framework. An AD user sends

a program along with a configuration file with specifications regarding the differenti-

ation process (e.g., independents, dependents) and possibly the safety properties to

be checked. The AD server has a well-defined safety policy for generating derivatives.

If the AD tool rewrote parts of the input code, then there should be proof that the

transformed code fragment is computationally equivalent to the original. Moreover,

an AD user might be interested in finding out if some parts of code are pierce-wise dif-

ferentiable, in which case the AD-generated code must be proven correct. We can also

specify desirable safety properties such as thread-safety (as discussed at the beginning

of this section).

With the help of a theorem prover, the AD server should produce the AD code

along with a certificate showing that the property holds or a counter-example inval-

idating it. This is sent to the AD user who has to check the given certificate by

a simple proof-checker before using the AD-generated code or simulates the given

counter-example. A proof assistant candidate is Coq [6], which has been used to

develop a proof-carrying code approach to certify game-theoretic mechanisms in [3].

Coq is an interactive theorem prover based on the calculus of inductive constructions,

allowing definitions of data types, predicates, and functions. It provides a meta-

language enabling us to define different logics including Hoare Logic and higher-order

logics [18]. Because of the use of higher-order logic, checking a proof within Coq

can take an exponential time. On the other hand, the PCC framework works on the

premise that the certificate will be expressed in a formalism, enabling its checking to

be tractable. Nonetheless, if we check small code fragments, we can rely on Coq’s

proof checker to verify the certificates in our PCC approach; see for example [3].

Leaving aside the PCC implementation issues, we focus on the proof rules by using

relational Hoare logic [4].

4. Foundational Certification of AD Transformations

In this section, we use Hoare logic [18, Chap. 4], a foundational formalism for program

verification, to certify local code replacements or canonicalizations, and the forward

and reverse modes of AD.

Given an input computer code S and its AD transformed S′, we would like to

show that JS′K, the semantics of S′, coincide with that obtained using numerical dif-

ferentiation as defined in equation (15). In essence, we wish to show the commutation
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of the following diagram:

candidate is COQ [6], which has been used to develop a proof-carrying code approach to
certify game-theoretic mechanisms in [3]. COQ is an interactive theorem prover based on
the calculus of inductive constructions, allowing definitions of data types, predicates, and
functions. It provides a meta-language enabling us to define different logics including Hoare
Logic and higher-order logics [18]. Because of the use of higher-order logic, checking a proof
within COQ can take an exponential time. On the other hand, the PCC framework works on
the premise that the certificate will be expressed in a formalism, enabling its checking to
be tractable. Nonetheless, if we check small code fragments, we can rely on COQ’s proof
checker to verify the certificates in our PCC approach; see for example [3]. Leaving aside the
PCC implementation issues, we focus on the proof rules by using relational Hoare logic [4].

4. Foundational Certification of AD Transformations

In this section, we use Hoare logic [18, Chap. 4], a foundational formalism for program
verification, to certify local code replacements or canonicalizations, and the forward and
reverse modes of AD.

Given an input computer code S and its AD transformed S′, we would like to show
that JS′K, the semantics of S′, coincide with that obtained using numerical differentiation as
defined in equation (15). In essence, we wish to show the commutation of the following
diagram:

S

Semantics

��

AD // S′

Semantics

��
JSK Semantics o f Derivative // JS′K

By semantics of derivative, we mean the mathematical meaning of a derivative f ′(x0) defined
as the limit in equation (15). The standard interpretation of limit tells us that:

lim
x→x0

f (x) = l

is defined as
∀ε > 0,∃η > 0,∀x ∈ D, |x− x0|< η → | f (x)− l|< ε. (16)

In other words, we wish to establish that if a computer code S representing a function f
has well-defined semantics, then its AD-transformed code S′ has well-defined semantics and
represents the derivative f ′ viewed as the limiting process defined in equation (16).

