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PREPARATION OF CONTROL SPACE
FOR REMESHING POLYGONAL SURFACES

Abstract The subject of the article concerns the issues of remeshing, transforming

a polygonal mesh into a triangular mesh adapted to its surface. From the initial

polygonal mesh, the curvature of surface and boundary is retrieved and used to

calculate a metric tensor varying in three-dimensional space. In the proposed

approach, the curvature is computed using local approximation of surfaces and

curves on the basis of vertices of the polygonal mesh. An essential part of the

presented remeshing procedure is a creation of a control space structure based

on the retrieved discrete data. The subsequent process of remeshing is then

supervised by the contents of this auxiliary structure. The article presents var-

ious aspects related to the procedure of initialization, creation, and adjustment

of the control space structure.
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1. Introduction

Geometric modeling of complex three-dimensional objects is now widely used in many

fields of science and technology. The main areas of application are computational ge-

ometry, computer graphics, scientific visualization, and the creation of virtual reality.

This topic is also present in domains like computer simulations of physical processes,

design of machinery and equipment, medical imaging, biomedical research, and car-

tography.

Many models considered in these domains are obtained by means of 3-D scanning

and other techniques of digitizing the surface of 3-D models (e.g. using magnetic

resonance imaging or computed tomography).

The result of such techniques is a discrete set of points from which the surface

is reconstructed. A survey of methods of surface reconstruction can be found in

[7, 3]. The result of this step is usually a polygonal mesh. Unfortunately, the quality

of meshes obtained in such a manner is often far from satisfactory. They contain

a lot of defects, including artifacts, inverted elements, missing elements (creating

holes), redundant vertices, and noise. The first step, therefore, is to apply some

methods which help solve these problems and allow a surface to be described through

a topologically-correct mesh. Then, the subsequent step can be executed; namely,

remeshing.

In [2], the following definition of remeshing is proposed: “Given 3-D mesh, com-

pute another mesh, whose elements satisfy some quality requirements, while approx-

imating the input acceptably”. Such a definition is very general and does not pre-

cisely specify the concept of the quality of approximation. It may be mesh density,

its regularity, or the size and shape of the elements. Often, a combination of these

requirements is necessary in practical applications. The quality criterion needs to

be adjusted for a particular application. An overview of the most commonly used

methods of remeshing can be found in [2, 5].

Remeshing techniques can be divided into two categories – working directly in

3-D space (e.g. [20, 8]) or utilizing the parameterization [13, 19]. The goal of param-

eterization is to project surface meshes onto a 2-D plane. It is necessary to find the

correct mapping function, translating boundary vertices of the mesh onto the bound-

ary of the plane, and the inner mesh vertices into the inside of the 2-D domain, all the

while respecting the correct connection of the vertices. The procedures of adaptation

are carried out for the mesh projected into 2-D parametric space. The improved mesh

is then transformed back into three-dimensional space.

The global parameterization, which parameterizes the whole mesh, is practically

feasible only for specific models, homeomorphic to a disc. Otherwise, it is necessary to

properly divide the input mesh into sub-domains which, only then, can be successfully

parametrized. Unfortunately, finding the proper division is a separate and difficult

task. Consequently, many remeshing techniques use local parameterization, where

the surface is parametrized for a suitably selected neighborhood of elements (e.g.

[21]). The procedure of remeshing is run locally as well. Both of these approaches
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have the unfortunate disadvantages resulting from the projection, which introduces

various types of distortion. This problem does not seem to be completely solved for

increasingly-complicated shapes of objects encountered in practice.

2. The proposed solution

The algorithm proposed in this article is essentially running in 3-D space, using 2-D

parametric space locally for few operations. The input data is a polygonal mesh.

Such a mesh often contains a number of various errors and inconsistencies, which

are corrected and solved in subsequent procedures of the presented algorithm. Then,

the actual remeshing of the polygonal mesh is carried out. The final result of this

procedure is a mesh adapted to automatically-determined properties of the surface.

The essential part of this adaptation technique is the curvature of surfaces and curves

recovered from the discrete input mesh. These values are converted into appropriate

metric tensor calculated in discrete points of the 3-D domain. Methods applying the

concept of a non-Euclidean metric are now widely used for the generation and adap-

tation of unstructured anisotropic meshes in two and three dimensions [1, 17, 6, 9].

The element of novelty in the proposed algorithm in relation to known techniques

is the application of a control space concept, which is an additional structure guiding

the process of mesh generation and adaptation [12]. The idea of utilizing an auxiliary

background data structure for facilitating mesh generation process is not new [22,

18]. However, the concept of the proposed adaptive control space structure and its

application for remeshing is further extended, which allows us to take advantage

of it more efficiently and robustly in a number of meshing applications. A specific

feature of our technique is also the method of determining the local metric. We use

local approximation of curves and surfaces with quadrics based on local set of mesh

vertices.