4.1. Language Used

In this work, we consider a WHILE-language composed of assignments, if, and while
statements, and which expressions are formed using basic arithmetic or logical operations.
We denote V, a set of program variables, E the set of arithmetic expressions, B the set of
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defined as the limit in equation (15). The standard interpretation of limit tells us

that:

lim
x→x0

f(x) = l

is defined as

∀ε > 0, ∃η > 0,∀x ∈ D, |x− x0| < η → |f(x)− l| < ε. (16)

In other words, we wish to establish that if a computer code S representing a func-

tion f has well-defined semantics, then its AD-transformed code S′ has well-defined

semantics and represents the derivative f ′ viewed as the limiting process defined in

equation (16).

4.1. Language used

In this work, we consider a WHILE-language composed of assignments, if, and while

statements, and which expressions are formed using basic arithmetic or logical oper-

ations. We denote V, a set of program variables, E the set of arithmetic expressions,

B the set of Boolean expressions, and C the set of commands or statements. This

language can be described as:

x ∈ V
aop ∈ {+,−,×, /}
rop ∈ {<,>,==,≤, . . .}
lop ∈ {∧,∨,¬, . . .}
e ∈ E ::= const | x | e aop e

b ∈ B ::= true | false | e rop e | b lop b

c ∈ C ::= skip | x := e | c; c | if b then c else c | while b do c

The states σ ∈ S = V→ R are defined as associations of values to variables, and

the evaluation of expressions remains standard in the natural semantics. We denote

σ� C � σ′ to mean a command c evaluated at an pre-state σ leads to a post-state

σ′. This allows us to reason on the program by using Hoare logic.

Hoare logic is a sound and complete formal system providing logical rules for

reasoning about the correctness of computer programs. For a given statement c, the

Hoare triple {φ}c{ψ} means the execution of c in a state satisfying the pre-condition
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φ will terminate in a state satisfying the post-condition ψ. The conditions φ and ψ are

first order logical formulae called assertions. Hoare proofs are compositional in the

structure of the language in which the program is written. For a given statement c, if

the triple {φ}c{ψ} can be proven in the Hoare calculus, then the judgment ` {φ}c{ψ}
is valid.

4.2. A Hoare logic for AD Canonicalizations

An AD canonicalization consists in locally replacing a piece of code C1 by a new one

C2 suitable for the AD transformation [28]. For example, non-differentiable intrinsic

functions can be rewritten using IF constructs [17]. In this case, one must ensure that

C1 ∼ C2 meaning C1 and C2 are computationally equivalent. That is, for any states

σ, σ′ if σ� C1 � σ′, then σ� C2 � σ′.

The inference rules for AD canonicalization are given in Figure 2. They use a

variant of the relational Hoare logic [4], wherein commands are run over one state

in lieu of a couple of states as in [4]. The judgment ` C1 ∼ C2 : φ ⇒ ψ means

simply {φ}C1{ψ} ⇒ {φ}C2{ψ}. In the assignment rule (asgn), the lhs variable may

be different but is kept the same for clarity. Also, notice that the same conditional

branches must be taken (see the if rule) and that loops be executed the same number

of times (see the while rule) on the source and target to guarantee their computational

equivalence.

` v := e1 ∼ v := e2 : φ[v/e1] ∧ φ[v/e2]⇒ φ
asgn

` s1 ∼ c1 : φ⇒ φ0 ` s2 ∼ c2 : φ0 ⇒ ψ

` s1; s2 ∼ c1; c2 : φ⇒ ψ
seq

` s1 ∼ c1 : φ ∧ (b1 ∧ b2)⇒ ψ ` s2 ∼ c2 : φ ∧ ¬(b1 ∨ b2)⇒ ψ

` if b1 then s1 else s2 ∼ if b2 then c1 else c2 : φ ∧ (b1 = b2)⇒ ψ
if

` s ∼ c : φ ∧ (b1 ∧ b2)⇒ φ ∧ (b1 = b2)

` while b1 do s ∼ while b2 do c : φ ∧ (b1 = b2)⇒ φ ∧ ¬(b1 ∨ b2)
while

` φ⇒ φ0 ` s ∼ c : φ0 ⇒ ψ0 ` ψ0 ⇒ ψ

` s ∼ c : φ⇒ ψ
imp

Figure 2. Hoare logic for AD Canonicalization.

The relational Hoare logic is appropriate in the sense that it is both sound and

complete with respect to the intended interpretation. We define σ |= φ to mean φ

holds at the state σ.

Theorem 1 (Soundness of AD Canonicalization). If C1 ∼ C2 : φ⇒ ψ, then for any

states σ, σ′ such that σ� C1 � σ′, we have σ� C2 � σ′, and σ |= φ⇒ σ′ |= ψ

Proof. As in [13], the proof of this statement is carried out by induction on the relation

∼: C1 7→ C2 and subordinate induction on σ� C � σ′ for the while loop.
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Theorem 2 (Completeness of AD Canonicalization). If, for any states σ, σ′ such that

σ� C1 � σ′, we have σ� C2 � σ′ and σ |= φ⇒ σ′ |= ψ, then C1 ∼ C2 : φ⇒ ψ.

Proof. The proof is similar to that of [13].

4.3. A Hoare logic for the forward mode AD

The forward-mode AD can be used to compute the function f’s derivative ẏ given

a directional derivative ẋ. Usually, ẋ is a vector of the standard basis of Rn. Fig-

ure 3 shows how a program written in WHILE-language can be transformed using the

forward-mode AD. It shows how an assignment, IF-construct, or Loop-construct can

be augmented using the chain rule of calculus in order to evaluate derivative infor-

mation. For example, given assignment S, its derivative S′ is constructed using the

chain rule and inserted just before S to form the sequence T ≡ S′;S. These trans-

formation rules provide us with a recipe to build up a derivative code from an input

code representing a mathematical function. In Figure 3, S1 and S2 are assignments.

Assignment

S : z := e(x) Z⇒ T : dz :=

nX
i=1

∂e (x)

∂xi
· dxi| {z }

S
′

; z := e(x)

Sequence of Assignments

S : S1 ; S2 Z⇒ T : S′1 ; S1 ; S′2 ; S2

If statement

S : if b then S1 else S2 Z⇒ T : if b then S′1 ; S1 else S′2 ; S2

Loop

S : while b do S1 end Z⇒ T : while b do S′1 ; S1 end

Figure 3. Transformation rules for the forward-mode AD.

For a given source code S and its transformed T = AD(S) obtained by the

transformation rules in Figure 3, we aim to establish the property p(S, T ) given in

equation (10) in which P (S) is understood as a Hoare triple {φ}S{ψ} establishing that

S has a well-defined semantics and represents a function f and Q(S, T ) is understood

as a derived triple {φ′}T{ψ′} establishing that T has a well-defined semantics and

computes f′(x) · ẋ. Observe that the pre-conditions and post-conditions have changed

from the source code to the transformed code in opposition to the basic rules of

Figure 2. This reflects the fact that AD augments the semantics of the input code.

The relational Hoare logic rules for the forward-mode AD are given in Figure 4, in

which PDH == true tests if the PDH (piecewise differentiability hypothesis) holds.

This condition is the first premise to be checked in the proof rules, and its checking

amounts to checking that V (e)∩A = ∅ wherein V (e) is the set of variables in the logical

2014/05/11; 11:34 str. 14/22

228 Emmanuel M. Tadjouddine, Wenjin Lv



expression e and A the set of active variables. If it does not hold, then the correctness

of an AD-generated code cannot be guaranteed. Furthermore, we sometimes gave

names to certain long commands by preceding them with an identifier followed by

’:’. The notation S Z⇒ T means S is transformed into T . To give an idea of the

proof rules, consider the assignment rule. It states that if in a pre-state, a statement

S, z := e(x), wherein e(x) is an expression depending on x, is transformed into the

sequence T of the two assignments dz :=
∑n
i=1

∂e
∂xi
· dxi ; z := e(x), then we get the

value of the lhs z and its derivative dz = ∂e
∂xi
· ẋ in a post-state.