The subsequent phases of remeshing a polygonal mesh are as follows:

1. Initial preprocessing of the polygonal mesh – recovery of the topological boundary

(if it exists – for open or multi-domain models), determination of normals for all

faces in the mesh, correction of inverted elements, identification of sharp edges.

2. Construction of the control space structure.

3. Determination of a set of local surfaces and local curves.

4. Division of polygons in order to obtain a uniform mesh composed of triangular

faces.

5. Actual remeshing procedure consisting of a mixture of local techniques, including

collapsing of edges, edge splitting, geometrical and topological improvement of

the mesh.

The control space is used in all steps after its creation – from (3) to (5). The

required representations of the metric are retrieved from the control space in order to

facilitate evaluation of the fitting, validity and quality of remeshing operations. This

article is devoted to the step (2) of the remeshing process, where the control space

structure for remeshing the polygonal grid is created, adjusted, and initialized.
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3. Control space structure

The typical control space structure has been extended to store additional information

supervising the size and shape of mesh elements, like the local metric gradation rate or

the maximum anisotropy ratio. Depending on the application, the control space may

have a different structure; e.g., quadtree/octree grid or background mesh, with sizing

data in the form of a metric tensor stored in nodes of those grids and metric within the

leaves being calculated using appropriate shape functions. In our approach, the metric

tensor stored in the nodes of control space is represented by a metric transformation

matrix [10, 14].

In order to enable the possibility of preparation and utilization of various control

space structures, a common interface of adaptive control space (ACS) was created [15].

This allows us to develop the automated construction of the sizing field independently

from the selected type of control space. Thus, further extension of the CS structure

types is easily possible without influencing the procedures of remeshing.

Additionally, the ACS interface includes operations which allow us to update or

correct the metric already stored in the control space, which is especially useful for

adapting the mesh to the shape of the domain.

4. Construction of the control space for remeshing

a polygonal mesh

The control space is formed based on a set of metric sources defined in points. The

procedure of control space creation can be divided into two tasks (Fig. 1): determining

the set of metric sources, and using them to create a sizing field in the control space.

a) b)

Figure 1. Construction of control space: a) polygonal mesh with computed set of metric

sources, b) control space with metric tensor set at the nodes of the octree structure.

4.1. Determining the set of metric sources

The main sizing information for remeshing is gathered by assessing the local cur-

vature of the surface mesh. For each face of the polygonal mesh, a local surface is
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approximated using the local vicinity of mesh entities. If the approximation quality

is satisfactory, the curvature of the surface is computed for the point at the middle

of the face. From this curvature, the metric tensor is calculated, and a new discrete

metric source is created and ready to be inserted into the control space. Additionally,

if such a face is adjacent to boundary edges, a local curve approximation and calcu-

lation of contour curvature is attempted in order to further adjust the control space

information. The computation and insertion of metric sources is performed according

to the methodology presented in [11, 16].

4.1.1. Local surface approximation for faces

For each face of the polygonal mesh, the procedure begins with collecting a local

set of points, which are the vertices of that face and of all of the elements from the

prescribed number of topological layers of elements around the face (Fig. 2). While

gathering these layers of elements, the edges marked as boundaries are never crossed.

The number of layers is typically set to one or two layers.

The minimum number of points for surface approximation is 6. If the number

of vertices in the set is lower, additional layers are included until this requirement is

fulfilled. If the set of vertices is still too small (despite the extended number of layers),

the local surface approximation for such a face is canceled. Otherwise, a least-square

approximation with quadric (z = f(1, x, y, xy, xx, yy)) is computed using a reference

plane approximated earlier for this set of points.

Since the control space structure is not yet ready, the metric information stored

therein can not be used to evaluate the quality of approximation. Instead, the ac-

ceptability of the approximation is determined by using the overall size of the set

of points used for approximation as a measure of local mesh density. In order for

the approximation surface to be accepted, the maximum approximation error (maxi-

mum distance between the points of the set and the approximating quadric surface)

needs to be lower than the average radius of the layer of elements multiplied by the

coefficient of surface curvature adaptation.

a) b)

Figure 2. Local surface approximation for face: a) topological layers, b) set of vertices and

the approximated quadric.
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4.1.2. Determining of the metric tensor

The metric tensor is formed basing on the main curvatures χ1, χ2 and main directions

e1, e2 of the approximation surface.