` S : z := e(x) Z⇒ T : Q(S, T )[z/e(x), dz/
Pn
i=1

∂e (x)
∂xi

· dxi]⇒ Q(S, T )
asgn

` S1 Z⇒ T1 : P (S1)⇒ Q(S1, T1) ` S2 Z⇒ T2 : Q(S1, T1) ∧ P (S2)⇒ Q(S2, T2)

` S : S1;S2 Z⇒ T : T1 ; T2 : P (S)⇒ Q(S, T )
seq

` S1 Z⇒ T1 : P (S1) ∧ b⇒ Q(S1, T1) PDH == true

` S : if b S1 else S2 Z⇒ T : if b then T1 else T2 : P (S)⇒ Q(S, T )
if true

` S2 Z⇒ T2 : P (S2) ∧ ¬b⇒ Q(S2, T2) PDH == true

` S : if b S1 else S2 Z⇒ T : if b then T1 else T2 : P (S)⇒ Q(S, T )
if false

` S1 Z⇒ T1 : P (S1, T1) ∧ b⇒ P (S1, T1) PDH == true

` S : while b do S1 Z⇒ T : while b do T1 : P (S, T )⇒ P (S, T ) ∧ ¬b while

` P (S)⇒ P0 ` S Z⇒ T : P0 ⇒ Q0 ` Q0 ⇒ Q(S, T )

` S Z⇒ T : P (S)⇒ Q(S, T )
imp

Figure 4. Relational Hoare logic for the forward-mode AD.

The forward-mode AD transformation rules give a Hoare logical framework that

is sound and complete.

Theorem 3 (Soundness of forward mode AD). If S Z⇒ T : φ′ ⇒ ψ′ and {φ}S{ψ},
then for any states σ, σ′, δ, δ′ such that σ � S � σ′ and δ � T � δ′, we have

(σ |= φ⇒ σ′ |= ψ)⇒ (δ |= φ′ ⇒ δ′ |= ψ′).

Theorem 4 (Completeness of forward mode AD). If for any states σ, σ′, δ, δ′ such

that σ � S � σ′ and δ � T � δ′, we have (σ |= φ ⇒ σ′ |= ψ) ⇒ (δ |= φ′ ⇒ δ′ |=
ψ′), then {φ}S{ψ} and S Z⇒ T : φ′ ⇒ ψ′.

5. Abductive Hoare logic for the reverse-mode AD

The reverse-mode AD can be implemented in order to compute the function f’s deriva-

tive x given a directional derivative y. Usually, y is a vector of the standard basis of

Rm. Figure 5 shows how a program in WHILE-language can be transformed using

the reverse-mode AD assuming we have a trusted code implementing a Stack with

the usual function push and pop.

2014/05/11; 11:34 str. 15/22

Foundational Certification of Code Transformations (...) 229



The stack can be used to preserve the original value of the tests involved in the

loop or branching instructions, but is irrelevant if those values cannot change during

the evaluation of the input function. One may also recompute those values in lieu

of storing them, but we omit this discussion here and refer the reader to the work

reported elsewhere; for example, in [17].

As seen in the forward-mode AD, Figure 5 shows how the basic constructs of

WHILE-language can be augmented in order to evaluate the derivative of a func-

tion encoded by a computer code in that language. Note how the reverse-mode AD

evaluates first the original function before going backwards to evaluate the partial

derivatives. The use of the Stack allows us to store information in the forward sweep

and then use that information in the reverse sweep when it is needed. In Figure 5,

S1 and S2 are assignments.

Assignment

S : z := e(x) Z⇒ T : z := e(x) ; x̄i = x̄i + z̄ · ∂e (x)

∂xi
for each active variablexi| {z }
S

Sequence of assignments

S : S1 ; S2 Z⇒ T : S1 ; S2 ; S2 ; S1

If statement

S : if b then S1 else S2 Z⇒
T : push(b); if b then S1 else S2 ; pop(b); if b then S1 else S2

Loop

S : while b do S1 end Z⇒
T : push(b); while b do S1 ; push(b); end ; pop(b); while b do S1 ; pop(b); end

Figure 5. Transformation rules for the reverse-mode AD.

5.1. Abductive Hoare logic

In logic, abduction is a kind of logical inference that seeks hypotheses in order to

satisfy given observations or conclusions; see for example [19, 25]. Given that the

reverse-mode AD uses a backward sweep to propagate sensitivities from the outputs

to the inputs, it can be viewed as a way of finding origins for given anomalies or causes

for given consequences. Abductive reasoning can be used to verify a derivative code

obtained by the reverse-mode AD as follows: the execution of a computer program

S representing a function f is a sequence of states from an initial state σi to a final

state σf
σi = σ1 → σ2 → σ3 → . . . → σq = σf

Each transition changes the state. The final state is reached after a finite number

of transitions q−1. The reverse-mode AD augments the given program S by using

a forward sweep to evaluate the function f and a backward sweep to accumulate the
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partial derivatives of f with respect to its inputs. This augmentation gives rise to a

new sequence of states associated with the transformed program T composed of the

sequence S;S. To verify that the property p(S, T ) given in equation (10) in which

P (S) is understood as a Hoare triple {φ}S{ψ} establishing that S has a well-defined

semantics and represents a function f and Q(S, T ) is understood as a derived triple

{φ}T{ψ} establishing that T has a well-defined semantics and computes y · f′(x), an

abductive approach may be to assert that the property p(S, T ) holds at the final state

σq for some q and then finds the weakest precondition wp satisfied by the preceding

state σq−1. The weakest precondition is one that describes the maximal set of possible

preceding states such that the execution of T leads to a state satisfying the post-

condition. In case a post-state can be reached from more than one pre-state, we

compute the MOP (Meet Over all Paths) upper bound as the union of all pre-states.

Repeatedly applying this reasoning to all intermediate states leading to σq, we can

calculate a weakest precondition wp0. If we have

wp0 ⇒ φ and p(S, T ) = true,

then the code generated by the reverse-mode AD is correct.

Example: Consider the code fragment in equation (14). By setting up the post-

condition to be that the derivative of the output y is 1 and leaving aside the real

arithmetic implementation, we can find the precondition: the value of x should be

different from 0. In this case, we ensure the correctness of the AD-generated code for

well-defined conditions; this should assist the AD user by pointing out cases wherein

the AD-generated code may not be correct.

5.2. Generating preconditions by abduction

In this section, we explain how abduction is used to discover preconditions in order

to verify that transformations performed by the reverse-mode AD are correct. In our

analysis, abduction can be expressed as follows.

Abduction. Given an assumption A and a goal G, we aim to find a missing hypothesis

H making the entailment

` A ∧H ⇒ G (17)

We can always return the false assertion for the hypothesis H, but we need to find the

best-possible solution. We say that H is a better solution of (17) than H ′, H - H ′,
if A ∧H ⇒ G and A ∧H ′ ⇒ G and H ′ ⇒ H. In other words, we seek solutions that

are minimal and consistent with the meaning of the relationship -. Figure 6 shows

the proof rules based on abduction in order to establish the correctness of the reverse-

mode AD. Reading these proof rules from conclusion-to-premises can be viewed as a

way for finding missing hypotheses H. This gives us a way of obtaining preconditions

for some post-conditions to hold.
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The key to reading the proof rules of Figure 6 is that they are of the following

form:
` H ′ ∧A⇒ G′ Cond
` H ∧A⇒ G (18)

In the equation (18) Cond represents a condition. This rule should be read as follows.

In order to establish the entailment ` H ∧ A ⇒ G, the condition Cond is checked

first. If it holds, then we make a recursive call to establish the smaller but related

entailment ` H ′ ∧ A ⇒ G′. The solution H ′ of this simpler question is then used

to compute the solution H of the original question. For example, the sequence rule

seq expresses that in order to prove the correctness of the transformation of a source

code S that is a sequence of two statements S1 and S2 into a target code T1 (S :

S1;S2 Z⇒ T1 : S1;S2;S2;S1), we need to first prove that S : S1;S2 Z⇒ T2 : S1;S2;S2

is correct. This provides us with an abductive procedure aimed at establishing that

the reverse-mode AD evaluates the correct derivative.