The three-dimensional metric tensor M is represented as

M = RΛRT . (1)

The columns of R are the eigenvectors e1, e2 calculated from the approximation sur-

face and e3 – orthogonal to e1 and e2. Λ = diag(λi) is created as the diagonal

eigenvalue matrix (λi = 1/h2
i ).

The requested length hi of edges along the main directions is calculated as

hi = max

(
min

(
γc
χi
, hmax

)
, hmin

)
, i = 1, 2, (2)

where γc is the constant ratio of proportionality of the edge length and curvature

radius. hmin and hmax are bounds necessary to avoid creation of too extreme elements

and also to ensure that the metric tensor is a non-singular matrix.

The length h3 is calculated as

h3 = γa min(h1, h2), (3)

where the anisotropy ratio γa is introduced in order to facilitate controlling of the

maximum stretch ratio of elements

max(hi)

min(hi)
≤ γa, i = 1, . . . , d. (4)

The meshing parameters hmax, hmin, γc and γa can be adjusted by the user

depending on the considered problem.

4.1.3. Reusing approximated surface for generation of multiple metric sources

For each inspected face of the polygonal mesh, the approximated surface is being

fitted not only to this face, but also for a two layers of elements in its neighborhood.

The possible optimization of the procedure of retrieving the metric sources could

infer from extending the utilization of the computed approximation surface. Instead

of using it only for calculation of the curvature for a single point within the selected

face, is can be also applied to compute the curvature for some additional faces in one

or two surrounding layers of elements. Such an approach would reduce the number

of necessary surface approximations. Unfortunately, at this point of research, some

additional checks seem to be required in order to avoid a degradation of the quality

of thus-calculated metric sources.
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4.1.4. Local curve approximation for edges

In the case of a successful approximation of a surface for a face, a potential curve

approximation for the boundary edges of such face is considered. For a given boundary

edge, the chain of boundary edges from both sides of the edge is gathered. The

number of edges from each side is limited similarly to the number of layers in the case

of surface approximation for a face. Also, crossing of the vertices marked as corners

are prohibited.

The next step is to project the gathered set of vertices (from all edges in this

chain) onto the surface approximated previously for the face. If those points (after

projection) can be approximated with a straight line, no further calculations are

performed since the curvature of this contour is already included within the curvature

of the surface. Otherwise, the set of points is locally approximated by a polynomial.

If successful, the curvature of this contour is calculated and a new metric source is

created and inserted into the control space.

The metric tensor for the curvature of contours is formed in a similar manner as

in the case of surface curvature. The details of these procedures can be found in [11].

4.2. Creation of control space basing on a set of metric sources

The continuous sizing field stored in the control space is computed from a discrete

set of metric sources where each metric source is given as metric tensor defined in

3-D point. In this work, the metric tensor is based on the curvature of approximated

surfaces and contours. However, the technique of creating the control space through

the introduction of metric sources is more general, and this allows us to incorporate

other types of sizing information, including various geometrical properties of the model

(like short edges or proximity of entities) or data obtained from other sources (defined

by a user or resulting from the adaptation in the simulation of processes).

The preferred type of control space structure is an octree grid. The size of the

control space is set based on the bounding box of all vertices from the input polygonal

mesh.

In order to transform a discrete irregular set of points into a continuous field

defined by the nodes of the control space structure, two approaches can be applied

depending on the situation:

1. Local adjustment of the control space using operation of metric intersection.

This approach is preferable if the control space is already initialized and some

additional metric sources are introduced in order to further adapt the sizing of

the mesh. If no predefined sizing field is available, the initial values of nodes

of the control space structure are set to be the maximum metric defined by the

corresponding parameters of meshing process. Then, each new metric source is

sifted through the control space, possibly causing an adaptation of its structure

depending on the difference between the metric stored in the source and the

metric already set in the nodes of control space. After the adaptation of the

CS structure, the nodes of an octree leaf containing the new source are updated
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using the procedure of metric intersection. After all metric sources are inserted,

an additional operation of smoothing is executed in order to enforce the gradation

of metric prescribed by relevant meshing parameters.

2. An alternative method is based on initializing the control space structure directly

from the set of discrete metric sources sifted through the octree. The adaptation

of the control space structure is based on the disparity between the metric in

a list of metric sources for a given leaf. If the difference is too high, the leaf

is split, and the list of metric sources is divided accordingly. Finally, after all

metric sources are inserted into the control space structure, the procedures of

interpolation and extrapolation are applied in order to determine the values of

metric in all nodes of the control space.