` S : z := e(x) Z⇒ T : S; S : Q(S, T )[z/e(x), x̄i/
∂e
∂xi

z̄]⇒ Q(S, T )
asgn

` S : S1;S2 Z⇒ T2 : S1;S2;S2 : P (S) ∧H ′ ⇒ Q(S, T2)

` S : S1;S2 Z⇒ T1 : S1;S2;S2;S1 : P (S) ∧H ⇒ Q(S, T1)
seq

` S1 Z⇒ T1 : P (S1) ∧H ′ ∧ b⇒ Q(S1, T1) PDH == true

` S : if b S1 else S2 Z⇒ T : P (S) ∧H ⇒ Q(S, T )
if true

` S2 Z⇒ T2 : P (S2) ∧H ′ ∧ ¬b⇒ Q(S2, T2) PDH == true

` S : if b S1 else S2 Z⇒ T : P (S) ∧H ⇒ Q(S, T )
if false

` S1 Z⇒ T1 : P (S1, T1) ∧ b ∧H ′ ⇒ P (S1, T1) PDH == true

` S : while b do S1 Z⇒ T : P (S, T ) ∧H ⇒ P (S, T ) ∧ ¬b while

` P (S)⇒ P0 ` S Z⇒ T : P0 ⇒ Q0 ` Q0 ⇒ Q(S, T )

` S Z⇒ T : P (S)⇒ Q(S, T )
imp

Figure 6. Abductive proof rules for the reverse-mode AD.

Note that abductive reasoning can also be applied to the forward-mode AD. As

for the forward-mode AD, the inference rules for the reverse-mode AD are sound for

the intended interpretation.

Theorem 5 (Correctness of the reverse-mode AD). {φ}S{ψ} and S Z⇒ T : φ′ ⇒ ψ′

iff for any states σ, σ′, δ, δ′ such that σ � S � σ′ and δ � T � δ′, we have

(σ |= φ⇒ σ′ |= ψ)⇒ (δ |= φ′ ⇒ δ′ |= ψ′).

6. Related work

The idea of certifying AD derivatives is relatively new. Probably, this idea was first

investigated in [21], wherein Coq has been used to develop a correctness proof of
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the forward-mode AD. Araya and Hascoët [2] proposed a method that computes a

valid neighborhood for a given directional derivative by looking at all branching tests,

and finding a set of constraints that the directional derivative must satisfy. However,

applying this method for every directional derivative may be very expensive for large

codes. Our approach to validation, previously introduced in [26], is derived from work

on certifying compiler optimizations and transformation validation for imperative lan-

guages [4, 20]. Our correctness proofs of AD canonicalizations are somewhat similar

to Benton’s relational Hoare logic for semantics equivalence between two pieces of

code [4]. Our logical framework is inspired by that of compiler optimization tech-

niques in [13]. In [24], a formalization of AD rules on basic functions is implemented

in ACL2(r) in order to produce algebraic proofs of derivatives. Our approach for cer-

tifying AD transformation is based on the idea that the AD producer should be able

to produce direct evidence in the form of a certificate for an AD-generated code and

that the certificate can be easily checked by the AD user prior to using the derivative

code. Our foundational certification of the forward-mode AD is an extension of rela-

tional Hoare logic calculus, since the assertions for the input code are augmented for

the AD-transformed code. However, we have relied on abductive logic [25, 19] to con-

struct the proof rules for the reverse-mode AD. Our abductive-Hoare-logic approach

is inspired by work done on Separation Logic [5, 8], although our work does not use

Separation Logic at all.

7. Conclusions and future work

We have highlighted the need to ensure trust in the AD-transformation framework and

have presented an approach for that purpose. We then focused on the foundational

aspects of providing such proof that an AD-transformed code is correct. We have

shown that simple code transformations (or AD canonicalizations) and the actual

semantics augmentation performed by the forward-mode AD can be certified using a

Hoare-style calculus. We have also devised inference rules based on abductive logic

for the correctness the reverse-mode AD. This first step is a small step compared to

the work that needs to be done in order to fully certify an AD back-end.

The use of relational Hoare logic in this context has simplified proof rules. This

formalism has potential and deserves further study. The use of abduction in the

proof rules of the reverse-mode AD can be thought of as a natural way of understand-

ing the reverse-mode AD, in the sense as the reverse-mode AD uses a backwards

sweep to propagate sensitivities, the abduction procedure starts from the conclusion

to search for an appropriate hypothesis. Our approach can be used by the proof-

carrying code paradigm: an AD tool must provide a machine-checkable certificate for

an AD-generated code, which can be checked by an AD user in polynomial time in the

size of the certificate by using a simple and easy-to-certify program. Our theoretical

approach needs to be implemented using an AD tool and a theorem prover such as

Coq for at least the WHILE-language considered in this work.
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