5. Evaluation of created control space

In order to evaluate the developed technique, several study cases based on algebraic

surfaces were prepared and tested. The example test model T1 (Fig. 3) was created

using the following procedure:

1. First, an unstructured mesh was generated for a toroidal surface:





x= (0.05 + 0.02 cos v) cosu

y= (0.07 + 0.01 cos v) cosu

z= 0.03 sin v

(5)

2. All faces and edges were removed from this mesh, leaving only a set of discrete

points.

3. A polygonal mesh (with 48 055 vertices and 37 240 faces) was obtained via surface

reconstruction from this cloud of points thanks to PowerCrust [4] software.

4. After the validation procedure combined with elimination of degenerate or too

small elements, the resultant polygonal mesh T1 was created with 23 783 vertices

and 24 428 faces.

For the polygonal mesh T1, a developed procedure of remeshing was executed

and evaluated regarding especially the part of creation of the control space structure.

The metric sources were gathered from the faces of the polygonal mesh for all three

layers of elements used for approximation, using only the first two layers or basing

it on the central element only (Sec. 4.1.3) – in further analysis denoted respectively

with symbols “012”, “01” and “0”. Additionally, as reference values, the metric

sources were also created using the initial algebraic formula for the remeshed toroidal

surface – denoted with “f”. Independently from the method of creation of the metric

sources, two techniques of control space creation were inspected: (1) local adjustment

of control space using metric intersection, and (2) initialization using an average

metric (Sec. 4.2) – denoted as “int” and “ave” respectively.

For each pair of control space structures being checked, the metric stored therein

was retrieved and compared for all nodes of the initial polygonal mesh. In order to
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Figure 3. Initial polygonal mesh T1.

compare non-scalar values of metric tensors M1 and M2 obtained from two different

control space structures, the following residuals are calculated:

R1 = M−1
1 M2 − I

R2 = M−1
2 M1 − I

(6)

and the non-conformity coefficient δM is calculated using the Euclidean norm of

a matrix [17]

δM(M1,M2) = ||R1 + R2||. (7)

The value of δM equal to 0 means perfect match of two metrics. The higher the value,

the more different are the metrics.

The results of a series of tests were gathered in Table 1. Each row shows com-

parison statistics for a pair of control space structures, created using different ap-

proaches. δmin
M and δmax

M present the minimum and maximum values of the metric

non-conformity coefficient among all metric comparisons in the vertices of the initial

polygonal mesh. The last five columns show the number of comparison results divided

into the given intervals.

The results in both int-0 and ave-0 (with curvature calculated using an ap-

proximation surfaces) correspond closely to the control space structures created using

the analytical data (int-f and ave-f respectively) which confirms the validity of the

presented technique.

For structures denoted with “012” and “01”, there is a clear discrepancy between

these cases and the reference control space f. This distortion in the metric field

also has a visible and negative influence on the quality of the subsequent remeshing
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Table 1

Comparison of metric in control space structures created using different approaches.

ACS1 ACS2 δmin
M δmax

M [0, 0.5) [0.5, 1) [1, 2) [2, 4) [4,∞)

int-f ave-f 0.00056 1.1 23273 505 5 0 0

int-f int-0 0.000053 0.3 23783 0 0 0 0

int-f int-01 0.00025 52.2 757 898 2164 3676 16288

int-f int-012 0.00097 61.8 981 1166 2207 3460 15969

ave-f ave-0 0.0016 0.9 23752 31 0 0 0

ave-f ave-01 0.013 20.3 7651 4455 4073 3523 4081

ave-f ave-012 0.0060 35.2 4728 2913 3483 4729 7930

procedure, hindering this process and producing meshes of a lesser quality. The

control space structures created with the averaging approach (ave) seem to be less

affected by the inaccuracies in the set of metric sources from which a control space

structure is initialized.

The difference between the int and ave structures is rather small. The meshes

produced using these control spaces have similar structure. The control space struc-

ture created using the int approach has a tendency to produce meshes with slightly

smaller elements.

6. Example of influence of the control space on created meshes

Figure 4 presents the result of the remeshing procedure for the tested toroidal model

T1 (Fig. 3).

a) b)

Figure 4. Result of mesh adaptation (NP=5 655, NF=11 310): a) created ACS structure;

b) after remeshing.
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The process of creating a control space based on a set of metric sources can be

additionally adjusted with a number of meshing parameters allowing to easily influ-

ence the characteristic of the produced meshes; e.g., maximum anisotropy (controlling

the maximum allowable stretching of elements), gradation of the metric (defining how

rapidly the metric can be changing throughout the meshing space), or curvature ratio

(describing the relation between the curvature radius and the resulting size of ele-

ments – the higher the value of this coefficient, the larger the elements). Figure 5

presents the effect of remeshing performed for the value of curvature ratio γc = 0.3

(for Fig. 4 the value of γc = 0.15 was used).

a) b)

Figure 5. Result of mesh adaptation for altered value of curvature ratio parameter

(NP=2 023, NF=4 046): a) created ACS structure; b) after remeshing.

7. Examples

Figures 6 and 7 present the results of the remeshing procedure carried out for a sizing

field retrieved from the cubic model with a different density of the initial polygonal

mesh (giving comparable structure of the final mesh). The preliminary identification

of boundary edges and vertices is based on topological information. The edges (and

their vertices) adjacent to more or less than two faces are marked as boundary. Simi-

larly, boundary vertices adjacent to more or less than two boundary edges are marked

as corner. After establishing normals for all faces in the input mesh, an additional

set of boundaries may be recognized from the sharp edge criterion, where the angles

between normals for incident faces are inspected; if the angle is larger than the given

threshold value, such an edge is marked as a candidate for boundary edge. The set of

candidate sharp edges is then processed in order to promote the creation of continu-

ous sequences of boundary edges by filtering out single candidate edges or completing
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chains of such edges with additional edges. After recognition of the chains of bound-

ary edges, the set of corner boundary points is updated with the ending vertices of

such chains as well as with the vertices where the angle between the adjacent edges

is smaller than the given threshold value. After creation of an ACS structure and

identification of local surfaces, additional information about the processed model is

obtained, which can be utilized to further refine and update the set of boundary edges

and vertices.

a) b)

Figure 6. Result of mesh adaptation for a cube: a) initial polygonal mesh (NP=2 592,

NF=1 778); b) after remeshing with created sizing space (NP=52, NF=100).

a) b)

Figure 7. Result of mesh adaptation for a cube: a) initial polygonal mesh (NP=17 571,

NF=11 977); b) after remeshing with created sizing space (NP=55, NF=106).

Figure 8 illustrates structure of the mesh obtained after remeshing with the

control space created with a higher value of the anisotropy parameter.
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a) b)

Figure 8. Result of mesh adaptation for a cylinder: a) initial polygonal mesh (NP=8 673,

NF=7 222); b) after remeshing with created sizing space (NP=981, NF=1 958).

8. Summary

The article concentrates on the presentation of issues and techniques related to the

task of creating a control space structure for remeshing of surface meshes. Proper

creation of such structure facilitates the subsequent remeshing procedures (including

creation of local reference surfaces and contours, collapsing of edges, geometrical and

topological smoothing, splitting of edges, etc.) which will be described in more detail

in future articles.
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measure of the conformity of a mesh with respect to an anisotropic metric field.

Int. J. Numer. Meth. Engng, vol. 61, pp. 2675–2695, 2004.

2014/02/12; 19:19 str. 14/15

560 Tomasz Jurczyk, Barbara Głut



[18] Miranda A. C. O., Martha L. F., Wawrzynek P. A., Ingraffea A. R.: Surface mesh

regeneration considering curvatures. Eng. Comput. (Lond.), vol. 25(2), pp. 207–

219, 2009.

[19] Morigi S.: Feature-sensitive parameterization of polygonal meshes. Applied Math-

ematics and Computation, pp. 1561–1572, 2009.

[20] Rassineux A., Villon P., Savignat J. M., Stab O.: Surface remeshing by local

hermite diffuse interpolation. Int. J. Numer. Meth. Engng, vol. 49(1–2), pp. 31–

49, 2000. ISSN 1097-0207.

[21] Surazhsky V., Alliez P., Gotsman C.: Isotropic Remeshing of Surfaces: A Local

Parameterization Approach. In: Proc. 12th Int. Meshing Roundtable, pp. 215–

224. Sandia National Laboratories, Santa Fe, New Mexico, USA, 2003.

[22] Zhu J., Blacker T., Smith R.: Background Overlay Grid Size Functions. In: Proc.

11th Int. Meshing Roundtable, pp. 65–74. Sandia National Laboratories, Ithaca,

NY, 2002.

Affiliations

Tomasz Jurczyk
AGH University of Science and Technology, Department of Computer Sciences, Krakow,
Poland, jurczyk@agh.edu.pl

Barbara G lut
AGH University of Science and Technology, Department of Computer Sciences, Krakow,
Poland, glut@agh.edu.pl

Received: 28.10.2013

Revised: 11.11.2013

Accepted: 11.11.2013

2014/02/12; 19:19 str. 15/15

Preparation of control space for remeshing polygonal surfaces 561


